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Abstract Curvature properties are studied for the Sasaki metric on the (1, 1) tensor bun-
dle of a Riemannian manifold. As an application, examples of almost para-Nordenian and
para-Kähler-Nordenian B-metrics are constructed on the (1, 1) tensor bundle by looking at
the Sasaki metric. Also, with respect to the para-Nordenian B-structure, paraholomorphic
conditions for the complete lifts of vector fields are analyzed.
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1 Introduction

Let M be an n-dimensional differentiable manifold of class C∞, T 1
1 (M) its tensor bundle of

type (1,1). We denote by �r
s(M) the set of all tensor fields of type (r, s) on M . Similarly, we

denote by �r
s(T 1

1 (M)) the corresponding set on T 1
1 (M).

Fiber bundles play an important role in just about every aspect of modern geometry and
topology. Prime examples of fiber bundles are tensor bundles of different types (p, q) over
differentiable manifolds. The tangent bundle T (M) and cotangent bundle T ∗(M) are the special
cases of a more general tensor bundle T p

q (M) of type (p, q) over M . The geometry of tangent
bundles goes back to the fundamental paper [22] of Sasaki published in 1958. He used a given
Riemannian metric g on a differentiable manifold M to construct a metric g̃ on the tangent
bundle T (M) of M . Today this metric is called the Sasaki metric. The Levi-Civita connection ∇̃
of the Sasaki metric on T (M) and its Riemann curvature tensor R̃ are calculated by Kowalski in
[9] (see also [8]). Afterwards, Aso [1], Musso and Tricerri [16] investigated interesting relations
between the geometric properties of the base manifold (M, g) and its tangent bundle (T (M), g̃)
with the Sasaki metric. The Sasaki metric on the cotangent bundle was studied by several
authors, including Mok [14], Salimov and Agca [21]. In [3, 11, 17, 18], the Sasaki metric was
studied on the tensor bundles of different types (p, q) over differentiable manifolds. In [13], Mok
studied the Sasaki metric on frame bundles and calculated its curvature tensor (for details, see
[4]).

The work is organized as follows.
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In Section 2, some introductory materials concerning the tensor bundle T 1
1 (M) over the

differentiable manifold M are collected, like some particular types of vector fields on the tensor
bundle T 1

1 (M) and Lie bracket operation of vertical and horizontal vector fields.
In Section 3, the adapted frame which allows the tensor calculus to be efficiently done

is inserted in the tensor bundle T 1
1 (M). The Sasaki metric on the tensor bundle T 1

1 (M) is
introduced and the components of the Levi-Civita connection of the Sasaki metric with respect
to the adapted frame are calculated.

In Section 4, we calculate the Riemann curvature of the Levi-Civita connection of the Sasaki
metric with respect to the adapted frame, and compare the geometries of the manifold M and
its tensor bundle T 1

1 (M) with the Sasaki metric.
In Section 5, the similar problems in Section 4 are investigated for the metric connection of

the Sasaki metric on the tensor bundle T 1
1 (M).

Section 6 deals with the para-Nordenian property of the Sasaki metric.
Throughout this paper, we always suppose that all manifolds, functions and tensor fields

are differentiable and of class C∞.

2 Prilimineries

Let M be a differentiable manifold of class C∞ and finite dimension n. Then the set
T 1

1 (M) =
⋃

P∈M

T 1
1 (P ) is, by definition, the tensor bundle of type (1, 1) over M , where

⋃
denotes

the disjoint union of the tensor spaces T 1
1 (P ) for all P ∈ M . For any point P̃ of T 1

1 (M), the
surjective correspondence P̃ → P determines the natural projection π : T 1

1 (M) → M . The
projection π defines the natural differentiable manifold structure of T 1

1 (M), that is, T 1
1 (M) is a

C∞-manifold of dimension n + n2. A local coordinate neighborhood {(U ; xj , j = 1, · · · , n)} in
M induces on T 1

1 (M) a local coordinate neighborhood {π−1(U); xj , xj = tij , j = 1, · · · , n}, j :=
n + j (j = n + 1, · · · , n + n2), where xj = tij are the components of the (1, 1) tensor field t in
each (1, 1) tensor space T 1

1 (P ), P ∈ U with respect to the natural base.
We denote by �r

s(M) the module over F (M) of all C∞ tensor fields of type (r, s) on M ,
where F (M) is the ring of real-valued C∞ functions on M . If α ∈ �1

1(M), it is regarded, by
contraction, as a function on T 1

1 (M), which we denote by ıα. If α has the local expression
α = αj

i ∂j ⊗ dxi in a coordinate neighborhood U(xj) ⊂ M , then ıα = α(t) has the local
expression ıα = αj

i t
i
j with respect to the coordinates (xj , xj) in π−1(U).

Suppose that A ∈ �1
1(M). Then there is a unique vector field V A ∈ �1

0(T
1
1 (M)), such that

for α ∈ �1
1(M) (see [12])

V A(ıα) = α(A) ◦ π = V (α(A)), (2.1)

where V (α(A)) is the vertical lift of the function α(A) ∈ F (M). We note that the vertical
lift V f = f ◦ π of the arbitrary function f ∈ F (M) is constant along each fibre π−1(P ). If
V A = V Ak∂k + V Ak∂k, from (2.1) we have

V Aktij∂kαj
i + V Akαk

h = αk
hAh

k .

Since αk
h and ∂kαj

i can take any preassigned values at each point, we have from the above
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equation

V Aktij = 0, V Ak = Ah
k .

Hence

V Ak = 0

at all points of T 1
1 (M) except possibly those at which all the components xj = tij are zero, that

is, at points of the base space. Thus we see that the components V Ak are zero at a point such
that xj 	= 0, that is, in T 1

1 (M) → M . But the vector field V A is continuous at every point of
T 1

1 (M). So, we have V Ak = 0 at all points of T 1
1 (M). Consequently, the vertical lift V A of A

to T 1
1 (M) has the components

V A =
(

V Aj

V Aj

)
=
(

0
Ai

j

)
(2.2)

with respect to the coordinates (xj , xj) in T 1
1 (M) (see [2]).

Let LV be the Lie derivation with respect to V ∈ �1
0(M). We define the complete lift

CV = LV of V to T 1
1 (M) by

CV (ıα) = ı(LV α) (2.3)

for α ∈ �1
1(M) (see [12]). If CV = CV k∂k + CV k∂k, from (2.3), we have

CV ktij∂kαj
i + CV kαk

h = tij(V
k∂kαj

i − (∂kV j)αk
i + (∂iV

k)αj
k). (2.4)

Discussing in the same way as in the case of the vertical lift, from (2.4), we see that the complete
lift CV has the components

CV =
(

CV j

CV j

)
=
(

V j

tmj (∂mV i) − tim(∂jV
m)

)
(2.5)

with respect to the coordinates (xj , xj) in T 1
1 (M) (see [2, 15]).

