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On the Geometry of the (1,1)-Tensor Bundle
with Sasaki Type Metric*

Arif SALIMOV! Aydin GEZER?

Abstract Curvature properties are studied for the Sasaki metric on the (1, 1) tensor bun-
dle of a Riemannian manifold. As an application, examples of almost para-Nordenian and
para-Kéhler-Nordenian B-metrics are constructed on the (1, 1) tensor bundle by looking at
the Sasaki metric. Also, with respect to the para-Nordenian B-structure, paraholomorphic
conditions for the complete lifts of vector fields are analyzed.
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1 Introduction

Let M be an n-dimensional differentiable manifold of class C*°, T} (M) its tensor bundle of
type (1,1). We denote by 3% (M) the set of all tensor fields of type (r,s) on M. Similarly, we
denote by S7(TH(M)) the corresponding set on T} (M).

Fiber bundles play an important role in just about every aspect of modern geometry and
topology. Prime examples of fiber bundles are tensor bundles of different types (p,q) over
differentiable manifolds. The tangent bundle T'(M) and cotangent bundle T*(M) are the special
cases of a more general tensor bundle T?(M) of type (p,q) over M. The geometry of tangent
bundles goes back to the fundamental paper [22] of Sasaki published in 1958. He used a given
Riemannian metric g on a differentiable manifold M to construct a metric g on the tangent
bundle T' (M) of M. Today this metric is called the Sasaki metric. The Levi-Civita connection \Y
of the Sasaki metric on T'(M) and its Riemann curvature tensor R are calculated by Kowalski in
[9] (see also [8]). Afterwards, Aso [1], Musso and Tricerri [16] investigated interesting relations
between the geometric properties of the base manifold (M, g) and its tangent bundle (T'(M), g)
with the Sasaki metric. The Sasaki metric on the cotangent bundle was studied by several
authors, including Mok [14], Salimov and Agca [21]. In [3, 11, 17, 18], the Sasaki metric was
studied on the tensor bundles of different types (p, ¢) over differentiable manifolds. In [13], Mok
studied the Sasaki metric on frame bundles and calculated its curvature tensor (for details, see
).

The work is organized as follows.
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In Section 2, some introductory materials concerning the tensor bundle T} (M) over the
differentiable manifold M are collected, like some particular types of vector fields on the tensor
bundle T} (M) and Lie bracket operation of vertical and horizontal vector fields.

In Section 3, the adapted frame which allows the tensor calculus to be efficiently done
is inserted in the tensor bundle T (M). The Sasaki metric on the tensor bundle T} (M) is
introduced and the components of the Levi-Civita connection of the Sasaki metric with respect
to the adapted frame are calculated.

In Section 4, we calculate the Riemann curvature of the Levi-Civita connection of the Sasaki
metric with respect to the adapted frame, and compare the geometries of the manifold M and
its tensor bundle T} (M) with the Sasaki metric.

In Section 5, the similar problems in Section 4 are investigated for the metric connection of
the Sasaki metric on the tensor bundle T} (M).

Section 6 deals with the para-Nordenian property of the Sasaki metric.

Throughout this paper, we always suppose that all manifolds, functions and tensor fields
are differentiable and of class C'*°.

2 Prilimineries

Let M be a differentiable manifold of class C*° and finite dimension n. Then the set
THM) = PUM TL(P) is, by definition, the tensor bundle of type (1, 1) over M, where | J denotes
€

the disjoint union of the tensor spaces Ti(P) for all P € M. For any point P of T}(M), the
surjective correspondence P — P determines the natural projection m : TH(M) — M. The
projection 7 defines the natural differentiable manifold structure of T (M), that is, TH(M) is a
C°°-manifold of dimension n + n2. A local coordinate neighborhood {(U; 27, j =1,---,n)} in
M induces on T1(M) alocal coordinate neighborhood {7~1(U); 27, 27 = th j=1,---,n}, j:=
n+j(G=n+1--,n+n?), where 2/ = t; are the components of the (1,1) tensor field ¢ in
each (1,1) tensor space T} (P), P € U with respect to the natural base.

We denote by % (M) the module over F'(M) of all C* tensor fields of type (r,s) on M,
where F(M) is the ring of real-valued C* functions on M. If o € 31 (M), it is regarded, by
contraction, as a function on T} (M), which we denote by 2. If a has the local expression
a = old; ® dz’ in a coordinate neighborhood U(z7) C M, then 1« = a(t) has the local
expression 1 = o t% with respect to the coordinates (27, 27) in 7 L(U).

Suppose that A € $1(M). Then there is a unique vector field VA € S§(T}(M)), such that
for o € SH(M) (see [12])

Y Aua) = a(A) o =V (a(4)), (2.1)

where V(a(A)) is the vertical lift of the function «(A) € F(M). We note that the vertical
lift Vf = for of the arbitrary function f € F(M) is constant along each fibre 7=1(P). If
VA=VAkY, +V A*9;, from (2.1) we have

VAR Opad +V AR af = o A}

Since a’fL and 8kaz can take any preassigned values at each point, we have from the above
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equation
VAkté- =0, VAF= AZ.
Hence
Vak — 0

at all points of T} (M) except possibly those at which all the components P t; are zero, that
is, at points of the base space. Thus we see that the components ¥ A* are zero at a point such
that 27 # 0, that is, in T} (M) — M. But the vector field V A is continuous at every point of
TLH(M). So, we have V' A¥ = 0 at all points of T}(M). Consequently, the vertical lift V' A of A

to T (M) has the components
Vs _
= (v )= () &

with respect to the coordinates (z7,27) in T} (M) (see [2]).
Let Ly be the Lie derivation with respect to V € S3(M). We define the complete lift
CV =Ly of V to TH(M) by

