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Abstract The authors consider the homogenization of a class of nonlinear variational
inequalities, which include rapid oscillations with respect to a parameter. The homoge-
nization of the corresponding class of differential equations is also studied. The results are
applied to some models for the pressure in a thin fluid film fluid between two surfaces which
are in relative motion. This is an important problem in the lubrication theory. In particu-
lar, the analysis includes the effects of surface roughness on both faces and the phenomenon
of cavitation. Moreover, the fluid can be modeled as Newtonian or non-Newtonian by using
a Rabinowitsch fluid model.
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1 Introduction

Let x ∈ Ω denote the space variable, where Ω is an open bounded subset of R
N , and the

time variable, denoted by t, belongs to the interval (0, T ) and ΩT = Ω × (0, T ). The N -valued
functions a = a(x, t, y, τ, ξ) and f = f(x, t, y, τ) and the scalar function g = g(x, t, y, τ) are
defined for ξ ∈ R

N , y ∈ R
N and τ ∈ R. Moreover, the function a satisfies certain monotonicity

and continuity conditions in ξ. It is also assumed that all of a, f and g are Y -periodic in y and
Z-periodic in τ , where Y = (0, 1)N and Z = (0, 1). We can now use a, f and g to define the
following functions:

aε(x, t, ξ) = a
(
x, t,

x

ε
,
t

ε
, ξ
)
,

fε(x, t) = f
(
x, t,

x

ε
,
t

ε

)
,

gε(x, t) = g
(
x, t,

x

ε
,
t

ε

)
,

where ε > 0. Since a, f and g are periodic in y and τ , this means that ε is a parameter which
describes the frequency of the oscillations.
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Let us now study the equation: Find uε ∈ Lp(0, T ; W 1,p
0 (Ω)) such that∫

ΩT

aε(x, t,∇xuε) · ∇xφ dxdt =
∫

ΩT

(fε · ∇xφ + gεφ)dxdt (1.1)

holds for all φ ∈ Lp(0, T ; W 1,p
0 (Ω)). There are only derivatives with respect to x in (1.1), which

implies that t is just a parameter. Corresponding to the equation (1.1), we have the variational
inequality: Find uε ∈ M such that∫

ΩT

aε(x, t,∇xuε) · ∇x(φ − uε) dxdt ≥
∫

ΩT

(fε · ∇x(φ − uε) + gε(φ − uε))dxdt (1.2)

holds for all φ ∈ M , where

M = {uε ∈ Lp(0, T ; W 1,p
0 (Ω)) : uε ≥ 0}.

For small values of ε, the functions aε, fε and gε are rapidly oscillating both in space and
time. A direct numerical treatment of (1.1) and (1.2) will thus require an enormous number of
grid points. Therefore, it is natural to use some type of asymptotic analysis to be able to handle
problems of this type. The field of mathematics which has been developed for this purpose is
known as homogenization (see, e.g., [17] or [24]). The main contribution of this paper is that
we prove homogenization results corresponding to (1.1) and (1.2). This means that we extend
the previous results in [8], where the linear problems corresponding to (1.1) and (1.2) were
analyzed.

We also show that our general homogenization result can be applied to the analysis of some
problems in theory of lubrication. More precisely, we will study the pressure built up in a fluid
between two rough surfaces (e.g. in a bearing) which are in relative motion. If the surfaces
are rough then the distance between the surfaces will oscillate rapidly both in space and time,
which indicates that homogenization can be used priority. A fluid cannot sustain negative
pressure. This implies that there may be zones where the lubricant contains air bubbles. This
phenomenon is known as cavitation and has a big impact on the hydrodynamic performance.
There are several ways to model and analyze this effect. One approach leads to variational
inequalities of the type (1.2).

In homogenization both (1.1) and (1.2), we prove that the respective sequence of solutions
(uε) two-scale converges to u = u(x, t, τ). In the equation case, u solves a homogenized equation,
and in the variational inequality case, u solves a homogenized variational inequality. The
homogenized equation is as follows: Find u ∈ Lp((0, T ) × Z; W 1,p

0 (Ω)) such that∫
ΩT

∫
Z

A(x, t, τ,∇xu) · ∇xφ dτdxdt =
∫

ΩT

∫
Z

(F · ∇xφ + Gφ dτ)dxdt (1.3)

holds for any φ ∈ Lp((0, T )×Z; W 1,p
0 (Ω)). The homogenized variational inequality is as follows:

Find u ∈ V = {u ∈ Lp((0, T ) × Z; W 1,p
0 (Ω)) : u ≥ 0} such that∫

ΩT

∫
Z

A(x, t, τ,∇xu) · ∇x(φ − u) dτdxdt ≥
∫

ΩT

∫
Z

(F · ∇x(φ − u) + G(φ − u) dτ)dxdt (1.4)

holds for any φ ∈ V .
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The functions A, F and G in (1.3) and (1.4) are found by solving certain local problems and
averaging. The benefit of the homogenized problems for u is that there are no rapid oscillations
involved. This means that it is much easier to find the homogenized solution u than the solution
uε. Roughly speaking, due to the convergence uε → u, the homogenized solution u can be seen
as a good approximation of uε.