Let ∇ be a symmetric affine connection on M . We define the horizontal lift H∇ = ∇̃V ∈
�1

0(T 1
1 (M)) of V ∈ �1

0(M) to T 1
1 (M) by

HV (ıα) = ı(∇V α), α ∈ �1
1(M)

(see [12]). The horizontal lift HV of V ∈ �1
0(M) to T 1

1 (M) has the components

HV =
(

HV j

HV j

)
=
(

V j

V s(Γm
sjt

i
m − Γi

smtmj )

)
(2.6)

with respect to the coordinates (xj , xj) in T 1
1 (M), where Γk

ij are the local components of ∇ on
M (see [2, 15, 23]).

Let ϕ ∈ �1
1(M), which are locally represented by ϕ = ϕi

j
∂

∂xi ⊗ dxj . The vector fields γϕ

and γ̃ϕ on T 1
1 (M) are defined by ⎧⎪⎪⎨⎪⎪⎩

γϕ = (tmj ϕi
m)

∂

∂xj
,

γ̃ϕ = (timϕm
jμ

)
∂

∂xj
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with respect to the coordinates (xj , xj) in T 1
1 (M). From (2.2) we easily see that the vector

fields γϕ and γ̃ϕ determine respectively global vector fields on T 1
1 (M) (see [2]).

Explicit expressions for the Lie bracket [ , ] of the tensor bundle T 1
1 (M) are given in [2,

12] (for tangent and cotangent bundles, see [5, 25]). The bracket operation of vertical and
horizontal vector fields is given by the formulas⎧⎪⎨⎪⎩

[V A, V B] = 0,

[HX,V A] = V (∇XA),
[HX, HY ] = H [X, Y ] + (γ̃ − γ)R(X,Y ),

(2.7)

where R denotes the curvature tensor field of the connection ∇, and γ̃ − γ : ϕ → �1
0(T

1
1 (M)) is

the operator defined by

(γ̃ − γ)ϕ =
(

0
timϕm

j − tmj ϕi
m

)
for any ϕ ∈ �1

1(M).

3 Sasaki Metric on T 1
1 (M)

In each local chart U(xh) of M , we put

X(j) =
∂

∂xj
= δh

j

∂

∂xh
∈ �1

0(M),

A(j) = (A(j)) = ∂i ⊗ dxj = δk
i δj

h∂k ⊗ dxh ∈ �1
1(M), j = n + 1, · · · , n + n2.

From (2.2) and (2.6), we have

HX(j) = δh
j ∂h + (−Γk

jst
s
h + Γs

jhtks)∂h, (3.1)
V A(j) = δk

i δj
h∂h (3.2)

with respect to the natural frame
{

∂
∂xH

}
=
{

∂
∂xh , ∂

∂xh

}
in T 1

1 (M), where xh = tkh and δj
i is

the Kronecker’s. These n + n2 vector fields are linearly independent and generate, respec-
tively, the horizontal distribution of ∇ and the vertical distribution of T 1

1 (M). We call the set{
HX(j),

V A(j)
}

the frame adapted to the affine connection ∇ on π−1(U) ⊂ T 1
1 (M). Putting

e(j) = HX(j), e(j) = V A(j),

we write the adapted frame as {eβ} = {e(j), e(j)}. The indices α, β, γ, · · · run over the range
{1, · · · , n, n + 1, · · · , n + n2} and indicate the indices with respect to the adapted frame {eβ}.

Using (3.1) and (3.2), we have

HX =
(

Xjδh
j

−Xj(Γk
jst

s
h − Γs

jhtks)

)
= Xj

(
δh
j

−(Γk
jst

s
h − Γs

jhtks)

)
= Xje(j),

V A =
(

0
Ak

h

)
=
(

0
δk
i δj

hAi
j

)
= Ai

j

(
0

δk
i δj

h

)
= Ai

je(j),
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i.e., the lifts HX and V A have, respectively, the components

HX =
(
HXβ

)
=
( HXj

HXj

)
=
(

Xj

0

)
, (3.3)

V A =
(
V Aβ

)
=
(

V Aj

V Aj

)
=
(

0
Ai

j

)
(3.4)

with respect to the adapted frame {eβ}, Xj and Ai
j are the local components of X and A on

M , respectively (see [11]). For tensor bundles of type (p, q), see [18].
For each P ∈ M , the extension of scalar product g (denoted by G) is defined on the tensor

space π−1(P ) = T 1
1 (P ) by

G(A, B) = gitg
jlAi

jB
t
l

for all A, B ∈ �1
1(P ). The Sasaki metric Sg (or diagonal lift of g) is defined on T 1

1 (M) by the
following three equations

Sg(V A, V B) = V (G(A, B)), (3.5)
Sg(V A, HY ) = 0, (3.6)
Sg(HX, HY ) = V (g(X, Y )) (3.7)

for any X, Y ∈ �1
0(M) and A, B ∈ �1

1(M). Since any tensor field of type (0, 2) on T 1
1 (M) is

completely determined by its action on vector fields of type HX and V A (see [25, p. 280]), it
follows that Sg is completely determined by the equations (3.5)–(3.7).

From (3.5)–(3.7), we see that the Sasaki metric Sg has the components

Sgβγ =
( Sgjl

Sgjl
Sgjl

Sgjl

)
=
(

gjl 0
0 gitg

jl

)
, xl = ttl , (3.8)

Sgβγ =

(
Sgjl Sgjl

Sgjl Sgjl

)
=
(

gjl 0
0 gitglj

)
, xj = tij (3.9)

with respect to the adapted frame {eβ}, where gij and gij are the local covariant and con-
travariant components of g on M (see [11]). For tensor bundles of type (p, q), see [18].