V() = o(Lya) (2.3)
for a € SH(M) (see [12]). If OV = CVEg, + CVE(‘)E, from (2.3), we have
CVEL Ol + CVFE =t (VEdpal — (8,V7)ak + (8;VF)a]). (2.4)

Discussing in the same way as in the case of the vertical lift, from (2.4), we see that the complete
lift V has the components

V= < 2“2 ) = < t;”(amVi)‘ijtﬁn(aij) > (25)

with respect to the coordinates (7, z7) in T}H(M) (see [2, 15]).
Let V be a symmetric affine connection on M. We define the horizontal lift 7V = Vy €
SYTE(M)) of V € SH(M) to TH(M) by

HY (1) = o(Vya), ac 31(M)
(see [12]). The horizontal lift 7V of V € S} (M) to T (M) has the components
Hysj Vi
Hyr _ N A :
V=i )= (vegen - ) (26)

with respect to the coordinates (27, 27) in T} (M), where I‘fj are the local components of V on
M (see [2, 15, 23]).

Let ¢ € 31(M), which are locally represented by ¢ = <p§» a(Z» ® dz?. The vector fields y¢
and ¢ on T (M) are defined by

0

Yo = (te]) e
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with respect to the coordinates (27,z7) in TH(M). From (2.2) we easily see that the vector
fields ¢ and J¢p determine respectively global vector fields on T} (M) (see [2]).

Explicit expressions for the Lie bracket [, ] of the tensor bundle T} (M) are given in [2,
12] (for tangent and cotangent bundles, see [5, 25]). The bracket operation of vertical and
horizontal vector fields is given by the formulas

[VA7 VB] =0,
[HX,VA] = V(VXA)v (27)
[HXv HY] = H[Xa Y] + (ﬁ - V)R(va)a

where R denotes the curvature tensor field of the connection V, and 5 — v : p — S§(T1H(M)) is
the operator defined by

G-7e= ’
VTR thep — el
for any ¢ € 31 (M).

3 Sasaki Metric on T} (M)

In each local chart U(z") of M, we put

0
X = 37

AD = (AD) =, @ da? = 68610 @ da € SH(M), F=n+1,--- ,n+n?

=" € 34 (M),

R
ozh

From (2.2) and (2.6), we have

HX(j) = 61 0n + (~Tht, + T5,t5) 0y, (3.1)
AP = 50, 32
with respect to the natural frame {MLH} = {%, %‘97} in Tll(M), where 2" = t’fl and (53 is

the Kronecker’s. These n 4+ n? vector fields are linearly independent and generate, respec-
tively, the horizontal distribution of V and the vertical distribution of T} (M). We call the set
{#X ),V AU} the frame adapted to the affine connection V on 7~ *(U) C T{(M). Putting

H \% 7
egy =Xy, e ="AY,

we write the adapted frame as {eg} = {e(j), e@}. The indices a, 3,7, -+ run over the range
{1,---,n,n+1,--- ,n+n?} and indicate the indices with respect to the adapted frame {es}.
Using (3.1) and (3.2), we have

XIgh > , ( 5h > }

H

X = ; s 7 s =X’ s = X'e(y,
< —XJ (Fﬁsth - F]htg) _(F§sth - F;ht]g) @

0 0 , 0 ,
VA:< ):( -.>:A?< -):A’»e—-,
Al ro) Al I\ oke) 770)
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i.e., the lifts 7 X and ¥V A have, respectively, the components

(3)-(%)
VA—(VAﬁ)—(ij)_<£§> (3.4)

with respect to the adapted frame {eg}, X7 and A; are the local components of X and A on

~—

M, respectively (see [11]). For tensor bundles of type (p, q), see [18].
For each P € M, the extension of scalar product g (denoted by G) is defined on the tensor
space 7~ 1(P) = T} (P) by
G(A,B) = gitgleé»Bf
for all A, B € $1(P). The Sasaki metric ©g (or diagonal lift of g) is defined on T} (M) by the
following three equations

%9(V A,V B) =" (G(A, B)), (3.5)
Sg(VATY) =0,
Sg(HX7 HY) = V(g(X7 Y)) (3.7)

for any X,Y € S(M) and A, B € 31(M). Since any tensor field of type (0,2) on T} (M) is
completely determined by its action on vector fields of type # X and V' A (see [25, p. 280)), it
follows that °g is completely determined by the equations (3.5)—(3.7).

From (3.5)—(3.7), we see that the Sasaki metric g has the components

s s
s "9 "9 ) ( git 0 ) T_
= = . r =t 3.8
9py ( S 75 ng_l 0 gitg]l ) s ( )

89l S il il .
S By — 97 gl _ g’ 0 l =t 3.9
g < ngl ngl ) ( 0 g”glj ’ 7 ( . )

with respect to the adapted frame {eg}, where g;; and g% are the local covariant and con-
travariant components of g on M (see [11]). For tensor bundles of type (p,q), see [18].
We now consider local 1-forms w® in 7=1(U) defined by

w® = A® 5 daP,

where
- Ah AR §h 0
A=A p)=| -7 7 |= J ) 3.10
e ( N O ) (rey 2yt oty ) (310
The matrix (3.10) is the inverse of the matrix
A AT sh 0
A= (45 ) = "7 - —< ) > (3.11)
’ Ap At ~Tit + Tits 014,

of the transformation eg = A4 4 94. We easily see that the set {w®} is the coframe dual to
the adapted frame {eg}, i.e., w¥(eg) = A% AP = 5.
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For various types of indices, we have

=A, A04=0; Tkt + 15,50y,

€j j B A i+ (— + 1 ) (3.12)
e;zA; 3,4:8;-,

i=A _ dzB =da’

oL st o (3.13)
wl = A deB:&;,

where 0t} = dt, + (T}, t7" — I‘Z}tﬁn)dxk.