The paper is organized in the following way: Some notations, the precise setting of (1.1)
and (1.2) as well as some preliminary results are given in Section 2. In Section 3, we state and
develop some results concerning two-scale convergence in order to be able to homogenize (1.1)
and (1.2). The variational inequality (1.2) is homogenized in Section 4, and the equation (1.1) is
homogenized in Section 5. Several applications in lubrication theory, where the homogenization
results can be applied, are discussed in Section 6.

2 Notation and Preliminaries

Let a : ΩT ×R
N ×R × R

N → R
N be a function with the following properties: The function

(y, τ) → a(x, t, y, τ, ξ) is measurable for every x ∈ Ω, t ∈ (0, T ) and ξ ∈ R
N ; the function

a(x, t, · , τ, ξ) is Y -periodic; the function a(x, t, y, · , ξ) is Z-periodic. The function (x, t, ξ) →
a(x, t, y, τ, ξ) is continuous for a.e. y and τ . Let 1 < p < ∞ and q be the conjugate of p,
i.e., 1

p + 1
q = 1. We assume that there exist constants c1, c2 > 0 and two more constants α

and β with 0 ≤ α ≤ min{1, p − 1} and max{p, 2} ≤ β < ∞ such that a satisfies the following
continuity and monotonicity assumptions:

a(x, t, y, τ, 0) = 0, (2.1)

|a(x, t, y, τ, ξ1) − a(x, t, y, τ, ξ2)| ≤ c1(1 + |ξ1| + |ξ2|)p−1−α|ξ1 − ξ2|α, (2.2)

(a(x, t, y, τ, ξ1) − a(x, t, y, τ, ξ2)) · (ξ1 − ξ2) ≥ c2(1 + |ξ1| + |ξ2|)p−β |ξ1 − ξ2|β (2.3)

for a.e. (y, τ) ∈ R
N × R and any ξ1, ξ2 ∈ R

N . A direct consequence of (2.1)–(2.3) is that there
exist constants c3, c4 > 0 such that

|a(x, t, y, τ, ξ)| ≤ c3(1 + |ξ|p−1) and |ξ|p ≤ c4(1 + a(x, t, y, τ, ξ) · ξ). (2.4)

The functions f = f(x, t, y, τ) and g = g(x, t, y, τ) are assumed to be Y -periodic in y and
Z-periodic in τ . Moreover, f ∈ Lq

per(Y × Z; C(ΩT ))N and g ∈ Lq
per(Y × Z; C(ΩT )).

Now, a, f and g may be used to define the following functions:

aε(x, t, ξ) = a
(
x, t,

x

ε
,
t

ε
, ξ
)
, (2.5)

fε(x, t) = f
(
x, t,

x

ε
,
t

ε

)
, (2.6)

gε(x, t) = g
(
x, t,

x

ε
,
t

ε

)
. (2.7)

Without loss of generality, we shall from now on assume that |Y | = |Z| = 1 unless something
else is stated.

The functions A, F and G, in the homogenized equation (1.3) and the homogenized varia-
tional inequality (1.4), are defined as

A(x, t, τ, ξ) =
∫

Y

a(x, t, y, τ, ξ + ∇ywξ) dy, (2.8)
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where wξ is the solution to the local problem: Find wξ ∈ W 1,p
per(Y ) such that∫

Y

[a(x, t, y, τ, ξ + ∇wξ(y)) − f(x, t, y, τ)] · ∇φ dy = 0

for every φ ∈ W 1,p
per(Y ),

F (x, t, τ) =
∫

Y

f(x, t, y, τ) dy and G(x, t, τ) =
∫

Y

g(x, t, y, τ) dy. (2.9)

By using similar arguments as in [32], it can be shown that the properties of a imply that
the homogenized operator A defined in (2.8) has the following continuity and monotonicity
properties: There exist constants c̃1, c̃2 > 0 such that

|A(x, t, τ, ξ1) − A(x, t, τ, ξ2)| ≤ c̃1(1 + |ξ1| + |ξ2|)p−1− α
β−α |ξ1 − ξ2| α

β−α , (2.10)

(A(x, t, τ, ξ1) − A(x, t, τ, ξ2)) · (ξ1 − ξ2) ≥ c̃2(1 + |ξ1| + |ξ2|)p−β |ξ1 − ξ2|β (2.11)

for any ξ1, ξ2 ∈ R
N .