We now consider local 1-forms ωα in π−1(U) defined by

ωα = Ãα
B dxB ,

where

A−1 = (Ãα
B) =

(
Ãh

j Ãh
j

Ãh
j Ãh

j

)
=
(

δh
j 0

Γk
lst

s
h − Γs

lhtks δk
i δj

h

)
. (3.10)

The matrix (3.10) is the inverse of the matrix

A = (A A
β ) =

(
A h

j

A h
j

A h
j

A h
j

)
=
(

δh
j 0

−Γk
lst

s
h + Γs

lhtks δk
i δj

h

)
(3.11)

of the transformation eβ = A A
β ∂A. We easily see that the set {ωα} is the coframe dual to

the adapted frame {eβ}, i.e., ωα(eβ) = Ãα
BAβ

B = δα
β .
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For various types of indices, we have{
ej = A A

j ∂A = ∂j + (−Γk
jst

s
h + Γs

jhtks)∂h,

ej = A A
j

∂A = ∂j ,
(3.12){

ωj = Ãj
B dxB = dxj ,

ωj = Ãj
B dxB = δtij ,

(3.13)

where δtij = dtij + (Γi
kmtmj − Γm

kjt
i
m)dxk.

Since the adapted frame field {eβ} is non-holonomic, we put

[eα, eβ] = Ω γ
αβ eγ

from which we have Ω α
γβ = (eγ A A

β − eβ A A
γ )Ãα

A.
According to (3.10), (3.11) and (3.12), the components of non-holonomic object Ω α

γβ are
given by {

Ω r
l j

= −Ωr
j l

= Γv
lsδ

j
r − Γj

lrδ
v
i ,

Ω r
lj = R s

ljr tvs − R v
ljs tsr

(3.14)

with all the others being zero, where R h
ijk are the local components of the curvature tensor R

of the metric g on M .
Let S∇ be the Levi-Civita connection of the Sasaki metric Sg. Putting S∇eαeβ = SΓγ

αβeγ ,
from the equation S∇X̃ Ỹ − S∇Ỹ X̃ = [X̃, Ỹ ], ∀X̃, Ỹ ∈ �1

0(T
1
1 (M)), we have

SΓα
γβ − SΓα

βγ = Ω α
γβ (3.15)

with respect to the adapted frame {eβ}, where SΓα
γβ are the components of the Levi-Civita

connection S∇.
The equation (S∇X̃

Sg)(Ỹ , Z̃) = 0, ∀X̃, Ỹ , Z̃ ∈ �1
0(T

1
1 (M)), has the form

eδ
Sgγβ − SΓε

δγ
Sgεβ − SΓε

δβ
Sgγε = 0 (3.16)

with respect to the adapted frame {eβ}. Thus, we have from (3.15) and (3.16)

SΓα
γβ =

1
2

Sgαε(eα
Sgεβ + eβ

Sgγε − eε
Sgγβ) +

1
2
(Ω α

γβ + Ωα
γβ + Ωα

βγ), (3.17)

where Ωα
γβ = Sgαε Sgδβ Ω δ

εγ .
Taking account of (3.9), (3.14) and (3.17), for various types of indices, we find

SΓr
lj = Γr

lj ,
SΓr

lj =
1
2
R s

ljr tvs − 1
2
R v

ljs tsr,

SΓr
lj

= 0, SΓr
lj

= 0, SΓr
lj

= 0,

SΓr
l j

=
1
2
gtaRs l r

• • j tas − 1
2
glbR r

tsj tsb, (3.18)

SΓr
lj

= Γv
liδ

j
r − Γj

lrδ
v
i ,

SΓr
lj

=
1
2
giaRs j r

• • l tas − 1
2
gjbR r

isl tsb
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with respect to the adapted frame {eβ} (see [11]). For tensor bundles of type (p, q), see [18].
Let X̃, Ỹ ∈ �1

0(T
1
1 (M)) and X̃ = X̃αeα, Ỹ = Ỹ βeβ . Then the covariant derivative S∇Ỹ X̃

along Ỹ has the components

S∇Ỹ X̃α = Ỹ γeγ(X̃α) + SΓα
γβX̃βỸ γ (3.19)

with respect to the adapted frame {eβ}.
Using (3.3), (3.4), (3.18) and (3.19), we have the following theorem.

Theorem 3.1 Let M be a Riemannian manifold with the metric g, and T 1
1 (M) be its

(1, 1) tensor bundle equipped with the Sasaki metric Sg. Then the corresponding Levi-Civita
connection satisfies the following relations:

( i ) S∇HX
HY = H(∇XY ) +

1
2
(γ̃ − γ)R(X, Y ),

( ii ) S∇V A
HY =

1
2

H(gbl R(tb, Al)Y + gat(ta (g−1 ◦ R( · , Y )Ã t))),

(iii) S∇HX
V B = V (∇XB) +

1
2

H(gbj R(tb, Bj)X + gai (ta(g−1 ◦ R( · , X)B̃ i))),

(iv) S∇V A
V B = 0

for all X, Y ∈ �1
0(M) and A, B ∈ �1

1(M), where Al = (A i
l ), Ãt = (gblA t

l ) = (Ab t• ), tl = (t a
l ),

ta = (t a
b ), R( , X)Y ∈ �1

1(M) and g−1 ◦ R( , X)Y ∈ �1
0(M).

4 Curvature Tensor of S∇
The curvature tensor R of the connection ∇ is obtained from the well-known formula

R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

for all X, Y ∈ �1
0(M). With respect to the adapted frame {eβ}, we write S∇eαeβ = SΓγ

αβeγ ,
where SΓγ

αβ denotes the Levi-Civita connection constructed by Sg. Then the curvature tensor
SR has the components

SR σ
αβγ = ẽα

SΓσ
βγ − ẽβ

SΓσ
αγ + SΓσ

αε
SΓε

βγ − SΓσ
βε

SΓε
αγ − Ω ε

αβ
SΓσ

εγ .

By using (3.14) and (3.18), we find that the components of the curvature tensor SR of S∇ are
as follows:

SR r
mlj

= 0,

SR r
mlj

= 0,

SR r
mlj

= gtnRm l r
• • j − glmR r

tnj +
1
4
(gnaRs m r

• • h gtbR
p l h
• •j − gtaR

s l r
• •h gnbR

p m h
• • j )tas tbp

+
1
4
(gtaRs l r

• •h gmbR h
npj − gnaRs m r

• • h glbR h
tpj )tastpb

+
1
4
(glbR r

tph gnaRs m h
• •j − gmbR r

nph gtaRs l h
• •j )tpb t

a
s

+
1
4
(gmaR r

nsh glbR h
tsj − glaR r

tsh gmbR h
npj )tsatpb ,
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SR r
mlj