Since the adapted frame field {eg} is non-holonomic, we put
[ea; 65] - Q(yﬂv €y

from which we have ;% = (e, Ay A—eg A, A,
According to (3.10), (3.11) and (3.12), the components of non-holonomic object €2, ;% are

o

with all the others being zero, where R, k are the local components of the curvature tensor R

given by

—QF, =T},00 — T4,
ls r-i (314)
laljrg tU lzljsv t:'

i\h\ﬁl

of the metric g on M.
Let °V be the Levi-Civita connection of the Sasaki metric ®g. Putting V. ez = ngﬁev,
from the equation SV;(? - SV;,)? = [X,Y], VX,Y € S}(T}(M)), we have

ST - T%, = Q5" (3.15)

with respect to the adapted frame {eg}, where SI‘% are the components of the Levi-Civita

connection V.
The equation (*V %¢)(Y,Z) =0, VX,Y,Z € S{(T1(M)), has the form

es %gys = °T5, Sgep — “Ti5 91 = 0 (3.16)
with respect to the adapted frame {eg}. Thus, we have from (3.15) and (3.16)

a 1 e 1 a o o
SF = 559 (ea _(Q'YB + Q ~3 + Q B'Y)’ (317)

ges+ e gre — €c gyp) + 5

where Q% _ 5 = g9 Sgsp Qev .
Taking account of (3.9), (3.14) and (3.17), for various types of indices, we find

S

— 1 1
S ST s v v 48
If =Th. STY = 3Ry, 0 = SRy 8,
I =0, °I.=0, °I7 =0,
J ly ]

1 1
S1r sl 7 ja r 1S
rz,:—ng,i] te —§gletsj t5, (3.18)

T =T}6] - 14,68,
S1r 1 sj T a 1 jb r 48
5= §9iaR. el ts — 59 Rig" t
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with respect to the adapted frame {eg} (see [11]). For tensor bundles of type (p,q), see [18].

Let X,Y € SY(TH(M)) and X = X%,, Y = }7565. Then the covariant derivative ¥V X
along Y has the components

SV X =Y e, (X*) + 5T, XY (3.19)

with respect to the adapted frame {eg}.
Using (3.3), (3.4), (3.18) and (3.19), we have the following theorem.

Theorem 3.1 Let M be a Riemannian manifold with the metric g, and T{(M) be its
(1,1) tensor bundle equipped with the Sasaki metric °g. Then the corresponding Levi-Civita
connection satisfies the following relations:

1,
(1) 5Vax™Y = (VxY) + (3 - 1R, Y),
. 1 o/ -
(i) *Vva"Y = gH(le R(ty, &)Y + gar(t* (97" o R(-,Y)A"))),
1 j a/  — i
() SVux"B =" (VxB) + 3" (6" Rlty, B)X + g (1*(g™" o R(-, X)B1),
(iv) Vv, VB =0
Jor all X,Y € S4(M) and A, B € SL(M), where A; = (A}}), At = (g% A, 1) = (A%, t; = (),
2 = (1), R( ,X)Y € S}(M) and g1 o R( , X)Y € S}(M).
4 Curvature Tensor of 5V
The curvature tensor R of the connection V is obtained from the well-known formula
R()(7 Y)Z =VxVyZ -VyVxZ2— V[X’y]Z

for all X, Y € 3¢(M). With respect to the adapted frame {eg}, we write SV, _es = szﬁev,
where ¥ Fzﬁ denotes the Levi-Civita connection constructed by ®g. Then the curvature tensor
SR has the components

SR,p," = €T, — €5°TY, + °T. TG, — °T3.5T%, — Q.5 °TZ,.

By using (3.14) and (3.18), we find that the components of the curvature tensor R of “V are
as follows:

SR__"=0,
mlj

S T
milj 0’

1
SR_,." = gtnRTl. jr - glmRtnjr + Z(gnaRsonol . gtbR[: l.jh - gtaRS.lohT g RYY h)tfitf,

o0

1
+ Z (gtaRsolohr gmbRnpjh - gnaRS.".L hr gletpj h)t‘;'tlb)

+ (gletphrgna SOWOLJ 4 _gmbRnphrgtaRS.lojh )ti’t?

+ (gmaRnshT gletSj o glaRtshr gmbRnpjh)tZt€7

N e
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g _
mlj " O’
SRmE T O,
Sp_r= LR 'R LRS! R e
mlj 291t oom+ g ztm_4(gta oo h g’bb oom)sp
1 1 .
Z (gtaRgolo h gjszpm )tatp + 4( letphT giaRsoJo mh)t;gtg
1
- Z( laRtsh g szpm )t tzg’
1 1
SRmij = Egta(v Rilog "ty — Eglb(vatsj ")ths
| 1 l
SRijT = _2 mﬂ% 6U + ijtv 5l 4( mh;f gvaR’; L) ) gt; (41)
1 s lb V4P 1 pra
- Z(Rmhr Rtpj )tstb 4(Rmhp gt(lRo °j )t t
1
+ Z(Rmh;) letpj )tit€7
S r 1 sJ r s j r 1 b r jb T\ 48
le; = §(gmv Ro ol gzale. em ) i(g Vl‘Rism -9 vaisl )tbv
_ ) ) 1
Sle{ = leiv 57{ - lerj 6;} + Z(Rmhr ng thr ng. . m)tvta
1 )
+ Z(thrs gjlepmh - Rmhr jbR'Lpl )t:ti)
1 )
1B 9ia RV, = Ry 9o RV, VLS
1 ] )
+ Z(Rmh: gjbRipl h— thsv gjbRipmh)tit;Zv
_ 1 1
SlejT = §(Vlejr = ViR, )t + §(VlijsU = Vi Ry O)t7,
1
Slej "= lejr + Z(gkaRgo orrTL.lehp - gkaRi}: lTRm]h 2gkaRo}ij leh )tatk
1 sh r s h s h a,p
+ Z(gkaRo ol ijp gkaR. . lejp + ZQkGRo ¥ lep )t t
1
+ 1 (gthkplTijif - gthkp'rrv;leh '+ 29thkpermlh:g)t;gt§
1
+ Z (gthksnIlep i gthksl rijp 29thk€] lep )tbtp