The continuity and monotonicity conditions of a and A guarantee that there exists a unique
solution to equation (1.1), variational inequality (1.2), corresponding homogenized equation
(1.3) and homogenized variational inequality (1.4). The proofs of these facts are based on
standard existence and uniqueness results (see, e.g., [37, Theorem 26.A, p. 557 and Theorem
32.C, p. 875].

3 Two-Scale Convergence

The concept of two-scale convergence was developed in the study of different types of ho-
mogenization problems. For more information concerning the general theory of two-scale con-
vergence, we refer to [1, 31, 34]. In this section, we present and develop the ideas such that
they can be used to homogenize (1.1) and (1.2). Let us start with the following definition.

Definition 3.1 Let (uε) be a bounded sequence in Lp(ΩT ) and u ∈ Lp(ΩT × Y ×Z). Then
we say that (uε) two-scale converges to u if∫ T

0

∫
Ω

uε(x, t)φ
(
x, t,

x

ε
,
t

ε

)
dxdt →

∫ T

0

∫
Ω

∫
Y

∫
Z

u(x, t, y, τ)φ(x, t, y, τ) dτdydxdt (3.1)

as ε → 0, for every test function φ ∈ C∞
0 (ΩT ; C∞

per(Y × Z)).

We remark that if the measure of Y and Z is not one, then we have to divide the right-hand
side of (3.1) by |Y ||Z|. This fact should be kept in mind throughout this paper. We also note
that two-scale convergence implies that uε converges weakly to u =

∫
Y

∫
Z u dτdy in Lp(ΩT ).

One of the main results concerning two-scale convergence is the following compactness result
(the proof of this result may be found in e.g. [1, 31]):

Theorem 3.1 If (uε) is a bounded sequence in Lp(ΩT ), then there exist a subsequence and
a u ∈ Lp(ΩT × Y × Z) such that the subsequence two-scale converges to u.

In addition to two-scale convergence, one can also define the concept of strong two-scale
convergence.
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Definition 3.2 Let (uε) be a bounded sequence in Lp(ΩT ) and u ∈ Lp(ΩT × Y ×Z). Then
we say (uε) two-scale converges strongly to u if for any bounded sequence (vε) in Lq(ΩT ) which
two-scale converges to v ∈ Lq(ΩT × Y × Z), we have that∫

ΩT

uεvε dxdt →
∫

ΩT

∫
Y

∫
Z

uv dτdxdt.

The following theorem relates two-scale convergence and strong two-scale convergence (see,
e.g., [31]).

Theorem 3.2 Two-scale convergence of the sequence (uε) in Lp(ΩT ) to u ∈ Lp(ΩT ×Y ×Z)
together with

lim
ε→0

∫
ΩT

|uε|p dxdt =
∫

ΩT

∫
Y

∫
Z

|u|p dτdydxdt (3.2)

is equivalent to strong two-scale convergence of (uε) to u.

Let Aq be the set of functions u ∈ Lq(ΩT × Y × Z) such that uε(x, t) = u(x, t, x
ε , t

ε) is
measurable and satisfies the following two convergence properties:

(1) The sequence (uε) two-scale converges to u.
(2) The sequence (uε) satisfies lim

ε→0
‖uε‖Lq(ΩT ) = ‖u‖Lq(ΩT ×Y ×Z).

For example, functions in Lq
per(Y × Z; C(ΩT )) ∪ Lq(ΩT ; Cper(Y × Z)) belong to Aq (for

details, see e.g. [1, 31, 32]). By Theorem 3.2, we have that if u ∈ Aq, then (uε) two-scale
converges strongly to u ∈ Lq(ΩT × Y ×Z). In applications of two-scale convergence, it is often
important to enlarge the class of test functions φ for which the convergence (3.1) holds. Indeed,
we have the following corollary of Theorem 3.2.

Corollary 3.1 If a sequence (uε) in Lp(ΩT ) two-scale converges to u ∈ Lp(ΩT × Y × Z),
then ∫

Ω

uεφ
(
x, t,

x

ε
,
t

ε

)
dτdydxdt →

∫
ΩT

∫
Y

∫
Z

uφ dτdydxdt

for any φ ∈ Aq.

Because of this, we will call the functions Aq admissible test functions. Another consequence
of Theorem 3.2 is the following corollary.

Corollary 3.2 Let (uε) be a bounded sequence in Lp(ΩT ) which two-scale converges to
u ∈ Lp(ΩT × Y × Z) and also satisfies that

lim
ε→0

∫
ΩT

|uε|p dxdt =
∫

ΩT

∫
Y

∫
Z

|u|p dτdydxdt.

If the limit u belongs to Ap, then∫
ΩT

∣∣∣uε(x, t) − u
(
x, t,

x

ε
,
t

ε

)∣∣∣p dxdt → 0. (3.3)

This is realized by the following argumentation: By Theorem 3.2 uε two-scale converges
strongly to u ∈ Lp(ΩT × Y × Z). Since u ∈ Ap, we also have that u(x, t, x

ε , t
ε) two-scale
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converges strongly to u ∈ Lp(ΩT × Y × Z). Hence, it follows that uε(x, t) − u(x, t, x
ε , t

ε) two-
scale converges strongly to 0 and (3.3) holds by taking Theorem 3.2 into account again.