= 0,

SR r
mlj

= 0,

SR r
ml j

= −1
2
gitR

l j r
• • m +

1
2
gjlR r

itm − 1
4
(gtaRs l r

• • h gibR
p l h
• • m )tastbp

+
1
4
(gtaRs l r

• • h gjbR h
ipm )tas tpb +

1
4
(glbR r

tph giaRs j h
• • m )tpbt

a
s

− 1
4
(glaR r

tsh gjbR h
ipm )tsatpb ,

SR r
m l j

=
1
2
gta(∇mRs l r

• • j )tas − 1
2
glb(∇mR r

tsj )tsb,

SR r
m l j

= −1
2
R l

mjr δv
t +

1
2
R v

mjt δl
r +

1
4
(R s

mhr gvaRp l h
• • j )tvstap (4.1)

− 1
4
(R s

mhr glbR h
tpj )tvstpb − 1

4
(R v

mhp gtaRs l h
• • j )tprt

a
s

+
1
4
(R v

mhs glbR h
tpj )tsrt

p
b ,

SR r
ml j

=
1
2
(gia∇mRs j r

• • l − gia∇lR
s j r
• • m )tas +

1
2
(gjb∇lR

r
ism − gjb∇mR r

isl )tsb,

SR r
ml j

= R v
mli δj

r − R j
mlr δv

i +
1
4
(R s

mhr giaRp j h
• • l − R s

lhr giaRp j h
• • m)tvst

a
p

+
1
4
(R s

lhr gjbR h
lpm − R s

mhr gjbR h
ipl )tvstpb

+
1
4
(R v

lhp giaRs j h
• • m − R v

mhp giaRs j h
• • l )tprt

a
s

+
1
4
(R v

mhs gjbR h
ipl − R v

lhs gjbR h
ipm )tsrt

p
b ,

SR r
mlj =

1
2
(∇mR s

ljr −∇lR
s

mjr )tvs +
1
2
(∇lR

v
mjs −∇mR v

ljs )tsr,

SR r
mlj = R r

mlj +
1
4
(gkaRs h r

• •mR p
ljh − gkaRs h r

• • l R p
mjh − 2gkaRs h r

• •j R p
mlh )tastkp

+
1
4
(gkaRs h r

• • l R k
mjp − gkaRs h r

• • mR k
ljp + 2gkaRs h r

• • j R k
mlp )tas tph

+
1
4
(ghbR r

kpl R s
mjh − ghbR r

kpmR s
ljh + 2ghbR r

kpj R s
mlh )tpb t

k
s

+
1
4
(ghbR r

ksm R k
ljp − ghbR r

ksl R k
mjp − 2ghbR r

ksj R k
mlp )tsbt

p
h

with respect to the adapted frame {eβ}. Thus we have the following result.

Theorem 4.1 Let M be a Riemannian manifold with the metric g, and T 1
1 (M) be its (1, 1)

tensor bundle with the Sasaki metric Sg. Then T 1
1 (M) is flat if and only if M is flat.

Proof It is a direct consequence of (4.1) that R = 0 implies SR = 0. If we assume that
SR = 0, then from the last equation at the point (xi, tji ) = (xi, 0) ∈ T 1

1 (M), we get

(SR r
mlj )(xi,0) =

[
R r

mlj +
1
4
(gkaRs h r

• •mR p
ljh − gkaRs h r

• • l R p
mjh − 2gkaRs h r

• •j R p
mlh )tas tkp

+
1
4
(gkaRs h r

• • l R k
mjp − gkaRs h r

• • mR k
ljp + 2gkaRs h r

• • j R k
mlp )tas tph

+
1
4
(ghbR r

kpl R s
mjh − ghbR r

kpmR s
ljh + 2ghbR r

kpj R s
mlh )tpb t

k
s
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+
1
4
(ghbR r

ksm R k
ljp − ghbR r

ksl R k
mjp − 2ghbR r

ksj R k
mlp )tsbt

p
h

]
(xi,0)

= R r
mlj (xi) = 0.

We now turn our attention to the Ricci tensor and scalar curvature of the Sasaki metric
Sg. Let SRαβ = SR σ

σαβ and Sr = Sgαβ SRαβ denote the Ricci tensor and scalar curvature of
the Sasaki metric Sg, respectively. From (4.1), the components of the Ricci tensor SRαβ are
characterized by

SRl j = −1
4
(gtaRs l r

••h gibR
p j h
• •r )tas tbp − 1

4
(glbR r

tsh gjaR h
ipr )tsbt

p
a

+
1
4
(glbR r

tph giaRs j h
• •r )tpbt

a
s +

1
4
(gtaRs l r

• •h gjbR h
ipr )tas tpb ,

SRl j =
1
2
gta(∇rR

s l r
• •j )tas − 1

2
glb(∇rR

r
tsj )tsb,

SRl j =
1
2
gia(∇rR

s j r
• •l )tas − 1

2
gjb(∇rR

r
isl )tsb, (4.2)

SRlj = Rlj − 1
4
(gkaRs h r

• •l R p
rjh )tastkp − 1

2
(gkaRs h r

• •j R p
rlh )tas tkp

− 1
4
(R s

lhr gvaRp r h
• •j )tvst

a
p − 1

4
(ghbR r

ksl R k
rjp )tsbt

p
h

− 1
2
(ghbR r

ksj R k
rlp )tsbt

p
h − 1

4
(R v

lhs grbR h
vpj )tsrt

p
b

+
1
2
(gkaRs h r

• •j R k
rlp )tas tph +

1
2
(ghbR r

kpj R s
rlh )tpb t

k
s

with respect to the adapted frame {eβ}. From (3.9) and (4.2), the scalar curvature of the Sasaki
metric Sg is given by

Sr = r − 1
4
gabghkgljgtiRslhvRpjkrt

s
atpb

− 1
4
gcdg

ljghkgrvR s
rlh R p

vjk tcst
d
p +

1
2
R h

cpr R r b s
h• • tcst

p
b .

Thus, we have the next theorem.

Theorem 4.2 Let M be a Riemannian manifold with the metric g, and T 1
1 (M) be its (1, 1)

tensor bundle equipped with the Sasaki metric Sg. Let r be the scalar curvature of g, and Sr be
the scalar curvature of Sg. Then the following equation holds:

Sr = r − 1
4
‖tR‖2 − 1

4
‖Rt‖2 +

1
2
T,

where ‖tR‖2 = gabghkgljgvrRslhvRpjkrt
s
atpb , ‖Rt‖2 = gcdg

ljghkgrvR s
rlh R p

vjk tcst
d
p and T =

R h
cpr R r b s

h• • tcst
p
b .