with respect to the adapted frame {eg}. Thus we have the following result.

Theorem 4.1 Let M be a Riemannian manifold with the metric g, and T} (M) be its (1,1)
tensor bundle with the Sasaki metric °g. Then T} (M) is flat if and only if M is flat.

Proof It is a direct consequence of (4.1) that R = 0 implies *R = 0. If we assume that
SR =0, then from the last equation at the point (z¢,#) = (z%,0) € T} (M), we get

1
T8 RV R " = 0ka RS T Ry il = 2000 RYS B! ST

(gka o}: erm]p gkaR. ° le]p + 29kaR.}i j lep )tath

(Slej T)(I’i,o) = lejr +

+

%IH%IH

hb hb k
( Rkper g Rk‘meljh +2g Rkpj lehs)ti)ts

mjh



On the Geometry of the (1,1)-Tensor Bundle 377

1 hb k hb k hb k
+ Z(g Rkswlejp -9 Rksermjp _29 Rksermlp )titi (27,0

= lejr(xi) =0.

We now turn our attention to the Ricci tensor and scalar curvature of the Sasaki metric
Sg. Let SRop = SRmﬁ" and r = Sg# SR, 5 denote the Ricci tensor and scalar curvature of
the Sasaki metric “g, respectively. From (4.1), the components of the Ricci tensor * R.p are
characterized by

1 ] 1 .
SRZ; = _Z(gtaRsolohT gibe Zr h)t(sltz - Z(gletshT gJaRiprh)titg

1 , 1 ,
- Z(Q”’Rtph”"ngf 3.t + (0 o g Ry, ety

1 s 1 s
SRij = Egta(er; l.jr)tg - §glb(v7"RtSj T)tb’

1 . 1 .
Ry5 = 50ia(VeRey = 59 (Ve Rig T, (4.2)

1
SRy = Ry — Z(gkaRf W R

1 s h\ v a 1 r
- Z(thv" GuaRY o " )toty — Z(gthksl R
1

"R R
1 1
+ §(gkaRf }olj " erpk)tgti + g(gthkpjr erhs)t;zt?

1
rjhp)tgt]; - E(QkaRf fj " erhp)tgtl;;

k
Tip )titiz

1
k b h
rip )titi - Z(thsv gr Rvpj )tité)

with respect to the adapted frame {eg}. From (3.9) and (4.2), the scalar curvature of the Sasaki
metric %¢ is given by

1 . .
S?" —r— Zgabghkgljgtstlthpjthztg

1 . 1
- chdgljghkgm}erhs Ryjkp tgtz + §chthht I: s tgt;z
Thus, we have the next theorem.
Theorem 4.2 Let M be a Riemannian manifold with the metric g, and T} (M) be its (1,1)
tensor bundle equipped with the Sasaki metric °g. Let r be the scalar curvature of g, and °r be
the scalar curvature of °g. Then the following equation holds:

1 1 1
Sr=r = ZIRIP = IR+ 5T,

where ||tR||? = gabghkgljg”RSlthpjkrthtf, |Re||? = gcdgljghkgrerlthvjkp tgtg and T =
R, "Ryu 5" tsth
he s¥b "

cpr .

Let now (M, g), n > 2, be a Riemannian manifold of constant curvature x, i.e.,
kaf = K (07.9mj — 6, 9kj)
and

r=n(n—1)k,
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where 67, is the Kronecker’s. Then, from Theorem 4.2, we have

1 .
S?“ —r— Zgabghkgm“gljthSZRkTthZt;Z
1

1 .
~ 79497 9" 9" Ry, * R 5

p d
1 tetd +

re bz h s 4cyP
vik g9 chr Rhez tstb

1 . .
=1 = 59"9" 9" 91 (5(5,9us — 19ns) 5 (Okgrp = Srgrn) it

1 .
— 1 9eag” 9" (5(67 01 — 67 gr) K (855 — 05 gur)) 515

1
+ §9r69bz(’€(5?9;m“ - 5;};9&")%(52962 ) tgt;g

1 1 1
=n(n—1)k — Zﬁ2ngabgspt2t€ + Z/@2g“bgspt2tf + Z/@2g“bgspt2t§

1 1 1 .
— 1n2ng“bgspt2t§ — ZﬁaQngcdthitZ + Zfngcdg”tit?

1 1 : 1 1
+ 770cag ity — 35 NGeag tit] + SRILONIY — SRISOEH)

1 2¢b 1 2 b
-5k Sa0ptsty + 3F e tsty

1 1 . .
=n(n—1)k— 5/<;2||t||2(n —-1) - 5/<L2||t||2(n —-1)+ /<;2tct£ - /<;2tpt§

= (n— Dr(n — ||t|?k) + £2((tr t)* — (trt?)).

Thus, we have the theorem below.