The following compactness result for sequences in Lp(0, T ; W 1,p
0 (Ω)) was proved in [30].

Theorem 3.3 Assume that (uε) is a sequence in Lp(0, T ; W 1,p
0 (Ω)) such that uε(x, t) two-

scale converges to u(x, t, y, τ) and ∇xuε(x, t) two-scale converges to z(x, t, y, τ). Then the two-
scale limit u is independent of y and u ∈ Lp((0, T ) × Z; W 1,p

0 (Ω)). Moreover, z(x, t, y, τ) =
∇xu(x, t, τ) + ∇yu1(x, t, y, τ), where u1 ∈ Lp(ΩT × Z, W 1,p

per(Y )).

We will now derive two results regarding two-scale convergence and monotonicity. As we
will see later that both of them are fundamental in the homogenization of (1.1) and (1.2). The
first theorem is as follows.

Theorem 3.4 Let a satisfy the conditions (2.1)–(2.3). Moreover, let (vε) be a bounded
sequence in Lp(ΩT )N which two-scale converges to v ∈ Lp(ΩT × Y × Z)N and assume that
aε(x, t, vε(x, t)) two-scale converges to a0(x, t, y, τ) ∈ Lq(ΩT × Y × Z)N . Then

lim inf
ε→0

∫
ΩT

a
(
x, t,

x

ε
,
t

ε
, vε(x, t)

)
· vε(x, t) dxdt

≥
∫

ΩT

∫
Y

∫
Z

a0(x, t, y, τ) · v(x, t, y, τ) dτdydxdt, (3.4)

and if (3.4) holds as equality, then a0(x, t, y, τ) = a(x, t, y, τ, v(x, t, y, τ)).

Proof We prove (3.4). Assume that (3.4) does not hold, i.e.,

lim inf
ε→0

∫
ΩT

a
(
x, t,

x

ε
,
t

ε
, vε(x, t)

)
· vε(x, t) dxdt

<

∫
ΩT

∫
Y

∫
Z

a0(x, t, y, τ) · v(x, t, y, τ) dτdydxdt.

Then there exists a positive constant k > 0 such that

lim inf
ε→0

∫
ΩT

aε(x, t, vε) · vε dxdt =
∫

ΩT

∫
Y

∫
Z

a0 · v dτdydxdt − k. (3.5)

Let φ ∈ C∞
0 (ΩT ; C∞

per(Y × Z)N ) and define φε(x, t) = φ(x, t, x
ε , t

ε ). From the monotonicity
assumption (2.3) on a, we can deduce∫

ΩT

[aε(x, t, vε) − aε(x, t, φε)] · [vε − φε] dxdt ≥ 0. (3.6)

Since it is assumed that the function (x, t, ξ) → a(x, t, y, τ, ξ) is continuous and φ ∈
C∞

0 (ΩT ; C∞
per(Y × Z)N), we have that aε(x, t, φε) is an admissible test function, but in fact

aε(x, t, φε) belongs to Lq
per(Y × Z; C(ΩT )) ⊂ Aq. This together with Corollary 3.1 implies

lim
ε→0

∫
ΩT

aε(x, t, φε) · vε dxdt =
∫

ΩT

∫
Y

∫
Z

a(x, t, y, τ, φ) · v dτdydxdt, (3.7)

lim
ε→0

∫
ΩT

aε(x, t, φε) · φε dxdt =
∫

ΩT

∫
Y

∫
Z

a(x, t, y, τ, φ) · φdτdydxdt. (3.8)
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Let us now apply lim inf
ε→0

to both sides in the inequality (3.6) (actually, the limit exists for all

three terms in the right-hand side). With the help of relations (3.5), (3.7) and (3.8), we obtain
that ∫

ΩT

∫
Y

∫
Z

[a0 − a(x, t, y, τ, φ)] · [v − φ] dτdydxdt ≥ k. (3.9)

By density and continuity (see [18, p. 77]), this inequality also holds for any φ ∈ Lp(ΩT × Y ×
Z)N . Let sw(x, t, y, τ) = v(x, t, y, τ) − φ(x, t, y, τ), s > 0. Then after dividing it by s, we get∫

ΩT

∫
Y

∫
Z

[a0 − a(x, t, y, τ, v − sw)] · w dτdydxdt ≥ k

s
.

Letting s → 0, we have∫
ΩT

∫
Y

∫
Z

[a0 − a(x, t, y, τ, v)] · w dτdydxdt ≥ ∞.