Let now (M, g), n > 2, be a Riemannian manifold of constant curvature κ, i.e.,

R s
kmj = κ (δs

kgmj − δs
mgkj)

and

r = n (n − 1)κ,
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where δs
k is the Kronecker’s. Then, from Theorem 4.2, we have

Sr = r − 1
4
gabghkgvrgljR

l
hvs R j

krp tsatpb

− 1
4
gcdg

ljghkgrvR s
rlh R p

vjk tcst
d
p +

1
2
gregbzR h

cpr R s
hez tcst

p
b

= r − 1
4
gabghkgvrglj(κ(δj

hgvs − δj
vghs)κ(δl

kgrp − δl
rgkp))tsatpb

− 1
4
gcdg

ljghkgrv(κ(δs
rglh − δs

l grh)κ(δp
vgjk − δp

j gvk)) tcst
d
p

+
1
2
gregbz(κ(δh

c gpr − δh
p gcr)κ(δs

hgez − δs
eghz)) tcst

p
b

= n(n − 1)κ − 1
4
κ2ngabgspt

s
atpb +

1
4
κ2gabgspt

s
atpb +

1
4
κ2gabgspt

s
atpb

− 1
4
κ2ngabgspt

s
atpb − 1

4
κ2ngcdg

rvtcrt
d
v +

1
4
κ2gcdg

rjtcrt
d
j

+
1
4
κ2gcdg

lvtcl t
d
v − 1

4
κ2ngcdg

ljtcl t
d
j +

1
2
κ2δs

cδ
b
pt

c
st

p
b − 1

2
κ2δb

cδ
s
pt

c
st

p
b

− 1
2
κ2δb

cδ
s
pt

c
st

p
b +

1
2
κ2δs

cδ
b
pt

c
st

p
b

= n(n − 1)κ − 1
2
κ2‖t‖2(n − 1) − 1

2
κ2‖t‖2(n − 1) + κ2tcct

p
p − κ2tcpt

p
c

= (n − 1)κ(n − ‖t‖2κ) + κ2((tr t)2 − (tr t2)).

Thus, we have the theorem below.

Theorem 4.3 Let (M, g), n > 2, be a Riemannian manifold of constant curvature κ. Then
the scalar curvature Sr of (T 1

1 (M), Sg) is

Sr = (n − 1)κ(n − ‖t‖2κ) + κ2((tr t)2 − (tr t2)),

where ‖t‖2 = gklgijt
i
ktjl .

It is known that for a local ortonormal frame a sectional curvature on (T 1
1 (M), Sg) is given

by

Sκ(Δ2) = −SRkmijU
kV mU iV j , (4.3)

where Δ2 = (U, V ) denotes the plane spanned by (U, V ).
Let now {Xi}, i = 1, · · · , n, be a local ortonormal frame and ‖Ai‖2

G = G(Ai, Ai) = 1,
G(Ai, Aj) = 0, i 	= j for Ai ∈ �1

1(M), i = n + 1, · · · , n2. Then from (3.5)–(3.7) we see that
{HX1, · · · , HXn, V A1, · · · , V An2} is a local ortonormal frame on T 1

1 (M). Let Sκ(HX, HY ),
Sκ(HX, V A) and Sκ(V A, V B) denote the sectional curvature of the plane spanned by (HX, HY ),
(HX, V A) and (V A, V B) on (T 1

1 (M), Sg), respectively. Then, using (3.3), (3.4), (3.8) and (4.1),
we have from (4.3) that

( i ) Sκ(V A, V B) = 0,

( ii ) Sκ(HX, V B) =
1
4
gezR s

emr R p
zjd gcagthtcst

a
pXmBd t

• XjBr h
•

+
1
4
gveR

v
tsm R e

hpj gcbtsct
p
bg

lkXmBt
l X

jBh
k
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+
1
4
gkrghvg

lbR s
mer R e

tpj tvst
p
bX

mBt
l X

jBh
k

+
1
4
gkrghvgtaR v

mep Rs l e
• • j tprt

a
sXmBt

l X
jBh

k ,

(iii) Sκ(HX, HY ) = −RmljkXmY lXjY k

− 3
4
gzhR s

mkz R p
ljh gabt

a
stbpX

mY kX lY j

− 3
4
gveR

v
mks R e

jlp gabtsatpbX
mY lXjY k

− 3
4
gfagzhR s

mkz R f
ljp tastphXmY lXjY k

− 3
4
ghbgkzR

z
mfpR s

ljh tpb t
k
sXmY lXjY f .

From (i)–(iii), we have the result as follows.

Theorem 4.4 Let (M, g) be a Riemannian manifold, and T 1
1 (M) be its (1, 1) tensor bundle

with the Sasaki metric Sg. If (T 1
1 (M), Sg) is a Riemannian manifold of constant sectional

curvature Sκ, then Sκ = 0.

5 Scalar Curvature of the Metric Connection with Respect to the
Sasaki Metric Sg

In Section 2, we give the Sasaki metric Sg on the tensor bundle T 1
1 (M) and consider the

Levi-Civita connection S∇ of Sg. This is the unique connection which satisfies S∇ Sg = 0, and
has no torsion. But there exists another connection which satisfies ∇̃Sg = 0, and has non-trivial
torsion tensor. We call this connection the metric connection of Sg.

The horizontal lift H∇ of any connection ∇ on the tensor bundle T 1
1 (M) is defined by{

H∇V A
V B = 0, H∇V A

HY = 0,
H∇HX

V B = V (∇XB) , H∇HX
HY = H (∇XY )

(5.1)

for all vector fields X, Y ∈ �1
0 (M) and A, B ∈ �1

1 (M) (see [6, 11, 12]). For tensor bundles of
type (p, q), see [18].

We put H∇α = H∇ẽ(α) . Then taking account of H∇αẽ(β) = HΓγ
αβ ẽ(γ) and writing HΓγ

αβ for
the different indices, from (5.1) it follows that the horizontal lift H∇ of ∇ has the components{

HΓr
l j

= HΓr
l j

= HΓr
l j

= HΓr
l j

= HΓr
lj = HΓr

l j
= 0,

HΓr
lj = Γr

lj ,
HΓr

l j
= Γv

li δj
r − Γj

lr δv
i .