Theorem 4.3 Let (M,g), n > 2, be a Riemannian manifold of constant curvature k. Then
the scalar curvature Sv of (TH(M),®g) is

Sr = (n = 1)r(n — |[t|*k) + £*((tr £)* — (tr 7)),
where ||t||* = gklgijt};t{.

It is known that for a local ortonormal frame a sectional curvature on (T}1(M),g) is given
by

1(Ag) = —° Ry URV™U VI, (4.3)

where Ay = (U, V') denotes the plane spanned by (U, V).

Let now {X;}, @ = 1,--- ,n, be a local ortonormal frame and ||A;||%; = G(A}, AY) =1,
G(A, A7) = 0,7 # ] for A € 3} (M), 7 =n+1,---,n% Then from (3.5)(3.7) we see that
HXy,--- JHX, VAL ... ,VA”Q} is a local ortonormal frame on T (M). Let “x(¥ X, HY),
k(1 X,V A) and *k(V A,V B) denote the sectional curvature of the plane spanned by (¥ X, #Y),
(HX,VA)and (VA,VB) on (T}(M),®g), respectively. Then, using (3.3), (3.4), (3.8) and (4.1),
we have from (4.3) that

(1) SH(VAva) :0;
N 1. . o .
(ii) “w(X,VB) = 19 Bems® Reji” geagunt Sty X BItXIBLh
1 v e _cC S m ]
+ Zg'”eRtsm thj g btctfglkX B;X]B]Z
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1 .
+ 29" ghg" Ry’ Ry 123 X" BI X By

4 mer

1 _
+ =" ghogra Ry, RSL € 1Pt X™BIXIBY,

4 mep X ¥
(iit) k(P X, 7Y) = — Ry XY XIY*
- ZgZhRmkj Ry gaptaty X YR XY
- ngeRmk;’ R, “g™tsth XY XTYE
- ngagZhRmk;j Ry, Tty XY XTYE
- %g“’ngm Ry XY XY

From (i)—(iii), we have the result as follows.

Theorem 4.4 Let (M, g) be a Riemannian manifold, and TL(M) be its (1,1) tensor bundle
with the Sasaki metric °g. If (T}(M),%g) is a Riemannian manifold of constant sectional
curvature °k, then Sk = 0.

5 Scalar Curvature of the Metric Connection with Respect to the
Sasaki Metric °g

In Section 2, we give the Sasaki metric ©g on the tensor bundle T} (M) and consider the
Levi-Civita connection °V of ®g. This is the unique connection which satisfies °V ¥g = 0, and
has no torsion. But there exists another connection which satisfies V5 g = 0, and has non-trivial
torsion tensor. We call this connection the metric connection of “g.

The horizontal lift #V of any connection V on the tensor bundle T} (M) is defined by

H VB: H HY:
{ Vo u 0, Vv, 0, 51)

HY,u VB =" (VxB), HVuyHY =H (VxY)

for all vector fields X,Y € ¢ (M) and A, B € S (M) (see [6, 11, 12]). For tensor bundles of
type (p, q), see [18].

We put ¥V, = HVg(a). Then taking account of Hvaé(ﬁ) = HFlﬁg(v) and writing HFgﬁ for
the different indices, from (5.1) it follows that the horizontal lift 7V of V has the components

lj lj
Hypr _ pr Hyr _ 1w §j _1J Sv
Flj = Flj? Fl; = Fli 57" Flr 51"

Hpr _ HpT_ _ Hpr _ HTT Hrlf =HTr_ =,
lj Lj J Lj (52)

Denote by T the torsion tensor of V. Then T is the skew-symmetric tensor field of type
(1,2) on T} (M) determined by
TVAYB) ="vv,VB-HvvzYA-[VA VB =0,
T(VARY) = -THy,YA) = Vv 7Y = 0¥y VA [VA Y]
— V(VyA)+ Y (Vy4) =0,
THX, YY) = Vu Iy = v, X — (1 X Y]
="(VxY) = (Vy X) = T[X, Y]+ (5 = 7)R(X,Y)
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= H(VXY - VY)( - [Xa Y]) + (ﬁ - V)R(Xa Y)
= -7RXY),

where R is the curvature tensor of V and
- - : 0
(F = MRX,Y) =D (th, Ry " XY = 7' R, XY —.

. O
K3

Thus, the connection 'V has non-trivial torsion even for the Levi-Civita connection V4 deter-
mined by g, unless g is locally flat.
A straightforward computation, using (3.5)—(3.7) and (5.1), leads to the following set of

formulas:
(HVVCSQ)(VAv VB) = Oa (HVHZSQ)(VAa VB) = 07
Ivve®g)(VAHY) =0, (TVuy%9)(VA"Y) =0,
(HVVCSQ)(HXa VB) = U, (HVHZSQ)(HXa VB) = 07
HIVvve®g) (X, AY) =0, ("Vuy%g)("X,7Y)=0

for any A, B,C € S}H(M) and X,Y, Z € 34(M), i.e., the horizontal lift 7V of V, is the metric
connection with respect to the Sasaki metric °g.

Let now R be the curvature tensor field of V. The curvature tensor # R of the metric
connection 7V of ¢ has the components

" Rss® = 2(€5 T3 + Tfy T2

’Y]B) - Qévs HF?B

with respect to the adapted frame {eg}. Using (3.12), (3.14), (5.2) and computing the compo-
nents of the curvature tensor # R of the metric connection ¥V, we obtain

Pr_.7=0, "R _."=0, "R _."=0, Hp ™=\,
mlj mlj mlj mlj
HRmi; =0, HRmij? =0, Hle { =0, Hle 3? = le’i ! 62 + lerj 6;)’ (53)
H H T __ H _ H T __
Rmi j'r‘ 0, Rmzj’n = 0, lejr == lejr7 lejr = 0

[e3

anf of the metric

The contracted curvature tensor field (Ricci tensor field) #R,5 = R
connection 7V has the components

"Riz=0, "R;=0, "R, =0, "Ryj=Ry,

where Ry; is the Ricci tensor field of V,; on M.
For the scalar curvature of 7V with respect to the Sasaki metric g, we have

H?“ = ngﬁ HRV,Q = gijkj =T

by means of (5.3) and Sgki = Sgki = .
Thus we have the following theorem.