By repeating the procedure for s < 0, it implies that∫
ΩT

∫
Y

∫
Z

[a0 − a(x, t, y, τ, v)] · w dτdydxdt ≤ −∞.

This is a contradiction, so that (3.4) must hold.
If (3.4) holds as equality, we can repeat the procedure above (with k = 0), and we get that∫

ΩT

∫
Y

∫
Z

[a0 − a(x, t, y, τ, v)] · w dτdydxdt = 0

for any w ∈ Lp(ΩT × Y × Z)N . Hence a0(x, t, y, τ) = a(x, t, y, τ, v(x, t, y, τ)).

The second theorem concerning two-scale convergence and monotonicity which is important
in the homogenization of (1.1) and (1.2) is the theorem below.

Theorem 3.5 Let a satisfy the conditions (2.1)–(2.3). Moreover, let (vε) be a bounded
sequence in Lp(ΩT )N such that vε two-scale converges to v ∈ Lp(ΩT × Y × Z)N , |vε|p−2vε

two-scale converges to w ∈ Lq(ΩT × Y × Z)N and aε(x, t, vε(x, t)) two-scale converges to
a0(x, t, y, τ) ∈ Lq(ΩT × Y × Z)N . If

lim
ε→0

∫
ΩT

aε(x, t, vε) · vε dxdt =
∫

ΩT

∫
Y

∫
Z

a0 · v dτdydxdt, (3.10)

then vε two-scale converges strongly to v ∈ Lp(ΩT × Y × Z)N .

Proof The left-hand side of (3.10) can be rewritten as follows:

lim
ε→0

∫
ΩT

aε(x, t, vε) · vε dxdt

= lim sup
ε→0

∫
ΩT

k|vε|p dxdt − lim sup
ε→0

∫
ΩT

k|vε|p dxdt + lim
ε→0

∫
ΩT

aε(x, t, vε) · vε dxdt

= lim sup
ε→0

∫
ΩT

k|vε|p dxdt + lim inf
ε→0

∫
ΩT

[aε(x, t, vε) − k|vε|p−2vε] · vε dxdt.
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This together with (3.10) gives

lim sup
ε→0

∫
ΩT

k|vε|p dxdt + lim inf
ε→0

∫
ΩT

[aε(x, t, vε) − k|vε|p−2vε] · vε dxdt

=
∫

ΩT

∫
Y

∫
Z

kw · v dτdydxdt +
∫

ΩT

∫
Y

∫
Z

(a0 − kw) · v dτdydxdt. (3.11)

For k > 0 sufficiently small, the function a(x, t, y, τ, ξ) − k|ξ|p−2ξ satisfies the conditions in
Theorem 3.4, therefore

lim inf
ε→0

∫
ΩT

[aε(x, t, vε) − k|vε|p−2vε] · vε dxdt ≥
∫

ΩT

∫
Y

∫
Z

(a0 − kw) · v dτdydxdt.

This and (3.11) imply

lim sup
ε→0

∫
ΩT

|vε|p dxdt ≤
∫

ΩT

∫
Y

∫
Z

w · v dτdydxdt. (3.12)

The function |ξ|p−2ξ satisfies the conditions in Theorem 3.4 which implies that

lim inf
ε→0

∫
ΩT

|vε|p dxdt = lim inf
ε→0

∫
ΩT

|vε|p−2vε · vε dxdt ≥
∫

ΩT

∫
Y

∫
Z

w · v dτdydxdt. (3.13)

By (3.12) and (3.13), it follows that

lim
ε→0

∫
ΩT

|vε|p dxdt = lim
ε→0

∫
ΩT

|vε|p−2vε · vε dxdt =
∫

ΩT

∫
Y

∫
Z

w · v dτdydxdt.

Hence it follows by Theorem 3.4 that w = |v|p−2v, and Theorem 3.2 gives that vε two-scale
converges strongly to v ∈ Lp(ΩT × Y × Z)N .

4 Homogenization of the Variational Inequality

In this section, we prove a homogenization result for the class of variational inequalities
(1.2).

Let M = {u ∈ Lp(0, T ; W 1,p
0 (Ω)) : u ≥ 0} and consider the problem: Find uε ∈ M such

that ∫
ΩT

aε(x, t,∇xuε) · ∇x(φ − uε) dxdt ≥
∫

ΩT

(fε · ∇x(φ − uε) + gε(φ − uε))dxdt (4.1)

holds for all φ ∈ M . Then the sequence of solutions, (uε), two-scale converges to u ∈ V , where

V = {u ∈ Lp((0, T ) × Z; W 1,p
0 (Ω)) : u ≥ 0}.