(5.2)

Denote by T̃ the torsion tensor of H∇. Then T̃ is the skew-symmetric tensor field of type
(1, 2) on T 1

1 (M) determined by

T̃ (V A, V B) = H∇V A
V B − H∇V B

V A − [V A, V B] = 0,

T̃ (V A, HY ) = −T̃ (HY, V A) = H∇V A
HY − H∇HY

V A − [V A, HY ]

= −V (∇Y A) + V (∇Y A) = 0,

T̃ (HX, HY ) = H∇HX
HY − H∇HY

HX − [HX, HY ]

= H(∇XY ) − H(∇Y X) − H [X, Y ] + (γ̃ − γ)R(X, Y )
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= H(∇XY −∇Y X − [X, Y ]) + (γ̃ − γ)R(X, Y )

= (γ̃ − γ)R(X, Y ),

where R is the curvature tensor of ∇ and

(γ̃ − γ)R(X, Y ) =
∑

i

(timR m
klj XkY l − tmj R i

mkl X
kY l)

∂

∂xj
.

Thus, the connection H∇ has non-trivial torsion even for the Levi-Civita connection ∇g deter-
mined by g, unless g is locally flat.

A straightforward computation, using (3.5)–(3.7) and (5.1), leads to the following set of
formulas:

(H∇V C
Sg)(V A, V B) = 0, (H∇HZ

Sg)(V A, V B) = 0,

(H∇V C
Sg)(V A, HY ) = 0, (H∇HZ

Sg)(V A, HY ) = 0,

(H∇V C
Sg)(HX, V B) = 0, (H∇HZ

Sg)(HX, V B) = 0,

(H∇V C
Sg)(HX, HY ) = 0, (H∇HZ

Sg)(HX, HY ) = 0

for any A, B, C ∈ �1
1(M) and X, Y, Z ∈ �1

0(M), i.e., the horizontal lift H∇ of ∇g is the metric
connection with respect to the Sasaki metric Sg.

Let now HR be the curvature tensor field of H∇. The curvature tensor HR of the metric
connection H∇ of Sg has the components

HR α
δγβ = 2(ẽ[δ

HΓα
γ]β + HΓα

[δ|ε|
HΓε

γ]β) − Ω ε
δγ

HΓα
εβ

with respect to the adapted frame {eβ}. Using (3.12), (3.14), (5.2) and computing the compo-
nents of the curvature tensor HR of the metric connection H∇, we obtain

HR r
m l j

= 0, HR r
m l j

= 0, HR r
m l j

= 0, HR r
m l j

= 0,

HR r
m l j

= 0, HR r
m l j

= 0, HR r
ml j

= 0, HR r
ml j

= R v
mli δj

r + R j
lmr δv

i , (5.3)
HR r

ml j
= 0, HR r

ml j
= 0, HR r

mlj = R r
mlj , HR r

mlj = 0.

The contracted curvature tensor field (Ricci tensor field) HRγβ = HR α
αγβ of the metric

connection H∇ has the components

HRl j = 0, HRl j = 0, HRl j = 0, HRlj = Rlj ,

where Rkj is the Ricci tensor field of ∇g on M .
For the scalar curvature of H∇ with respect to the Sasaki metric Sg, we have

Hr = Sgγβ HRγβ = gkjRkj = r

by means of (5.3) and Sgkj = Sgkj = 0.
Thus we have the following theorem.

Theorem 5.1 Let (M, g) be a Riemannian manifold, and the tensor bundle T 1
1 (M) be

equipped with the Sasaki metric Sg. Then the tensor bundle T 1
1 (M) with the metric connection

H∇ has vanishing scalar curvature Hr with respect to the Sasaki metric Sg if and only if the
scalar curvature r of ∇g on M is zero.
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6 Para-Nordenian Structures on (T 1
1 (M), Sg)

An almost paracomplex manifold is an almost product manifold (M, ϕ), ϕ2 = I, such that
the two eigenbundles T +M and T−M associated with the two eigenvalues +1 and −1 of ϕ,
respectively, have the same rank. Note that the dimension of an almost paracomplex manifold
is necessarily even. Considering the paracomplex structure ϕ, we obtain the set {I, ϕ} on M ,
which forms a base of an isomorphic representation of the algebra of order 2, which is called
the algebra of paracomplex (or double) numbers and is denoted by R(j), j2 = 1.

A tensor field ω ∈ �0
q(M2n) is said to be pure with respect to the paracomplex structure ϕ,

if

ω(ϕX1, X2, · · · , Xq) = ω(X1, ϕX2, · · · , Xq) = · · · = ω(X1, X2, · · · , ϕXq)

for any X1, X2, · · · , Xq ∈ �1
0 (M2n).

We consider the operator φϕ associated with ϕ and applied to the pure tensor field ω by
[24]

(φϕω)(Y, X1, · · · , Xq) = (ϕY )(ω(X1, · · · , Xq)) − Y (ω(ϕX1, X2, · · · , Xq))

+ ω((LX1ϕ)Y, X2, · · · , Xq) + · · · + ω(X1, X2, · · · , (LXqϕ)Y ).

If φϕω = 0, then ω is said to be almost paraholomorphic with respect to the paracomplex
algebra R (j) (see [10, 19]).

A Riemannian manifold (M2n, g) with an almost paracomplex structure ϕ, is said to be
almost para-Nordenian, if the Riemannian metric g is pure with respect to ϕ. It is well-
known that, the almost para-Nordenian B-manifold is para-Kähler (∇gϕ = 0) if and only if g

is paraholomorphic (φϕg = 0) (see [19, 20]).
Let

(
T 1

1 (M), Sg
)

be the (1, 1) tensor bundle with the Sasaki metric Sg. From the equations
(3.5)–(3.7), we easily see that the horizontal distribution H , induced by ∇g and determined by
the horizontal lifts, is orthogonal to the fibres of T 1

1 (M).
Let now E ∈ �1

0(M) be a nowhere zero vector field on M . For any X ∈ �1
0(M) and

Ẽ = g ◦ E ∈ �0
1(M), we define the vertical lift V (X ⊗ Ẽ) of X with respect to E. The map

X → V (X ⊗ Ẽ) is a monomorphism of �1
0(M) → �1

0(T
1
1 (M)). Hence an n−dimensional C∞

vertical distribution V E is defined on T 1
1 (M). Let V ⊥ be the distribution on T 1

1 (M) which is
orthogonal to H and V E . Then H , V E and V ⊥ are mutually orthogonal distributions with
respect to the Sasaki metric Sg. We define a tensor field F of type (1,1) on T 1

1 (M) by⎧⎪⎨⎪⎩
FHX = V (X ⊗ Ẽ),
FV (X ⊗ Ẽ) = HX,

F (V A) = V A

(6.1)

for any X ∈ �1
0 (M) and A ∈ �1

1 (M), where Ẽ = g ◦ E ∈ �0
1 (M). The restrictions of F to

H + V E and V ⊥ are endomorphisms, and hence F is a tensor field of type (1, 1) on T 1
1 (M). It

is easy to see that F 2 = I. In fact, we have by virtue of (6.1)

F 2(HX) = F (FHX) = F (V (X ⊗ Ẽ)) = HX,

F 2(V (X ⊗ Ẽ)) = F (FV (X ⊗ Ẽ)) = F (HX) = V (X ⊗ Ẽ),

F 2(V A) = F (FV A) = F (V A) = V A
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for any X ∈ �1
0 (M) and A ∈ �1

1 (M), which implies F 2 = I.