Theorem 5.1 Let (M,g) be a Riemannian manifold, and the tensor bundle T{ (M) be
equipped with the Sasaki metric °g. Then the tensor bundle T (M) with the metric connection
HY7 has vanishing scalar curvature Hr with respect to the Sasaki metric ®g if and only if the
scalar curvature v of Vg on M is zero.
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6 Para-Nordenian Structures on (T} (M), °g)

An almost paracomplex manifold is an almost product manifold (M, ¢), ¢? = I, such that
the two eigenbundles TTM and T~ M associated with the two eigenvalues +1 and —1 of ¢,
respectively, have the same rank. Note that the dimension of an almost paracomplex manifold
is necessarily even. Considering the paracomplex structure ¢, we obtain the set {I,p} on M,
which forms a base of an isomorphic representation of the algebra of order 2, which is called
the algebra of paracomplex (or double) numbers and is denoted by R(j), j2 = 1.

A tensor field w € Sg(Mgn) is said to be pure with respect to the paracomplex structure ¢,
if

w(pX1, Xo, -, Xg) = w(X1,0Xa, -, Xy) = - = w(X1, Xo, -, 0X,)

for any X1, Xo, -+, X, € S¢ (May,).
We consider the operator ¢, associated with ¢ and applied to the pure tensor field w by
[24]

(gf)@w)(Y, Xl? T vXq) = (@Y)(W(le T an)) - Y(W(SOXMXQ; t 7Xq))
+w((Lx,p)Y, Xo, -+, Xg) 4+ +w(X1, Xo, -, (Lx,0)Y).

If ¢ow = 0, then w is said to be almost paraholomorphic with respect to the paracomplex
algebra R (j) (see [10, 19]).

A Riemannian manifold (Ma,,g) with an almost paracomplex structure ¢, is said to be
almost para-Nordenian, if the Riemannian metric g is pure with respect to ¢. It is well-
known that, the almost para-Nordenian B-manifold is para-Kéhler (V ¢ = 0) if and only if g
is paraholomorphic (¢,g = 0) (see [19, 20]).

Let (T} (M), ®g) be the (1,1) tensor bundle with the Sasaki metric 9g. From the equations
(3.5)—(3.7), we easily see that the horizontal distribution H, induced by V, and determined by
the horizontal lifts, is orthogonal to the fibres of Ti(M).

Let now E € SJ(M) be a nowhere zero vector field on M. For any X € S3(M) and
E =goE € S9(M), we define the vertical lift V(X ® E) of X with respect to E. The map
X — V(X @ E) is a monomorphism of S4(M) — S3(TH(M)). Hence an n—dimensional C>
vertical distribution V¥ is defined on T} (M). Let V* be the distribution on 71 (M) which is
orthogonal to H and V¥. Then H, V¥ and V+ are mutually orthogonal distributions with
respect to the Sasaki metric ®g. We define a tensor field F' of type (1,1) on T} (M) by

FEX =V(X® E),
FVY(X®E)="HX, (6.1)
FVA) =VA
for any X € S (M) and A € St (M), where E = go E € $9(M). The restrictions of F to
H + V¥ and V* are endomorphisms, and hence F is a tensor field of type (1,1) on T{(M). Tt
is easy to see that F?> = I. In fact, we have by virtue of (6.1)
FHx)=F(Fix)=F(" (X ®E) ="X,
PV (X ® B) = F(FY (X © ) = F("X) =V (X & B),
F2VA) =FFVA) =F"A)=VA
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for any X € S} (M) and A € 31 (M), which implies F? = 1.

Theorem 6.1 The triple (Tl1 (M), %y, F) 18 an almost para-Nordenian B-manifold if and
only if g(E,E) = 1.

Proof We put
A(}?,?) = Sg(F)Agv}N/) - Sg()?vF?)
for any X,Y € S(TH(M)). From (3.5)—(3.7) and (6.1), we have

APX,FY) =5g
S

(FEX Hy) - Sq¢(f X, FHY)
=%9("(X @ E),"Y) - 59" X,V (Y ® E)) = 0,
AV (X @E),Y(Y®E) =%(F"(X®E),"(Y @ E)) - %g(V (X ® E), FV (Y ® E))
=99 X,V(Y @ E)) - gV (X ® E),"Y) =0,
AV(X @ E),"Y) =%g(FV(X @ E),"Y) = %g(V (X ® E), F'Y)
Sg(X,7Y) = S¢(V(X ® E),V(Y ® E))

=g
Y(g(X,Y)) =Y (9(X.Y)g (B, E))
="(9(X,Y) —g(X,Y)g(E,E)) =0,
AVAVB)=5g(FVA,VB) - %g(VA,FVB)

(
(YA, VB) —%g(" A, VB) = (G(A,B)) — (G(4,B)) =0,
AVAYV(X @ E) =% FVA V(X @ E) - %(YA FY(X ® E))
(VA V(X @ E)) - %9(VA"X) =V (G(A X ® E)) =0,
AV ATY) =5g(FY A7 Y) - Sg(V A, FRY)
=%g(VATY) = 5g(VAY (Y @ ) = -V (G(AY @ E)) =0,
8¢ is pure with respect to F. Thus Theorem 6.1 is proved.