Moreover, u solves the homogenized variational inequality: Find u ∈ V , such that∫
ΩT

∫
Z

A(x, t, τ,∇xu) · ∇x(φ − u) dτdxdt ≥
∫

ΩT

∫
Z

(F · ∇x(φ − u) + G(φ − u))dτdxdt (4.2)

holds for any φ ∈ V (recall that A, F and G are defined in (2.8) and (2.9), respectively). More
precisely, we have the following result.
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Theorem 4.1 The sequence of solutions uε to (4.1) two-scale converges to u ∈ Lp((0, T )×
Z; W 1,p

0 (Ω)), where u is the unique solution to the homogenized variational inequality (4.2).
Moreover, ∇xuε two-scale converges strongly to ∇xu(x, t, τ) + ∇yu1(x, t, y, z), where u1 ∈
Lp(ΩT × Z; W 1,p

per(Y )) and∫
Y

[a(x, t, y, τ,∇xu(x, t, τ) + ∇yu1(x, t, y, z)) − f(x, t, y, τ)] · ∇φ dy = 0,

for every φ ∈ W 1,p
per(Y ).

Proof We divide the proof into several steps.
Step 1 Let us start by proving that aε(x, t,∇xuε) is bounded in Lq(ΩT )N and that ∇xuε

is bounded in Lp(ΩT )N . By choosing φ = 0 in (4.1), we obtain the following inequality:∫
ΩT

aε(x, t,∇xuε) · ∇xuε dxdt ≤
∫

ΩT

(fε · ∇xuε + gεuε)dxdt. (4.3)

The estimate (2.4) and the inequality (4.3) imply that∫
ΩT

|∇xuε|pdxdt ≤ c4

∫
ΩT

(1 + aε(x,∇xuε) · ∇xuε)dxdt

≤ c4(|ΩT | + ‖fε‖Lq(ΩT )N‖∇xuε‖Lp(ΩT )N + ‖gε‖Lq(ΩT )‖uε‖Lp(ΩT )).

The Poincaré inequality gives that there exists a c > 0, such that

‖∇xuε‖p
Lp(ΩT )N ≤ c(1 + ‖∇xuε‖Lp(ΩT )N ).

If ‖∇xuε‖Lp(ΩT )N ≤ 1, we could do so to assume the opposite. Then it holds that

‖∇xuε‖p
Lp(ΩT )N ≤ 2c‖∇xuε‖Lp(ΩT )N .

From this, it is clear that the sequence (uε) is bounded in Lp(0, T ; W 1,p
0 (Ω)). The continuity

assumption (2.2) gives that

|aε(x, t,∇xuε)| ≤ c1(1 + |∇xuε|)p−1−α|∇xuε|α ≤ c1(1 + |∇xuε|)p−1,

which gives that aε(x, t,∇xuε) is bounded in Lq(ΩT )N , since ∇xuε is bounded in Lp(ΩT )N .
By Theorem 3.1, there exists a subsequence (still denoted by ε), such that
(1) There exists a u ∈ Lp(ΩT × Y × Z), such that uε two-scale converges to u,
(2) There exists an η ∈ Lp(ΩT × Y × Z)N , such that ∇xuε two-scale converges to η,
(3) There exists an a0 ∈ Lq(ΩT × Y ×Z)N , such that aε(x, t,∇xuε) two-scale converges to

a0.
In addition, it follows from Theorem 3.3 that u ∈ Lp((0, T ) × Z; W 1,p

0 (Ω)) (in particular u

does not depend on y) and η(x, t, y, τ) = ∇xu(x, t, τ) + ∇yu1(x, t, y, τ), where u1 ∈ Lp(ΩT ×
Z, W 1,p

per(Y )).
Step 2 Let us now show that∫

ΩT

∫
Y

∫
Z

[a0 − f ] · ∇yφ1 dτdydxdt = 0 (4.4)



426 D. Lukkassen, A. Meidell and P. Wall

for any φ1 ∈ C∞
0 (ΩT ; C∞

per(Y × Z)). Fix φ1 ∈ C∞
0 (ΩT ; C∞

per(Y × Z)). Choose φ0 ∈ C∞
0 (ΩT )

such that

φ0(x, t) ≥
∣∣∣φ1

(
x, t,

x

ε
,
t

ε

)∣∣∣.
We can then choose

φ(x, t) = ε
[
φ0(x, t) + φ1

(
x, t,

x

ε
,
t

ε

)]
+ uε(x, t)

as a test function in (4.1). Indeed,∫
ΩT

([aε(x, t,∇xuε) − fε] · [ε∇xφ0 + ε∇xφ1 + ∇yφ1] − gε[εφ0 + εφ1])dxdt ≥ 0.