Theorem 6.1 The triple
(
T 1

1 (M) , Sg, F
)

is an almost para-Nordenian B-manifold if and
only if g(E, E) = 1.

Proof We put

A(X̃, Ỹ ) = Sg(FX̃, Ỹ ) − Sg(X̃, F Ỹ )

for any X̃, Ỹ ∈ �1
0(T

1
1 (M)). From (3.5)–(3.7) and (6.1), we have

A(HX, HY ) = Sg(FHX, HY ) − Sg(HX, FHY )

= Sg(V (X ⊗ Ẽ), HY ) − Sg(HX, V (Y ⊗ Ẽ)) = 0,

A(V (X ⊗ Ẽ), V (Y ⊗ Ẽ)) = Sg(FV (X ⊗ Ẽ), V (Y ⊗ Ẽ)) − Sg(V (X ⊗ Ẽ), FV (Y ⊗ Ẽ))

= Sg(HX, V (Y ⊗ Ẽ)) − Sg(V (X ⊗ Ẽ), HY ) = 0,

A(V (X ⊗ Ẽ), HY ) = Sg(FV (X ⊗ Ẽ), HY ) − Sg(V (X ⊗ Ẽ), FHY )

= Sg(HX, HY ) − Sg(V (X ⊗ Ẽ), V (Y ⊗ Ẽ))

= V (g(X, Y )) − V (g(X, Y )g−1(Ẽ, Ẽ))

= V (g(X, Y ) − g(X, Y )g(E, E)) = 0,

A(V A, V B) = Sg(FV A, V B) − Sg(V A, FV B)

= Sg(V A, V B) − Sg(V A, V B) = (G(A, B)) − (G(A, B)) = 0,

A(V A, V (X ⊗ Ẽ)) = Sg(FV A, V (X ⊗ Ẽ)) − Sg(V A, FV (X ⊗ Ẽ))

= Sg(V A, V (X ⊗ Ẽ)) − Sg(V A, HX) = V (G(A, X ⊗ Ẽ)) = 0,

A(V A, HY ) = Sg(FV A, HY ) − Sg(V A, FHY )

= Sg(V A, HY ) − Sg(V A, V (Y ⊗ Ẽ)) = −V (G(A, Y ⊗ Ẽ)) = 0,

i.e., Sg is pure with respect to F . Thus Theorem 6.1 is proved.

We now consider the covariant derivative of F . Taking Theorem 3.1(i)–(iv) and (6.1) into
account, we obtain

(S∇HXF )(HY )

= S∇HX(FHY ) − F (S∇HX
HY )

= S∇HX
V (Y ⊗ Ẽ) − F

(
H(∇XY ) +

1
2
(γ̃ − γ)R(X, Y )

)
= V (∇X(Y ⊗ Ẽ))

+
1
2

H(gbj R(tb, (Y ⊗ Ẽ)j)X + gai (ta(g−1 ◦ R( · , X)
∼

(Y ⊗ Ẽ) i)))

− V ((∇XY ) ⊗ Ẽ) − 1
2
(γ̃ − γ)R(X, Y )

= V (Y ⊗∇XẼ) − 1
2
(γ̃ − γ)R(X, Y )

+
1
2

H(gbj R(tb, (Y ⊗ Ẽ)j)X + gai (ta(g−1 ◦ R( · , X)
∼

(Y ⊗ Ẽ) i)))

= V (Y ⊗∇X(g ◦ E) − 1
2
(γ̃ − γ)R(X, Y )
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+
1
2

H(gbj R(tb, (Y ⊗ Ẽ)j)X + gai (ta(g−1 ◦ R( · , X)
∼

(Y ⊗ Ẽ) i)))

= V (Y ⊗ [(∇Xg) ◦ E + g ◦ ∇XE]) − 1
2
(γ̃ − γ)R(X, Y )

+
1
2

H(gbj R(tb, (Y ⊗ Ẽ)j)X + gai (ta(g−1 ◦ R( · , X)
∼

(Y ⊗ Ẽ) i)))

= V (Y ⊗ [g ◦ ∇XE]) − 1
2
(γ̃ − γ)R(X, Y )

+
1
2

H(gbj R(tb, (Y ⊗ Ẽ)j)X + gai (ta(g−1 ◦ R( · , X)
∼

(Y ⊗ Ẽ) i))), (6.2)

(S∇HXF )(V B)

= S∇HX(FV B) − F (S∇HX
V B)

= S∇HX
V B − F (S∇HX

V B)

= V (∇XB) +
1
2

H(gbj R(tb, Bj)X + gai (ta(g−1 ◦ R( · , X)B̃ i)))

− F (V (∇XB) +
1
2

H(gbj R(tb, Bj)X + gai (ta(g−1 ◦ R( · , X)B̃ i)))

=
1
2

H(gbj R(tb, Bj)X + gai (ta(g−1 ◦ R( · , X)B̃ i)))

− 1
2

V ([gbj R(tb, Bj)X + gai (ta(g−1 ◦ R( · , X)B̃ i))] ⊗ Ẽ), (6.3)

(S∇HXF )V (Y ⊗ Ẽ)

= S∇HX(FV (Y ⊗ Ẽ)) − F (S∇HX
V (Y ⊗ Ẽ))

= S∇HX
HY − F (S∇HX

V (Y ⊗ Ẽ))

= H(∇XY ) +
1
2
(γ̃ − γ)R(X, Y ) − FV (∇X(Y ⊗ Ẽ))

− 1
2
FH(gbj R(tb, (Y ⊗ Ẽ)j)X + gai (ta(g−1 ◦ R( · , X)

∼
(Y ⊗ Ẽ) i)))

= −V (Y ⊗ (g ◦ ∇XE)) +
1
2
(γ̃ − γ)R(X, Y )

− 1
2

V ([gbj R(tb, (Y ⊗ Ẽ)j)X + gai (ta(g−1 ◦ R( · , X)
∼

(Y ⊗ Ẽ) i))] ⊗ Ẽ), (6.4)