We now consider the covariant derivative of F'. Taking Theorem 3.1(i)—(iv) and (6.1) into

account, we obtain
(FVux F)(TY)
= Vux(FIY) = F(°Vux"Y)
= 5VuxV (Y © B) — F((VxY) + 5(3 ~1)R(X.Y))
=Y(Vx(Y ® E))

~

£ 26 B, (Y © B))X + g0 (10~ 0 R X) (Y @ B) )
~V(VxY) @ B) - (- RXY)
= V(¥ © VxE) ~ 5(3 - R(X,Y)

376 Bt (Y © B))X + g0 (1%(g™ 0 RC.X) (¥ @ B) 9)

= V(Y ® Vx(go B) - 3(7 — )R(X,Y)
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1 . ~ ~o
+57(g" R(ts, (Y © B))X + gas (t°(g™ 0 R(-, X) (Y @ E) 1))

= V(Y ©((Vxg)o B+ g0 VxE]) — (7~ R(X,Y)

+ 5716 Rt (¥ © B)))X + gai (g™ 0 R, X) (V @ B) 1)
= V(¥ ® [go VxE]) - 5 - MR(X,Y)

+ %H(g”j Rita, (Y @ B);)X + gus (29~ 0 R(-, X) (Y © ) 1)),
(*VuxF)(VB)

=5Vuy(FVB) = F(°Vuy"B)

=9VuxVB - F(°Vuyx"B)

= V(VxB) + 3 (6 Rltn, B)X +gas (6™ 0 R(-, X)BY))
- F(V(VxB) + %H@”j R(to, Bj)X + gas (t*(9~" o R(-, X)B")))

= 276" Rty B)X + g0 (1°(g™" 0 R(-, X)BY))

~ 5V 16" Rty B)X + gas (g™ o RO, X)BY)] © B),

(VuxF)"(Y @ E)
= SVax(FV (Y © B)) = FEVay" (Y @ )
=5Vux"Y —F(°Vuy" (Y @ E))
= H(VxY) + 5 - DROGY) - Y (Vx (Y @ B))

~

- %F H (g% R(ty, (Y ® E);)X + gai (t%(9" 0 R(+, X) (Y ® E) 1))

= V(Y © (g0 VxE)) + 57~ MRX,Y)

~

2
(*VvaF)(VB)
=9VvA(FVB) - F(°Vv 4V B)
= SVVAVB - F(SVVAVB) =0,
(*VvaF)("Y)
= Vv (FEY) = F(5Vv ,7Y)
~ 1
=Vvs"(Y®E) - §FH(9“ R(ty, A)Y + gar(t (97" 0 R(+,Y)A"))

= 5V (16" R(t, A)Y + gut® (97 0 B(-, ¥)A)] © B),

(Vv 4F)V (Y ® E)
=SVvA(FY(Y @ B)) - F(Vv Y (Y © E))

- 1V([gbj R(ty, (Y ® E);)X + i (t°(9" o R(-, X) (Y ® E) )] ® E),
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(6.2)

(6.3)

(6.4)
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1
= Vv aY = EH(ybl R(ty, A)Y + gar(t (97" 0 R(+,Y)A"))), (6.7)

(SVV(X®E)F)V(Y®E)
=5V o (FY(Y @ E) = F(°Vy o2V (Y @ E))
(X®F) V(X®E)
= Vv xei Y = FOOVv(xepp' (Y ® E))

~

= 276" Rlts, (X © BY)Y 4+ gult* (g7 0 R(-,Y) (X @ B) 1)), (6.8)

(SVV(X®E)F)(HY)

= SVV(X@E)(FHY) - F(SVV(X®E)HY)
s v T

= VV(X@E) (Y X E)

~

- %FH(gbl R(ty, (X @ E))Y + gut(t* (9 o R(-,Y) (X @ E) 1))

- ‘%V([g“ Rits, (X @ BY)Y + gt (97" 0 R(-, V) (X ® B) )] o B), (6.9)

(SVV(X®E)F)(VB)
=V xei (FVB) = F(°Vy xom " B)
=V xep' B~ FCVvixen B)=0. (6.10)

From (6.2)—(6.10), we have the following theorem.

Theorem 6.2 The tensor bundle T (M) of a Riemannian manifold M is a para-Kdhlerian
(paraholomorphic Nordenian) B-manifold with respect to the Sasaki metric ®g and the almost
para-Nordenian B-structure F defined by (6.1) if and only if R =0 and VE = 0.

A vector field Z € S(TEH(M)) with respect to which an almost para-Nordenian B-structure
F has a vanishing Lie derivative (LzF = 0) is said to be almost paraholomorphic (see [10]).
It is well known that

{ [€X,HY] = # [X,Y] + (T — ) ((LxV)Y),

[CX, VA] YV (LyA) (6.11)

for any X,Y € S (M), where (LxV)Y = VyVX+R(X,Y)and (LxV) (Y, Z) = Lx (VyX)—
Vy (LXZ) — V[X’y]Z (see [7])

A vector field Z € 3 (M) is called a Killing vector field (or infinitesimal isometry) if Lzg =
0, and Z is called an infinitesimal affine transformation if LzV, = 0. A Killing vector field is
necessarily an infinitesimal affine transformation, i.e., we have LzV, = 0 as a consequence of
ng =0.