Passing to the limit gives ∫
ΩT

∫
Y

∫
Z

[a0 − f ] · ∇yφ1 dτdydxdt ≥ 0. (4.5)

By choosing φ as

φ(x, t) = ε
[
φ0(x, t) − φ1

(
x, t,

x

ε
,
t

ε

)]
+ uε(x, t),

we obtain the reversed inequality, i.e.,∫
ΩT

∫
Y

∫
Z

[a0 − f ] · ∇yφ1 dτdydxdt ≤ 0. (4.6)

From (4.5) and (4.6) it is clear that (4.4) holds.
Step 3 Let φ ∈ C∞

0 (ΩT ; C∞
per(Z)) and assume φ ≥ 0. Define the function φε as φε(x, t) =

φ(x, t, t
ε). From the variational inequality (4.1), we have∫

ΩT

aε(x, t,∇xuε) · ∇x(φε − uε)dxdt ≥
∫

ΩT

(fε · ∇x(φε − uε) + gε(φε − uε))dxdt.

In view of Theorem 3.4, we obtain that in the limit∫
ΩT

∫
Y

∫
Z

a0 · [∇xφ −∇xu −∇yu1] dτdydxdt

≥
∫

ΩT

∫
Y

∫
Z

(f · [∇xφ −∇xu −∇yu1] + g(φ − u))dτdydxdt. (4.7)

By density, it is possible to choose φ1 = u1 in (4.4). This together with (4.7) gives that∫
ΩT

∫
Y

∫
Z

a0 · ∇x(φ − u) dτdydxdt ≥
∫

ΩT

∫
Y

∫
Z

(f · ∇x(φ − u) + g(φ − u))dτdydxdt (4.8)

for any φ ∈ C∞
0 (ΩT ; C∞

per(Z)) such that φ ≥ 0.
Step 4 Let us now show that

lim
ε→0

∫
ΩT

aε(x, t,∇xuε) · ∇xuε dxdt =
∫

ΩT

∫
Y

∫
Z

(f · [∇xu + ∇yu1] + gu)dτdydxdt. (4.9)
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First, choosing φ = 0 in (4.1), we have∫
ΩT

aε(x, t,∇xuε) · ∇xuε dxdt ≤
∫

ΩT

(fε · ∇xuε + gεuε)dxdt.

In the limit, we get

lim sup
ε→0

∫
ΩT

aε(x,∇xuε) · ∇xuε dxdt ≤
∫

ΩT

∫
Y

∫
Z

(f · [∇xu + ∇yu1] + gu)dτdydxdt. (4.10)

Next, choosing φ = 2uε in (4.1), we get∫
ΩT

aε(x, t,∇xuε) · ∇xuε dxdt ≥
∫

ΩT

(fε · ∇xuε + gεuε)dxdt.

In the limit, we get

lim inf
ε→0

∫
ΩT

aε(x,∇xuε) · ∇xuε dxdt ≥
∫

ΩT

∫
Y

∫
Z

(f · [∇xu + ∇yu1] + gu)dτdydxdt. (4.11)

The relation (4.9) is now followed by (4.10) and (4.11).
Step 5 Prove that∫

ΩT

∫
Y

∫
Z

a0 · [∇xu + ∇yu1] dτdydxdt =
∫

ΩT

∫
Y

∫
Z

(f · [∇xu + ∇yu1] + gu)dτdydxdt.

(4.12)

By choosing φ = 0 in (4.8), we get∫
ΩT

∫
Y

∫
Z

a0 · ∇xu dτdydxdt ≤
∫

ΩT

∫
Y

∫
Z

(f · ∇xu + gu)dτdydxdt.

The reversed inequality is obtained by choosing φ = 2u in (4.8), which is possible after a density
argument. Hence,∫

ΩT

∫
Y

∫
Z

a0 · ∇xu dτdydxdt =
∫

ΩT

∫
Y

∫
Z

(f · ∇xu + gu)dτdydxdt.

This together with (4.4) and a density argument implies (4.12).
Step 6 The relations (4.9) and (4.12) give that

lim
ε→0

∫
ΩT

aε(x, t,∇xuε) · ∇xuε dxdt =
∫

ΩT

∫
Y

∫
Z

a0 · [∇xu + ∇yu1] dτdydxdt.

Theorem 3.4 about two-scale convergence and monotonicity gives that

a0(x, t, y, τ) = a(x, t, y, τ,∇xu(x, t, τ) + ∇yu1(x, t, y, τ)). (4.13)

From Theorem 3.5 about strong two-scale convergence and monotonicity, it follows that ∇xuε

two-scale converges strongly to ∇xu + ∇yu1.
Step 7 Finally, the relations (4.13) and (4.8) imply the homogenized variational inequality∫

ΩT

∫
Y

∫
Z

a(x, t, y, τ,∇xu + ∇yu1) · ∇x(φ − u) dτdydxdt

≥
∫

ΩT

∫
Y

∫
Z

(f · ∇x(φ − u) + g(φ − u))dτdydxdt
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for any φ ∈ V . Or in other words,∫
ΩT

∫
Z

A(x, t, τ,∇xu) · ∇x(φ − u)dτdxdt ≥
∫

ΩT

∫
Z

(F · ∇x(φ − u) + G(φ − u))dτdxdt (4.14)

for any φ ∈ V . So far we have only proved that the theorem holds for a subsequence. However,
by the continuity and monotonicity properties (2.10) and (2.11) of A, it follows that the ho-
mogenized variational inequality (4.14) has a unique solution, which implies that the theorem
holds for the whole sequence.