(S∇V AF )(V B)

= S∇V A(FV B) − F (S∇V A
V B)

= S∇V A
V B − F (S∇V A

V B) = 0, (6.5)

(S∇V AF )(HY )

= S∇V A(FHY ) − F (S∇V A
HY )

= S∇V A
V (Y ⊗ Ẽ) − 1

2
FH(gbl R(tb, Al)Y + gat(ta (g−1 ◦ R( · , Y )Ã t))

= −1
2

V ([gbl R(tb, Al)Y + gat(ta (g−1 ◦ R( · , Y )Ã t))] ⊗ Ẽ), (6.6)

(S∇V AF )V (Y ⊗ Ẽ)

= S∇V A(FV (Y ⊗ Ẽ)) − F (S∇V A
V (Y ⊗ Ẽ))
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= S∇V A
HY =

1
2

H(gbl R(tb, Al)Y + gat(ta (g−1 ◦ R( · , Y )Ã t))), (6.7)

(S∇V (X⊗Ẽ)F )V (Y ⊗ Ẽ)

= S∇V (X⊗Ẽ)(F
V (Y ⊗ Ẽ)) − F (S∇V (X⊗Ẽ)

V (Y ⊗ Ẽ))

= S∇V (X⊗Ẽ)
HY − F (S∇V (X⊗Ẽ)

V (Y ⊗ Ẽ))

=
1
2

H(gbl R(tb, (X ⊗ Ẽ)l)Y + gat(ta (g−1 ◦ R( · , Y )
∼

(X ⊗ Ẽ) t))), (6.8)

(S∇V (X⊗Ẽ)F )(HY )

= S∇V (X⊗Ẽ)(F
HY ) − F (S∇V (X⊗Ẽ)

HY )

= S∇V (X⊗Ẽ)
V (Y ⊗ Ẽ)

− 1
2
FH(gbl R(tb, (X ⊗ Ẽ)l)Y + gat(ta (g−1 ◦ R( · , Y )

∼
(X ⊗ Ẽ) t)))

= −1
2

V ([gbl R(tb, (X ⊗ Ẽ)l)Y + gat(ta (g−1 ◦ R( · , Y )
∼

(X ⊗ Ẽ) t))] ⊗ Ẽ), (6.9)

(S∇V (X⊗Ẽ)F )(V B)

= S∇V (X⊗Ẽ)(F
V B) − F (S∇V (X⊗Ẽ)

V B)

= S∇V (X⊗Ẽ)
V B − F (S∇V (X⊗Ẽ)

V B) = 0. (6.10)

From (6.2)–(6.10), we have the following theorem.

Theorem 6.2 The tensor bundle T 1
1 (M) of a Riemannian manifold M is a para-Kählerian

(paraholomorphic Nordenian) B-manifold with respect to the Sasaki metric Sg and the almost
para-Nordenian B-structure F defined by (6.1) if and only if R = 0 and ∇E = 0.

A vector field Z̃ ∈ �1
0(T

1
1 (M)) with respect to which an almost para-Nordenian B-structure

F has a vanishing Lie derivative (LZ̃F = 0) is said to be almost paraholomorphic (see [10]).
It is well known that{[

CX, HY
]

= H [X, Y ] + (γ̃ − γ)((LX∇)Y ),[
CX, V A

]
= V (LXA)

(6.11)

for any X, Y ∈ �1
0(M), where (LX∇)Y = ∇Y ∇X+R (X, Y ) and (LX∇) (Y, Z) = LX (∇Y X)−

∇Y (LXZ) −∇[X,Y ]Z (see [7]).
A vector field Z ∈ �1

0 (M) is called a Killing vector field (or infinitesimal isometry) if LZg =
0, and Z is called an infinitesimal affine transformation if LZ∇g = 0. A Killing vector field is
necessarily an infinitesimal affine transformation, i.e., we have LZ∇g = 0 as a consequence of
LZg = 0.

We now consider the Lie derivative of F with respect to the complete lift CZ. Taking
account of (6.1) and (6.11), we obtain

(LCZF )V A = LCZ(FV A) − F (LCZ
V A)

= LCZ
V A − F (V (LZA)) = 0, (6.12)

(LCZF )V (Y ⊗ Ẽ) = LCZ(FV (Y ⊗ Ẽ)) − F (LCZ
V (Y ⊗ Ẽ))
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= LCZ
HY − FV (LZ(Y ⊗ Ẽ))

= LCZ
HY − FV ((LZY ) ⊗ Ẽ) − FV (Y ⊗ (LZẼ))

= H(LZY ) + (γ̃ − γ)((LZ∇)Y ) − H(LZY ) − V (Y ⊗ (LZẼ))

= (γ̃ − γ)((LZ∇)Y ) − V (Y ⊗ LZ(g ◦ E))

= (γ̃ − γ)((LZ∇)Y ) − V (Y ⊗ [(LZg) ◦ E + g ◦ LZE]), (6.13)

(LCZF )HY = LCZ(FHY ) − F (LCZ
HY )

= LCZ
V (Y ⊗ Ẽ) − F (H(LZY ) + (γ̃ − γ)(LZ∇)Y )

= V (LZ(Y ⊗ Ẽ)) − V ((LZY ) ⊗ Ẽ) − (γ̃ − γ)((LZ∇)Y )

= V (Y ⊗ LZ(g ◦ E)) − (γ̃ − γ)((LZ∇)Y )

= V (Y ⊗ [(LZg) ◦ E + g ◦ LZE) − (γ̃ − γ)((LZ∇)Y ). (6.14)

Let (F, Sg) be the para-Nordenian B-structure on T 1
1 (M) and Z be a Killing vector field

(LZg = 0). From the equation g(E, E) = 1 (see Theorem 6.1), we have LZE = 0 for any
Z ∈ �1

0(M). By virtue of LZE = 0 and LZ∇ = 0, from (6.13) and (6.14), we have LCZF = 0,
i.e., CZ is paraholomorphic with respect to F . If we assume that LCZF = 0 and calculate the
equation (6.13) (or (6.14)) at (xi, 0), tji = 0, we get LZg = 0. We hence have the following
result.

Theorem 6.3 Let (T 1
1 (M), Sg, F ) be an almost para-Nordenian B-manifold. An infinites-

imal transformation Z of Riemannian manifold (M, g) is a Killing vector field if and only if
its complete lift CZ to the tensor bundle T 1

1 (M) is an almost paraholomorphic vector field with
respect to the almost para-Nordenian B-structure (F, Sg).
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