We now consider the Lie derivative of F' with respect to the complete lift ©Z. Taking
account of (6.1) and (6.11), we obtain

(LoyF)YA= Loy (FVA) — F(LoyV A)
=LeyYA—-F(Y(LzA)) =0, (6.12)
(LezF) (Y ® E) = Loz (FV (Y @ E)) — F(Le ;Y (Y ® E))
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= Le Y —FV(Lz(Y @ E))
Loy —FY((LzY)®E) — FY(Y @ (LzE))
T(LyY) +F=((LzV)Y) = (LzY) = V(Y & (LzE))
=({F-N(LzV)Y) =Y (Y @ Lz(go E))
=T -N(LzV)Y) =V (Y ®[(Lzg) o E+go LzE)), (6.13)
(LezF)?Y = Le 4, (FPY) — F(Le ,7Y)
=Lez (Y @ B) = F("(LzY) + (7 — 9)(LzV)Y)
Y(Lz(Y @ B)) =V ((LzY)® B) = (7 = 1)((LzV)Y)
V(Y@ Lz(goE)) — (7 = 1)((LzV)Y)
=Y (Y®|[(Lzg)oE+goLzE)— (¥ —)((LzV)Y). (6.14)

Let (F,°g) be the para-Nordenian B-structure on T} (M) and Z be a Killing vector field

(Lzg = 0). From the equation g(E,E) = 1 (see Theorem 6.1), we have LzFE = 0 for any
Z € 3§(M). By virtue of LzE =0 and LzV =0, from (6.13) and (6.14), we have LezF = 0,
i.e., “Z is paraholomorphic with respect to F. If we assume that Lc,F = 0 and calculate the
equation (6.13) (or (6.14)) at (z%,0), / = 0, we get Lzg = 0. We hence have the following
result.

Theorem 6.3 Let (T1(M), ®g, F) be an almost para-Nordenian B-manifold. An infinites-

imal transformation Z of Riemannian manifold (M,g) is a Killing vector field if and only if

its complete lift © Z to the tensor bundle T\ (M) is an almost paraholomorphic vector field with

respect to the almost para-Nordenian B-structure (F,®g).

References

(1]
2]
(3]

(4]

Aso, K., Notes on some properties of the sectional curvature of the tangent bundle, Yokohama Math. J.,
29(3), 1981, 1-5.

Cengiz, N. and Salimov, A. A., Complete lifts of derivations to tensor bundles, Bol. Soc. Mat. Mezicana,
8(3), 2002, 75-82.

Cengiz, N. and Salimov, A. A., Diagonal lift in the tensor bundle and its applications, Appl. Math. Comput.,
142, 2003, 309-319.

Cordero, L. A., Dodson, C. T. J. and de Leon, M., Differential Geometry of Frame Bundles, Academic
Publishers Group, Dordrecht, 1986.

Dombrowski, P., On the geometry of the tangent bundles, J. Reine and Angew. Math., 210, 1962, 73—88.

Gancarzewicz, J. and Rahmani, N., Relevent horizontal des connexions lineaires au fibre vectoriel associe
avec le fibre principal des repres lineaires, Annales Polinici Math., 48, 1988, 281-289.

Gezer, A. and Salimov, A. A., Almost complex structures on the tensor bundles, Arab. J. Sci. Eng. Sect.
A Sci., 33(2), 2008, 283-296.

Gudmundsson, S. and Kappos, E., On the geometry of the tangent bundles, Ezpo. Math., 20, 2002, 1-41.

Kowalski, O., Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian mani-
fold, J. Reine Angew. Math., 250, 1971, 124-129.

Kruchkovich, G. I., Hypercomplex structure on manifold, I, Tr. Sem. Vect. Tens. Anal., Moscow Univ.,
16, 1972, 174-201.

Lai, K. F. and Mok, K. P., On the differential geometry of the (1,1) tensor bundle, Tensor (New Series),
63(1), 2002, 15-27.

Ledger, A. J. and Yano, K., Almost complex structures on the tensor bundles, J. Diff. Geom., 1, 1967,
355-368.



386

13]
(14]

(15]
(16]

[17]
[18]
[19]
[20]

(21]
(22]

23]
[24]

25]

A. Salimov and A. Gezer
Mok, K. P., On differential geometry of frame bundles of Riemannian manifolds, J. Reine Angew. Math.,
302, 1976, 16-31.

Mok, K. P., Metrics and connections on the cotangent bundle, Kodai Math. Sem. Rep., 28(2-3), 1976/1977,
226-238.

Mok, K. P., Lifts of vector fields to tensor bundles, Geom. Dedicata, 8(1), 1979, 61-67.

Musso, E. and Tricerri, F., Riemannian metrics on tangent bundles, Ann. Mat. Pura. Appl., 150(4), 1988,
1-19.

Salimov, A. A. and Cengiz, N., Lifting of Riemannian metrics to tensor bundles, Russian Math. (IZ.
VUZ.), 47(11), 2003, 47-55.

Salimov, A. A., Gezer, A. and Akbulut, K., Geodesics of Sasakian metrics on tensor bundles, Mediterr. J.
Math., 6(2), 2009, 137-149.

Salimov, A. A., Iscan, M. and Etayo, F., Paraholomorphic B-manifold and its properties, Topology Appl.,
154(4), 2007, 925-933.

Salimov, A. A., Iscan, M. and Akbulut, K., Some remarks concerning hyperholomorphic B-manifolds,
Chin. Ann. Math., 29B(6), 2008, 631-640.

Salimov, A. A. and Agca, F., On para-Nordenian structures, Ann. Polon. Math., 99(2), 2010, 193-200.

Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J.,
10, 1958, 338-358.

Szilasi, J., Notes on tensorial connections, Publ. Math. Debrecen, 31(1-2), 1984, 29-37.

Yano, K. and Ako, M., On certain operators associated with tensor field, Kodai Math. Sem. Rep., 20,
1968, 414-436.

Yano, K. and Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973.