If ∇xu and ∇yu1 are admissible (each component belongs to Ap, see Section 3), then
Corollary 3.2 implies that

lim
ε→0

∫
ΩT

∣∣∣∇xuε(x, t) −∇xu
(
x, t,

t

ε

)
−∇yu1

(
x, t,

x

ε
,
t

ε

)∣∣∣pdxdt = 0. (4.15)

If in addition, u and u1 are admissible, then (4.15) together with the Poincaré inequality gives

lim
ε→0

∫
ΩT

∣∣∣uε(x, t) − u
(
x, t,

t

ε

)∣∣∣pdxdt

= lim
ε→0

∫
ΩT

∣∣∣uε(x, t) − u
(
x, t,

t

ε

)
− εu1

(
x, t,

x

ε
,
t

ε

)
+ εu1

(
x, t,

x

ε
,
t

ε

)∣∣∣pdxdt

≤ c lim
ε→0

∫
ΩT

∣∣∣∇xuε(x, t) −∇xu
(
x, t,

t

ε

)
−∇yu1

(
x, t,

x

ε
,
t

ε

)∣∣∣pdxdt

+ lim
ε→0

cεp

∫
ΩT

∣∣∣∇xu1

(
x, t,

x

ε
,
t

ε

)∣∣∣p +
∣∣∣u1

(
x, t,

x

ε
,
t

ε

)∣∣∣pdxdt = 0. (4.16)

5 Homogenization of the Equation

In this section, we consider homogenization of the differential equations (1.1), which are
related to the variational inequalities in the previous section. Indeed, consider the problem:
Find uε ∈ Lp(0, T ; W 1,p

0 (Ω)), such that∫
ΩT

aε(x, t,∇xuε) · ∇xφ dxdt =
∫

ΩT

(fε · ∇xφ + gεφ)dxdt (5.1)

holds for all φ ∈ Lp(0, T ; W 1,p
0 (Ω)). The sequence of solutions (5.1) then two-scale converges to

u, where u solves the homogenized equation: Find u ∈ Lp((0, T ) × Z; W 1,p
0 (Ω)), such that∫

ΩT

∫
Z

A(x, t, τ,∇xu) · ∇xφ dτdxdt =
∫

ΩT

∫
Z

(F · ∇xφ + Gφ)dτdxdt (5.2)

holds for any φ ∈ Lp((0, T ) × Z; W 1,p
0 (Ω)). More precisely, we have the following result.

Theorem 5.1 The sequence of solutions uε to (5.1) two-scale converges to u ∈ Lp((0, T )×
Z; W 1,p

0 (Ω)), where u is the unique solution to the homogenized equation (5.2). Moreover, ∇xuε

two-scale converges strongly to ∇xu(x, t, τ) +∇yu1(x, t, y, z), where u1 ∈ Lp(ΩT ×Z; W 1,p
per(Y ))

and ∫
Y

[a(x, t, y, τ,∇xu(x, t, τ) + ∇yu1(x, t, y, z)) − f(x, t, y, τ)] · ∇φ dy = 0

for every φ ∈ W 1,p
per(Y ).



Homogenization of Nonlinear Variational Inequalities 429

Proof By choosing φ = uε in (5.1), we get that∫
ΩT

aε(x, t,∇xuε) · ∇xuε dxdt =
∫

ΩT

(fε · ∇xuε + gεuε)dxdt. (5.3)

We can now use similar arguments as in the proof of Theorem 4.1 to deduce that uε, ∇xuε

and aε(x, t,∇xuε) are bounded in Lp(ΩT ), Lp(ΩT )N and Lq(ΩT )N , respectively. According to
Theorems 3.1 and 3.3, we can then extract a subsequence (still denoted by ε), such that

(1) There exists a u ∈ Lp((0, T ) × Z; W 1,p
0 (Ω)), such that uε two-scale converges,

(2) There exists a u1 ∈ Lp(ΩT × Z, W 1,p
per(Y )), such that ∇xuε two-scale converges to

∇xu(x, t, τ) + ∇yu1(x, t, y, τ),
(3) There exists an a0 ∈ Lq(ΩT × Y ×Z)N , such that aε(x, t,∇xuε) two-scale converges to

a0.
Let φ ∈ C∞

0 (ΩT ; C∞
per(Z)). Define the function φε(x, t) = φ(x, t, t

ε). Then φε may be used
as a test function in (5.1). Indeed∫

ΩT

[aε(x, t,∇xuε) − fε] · ∇xφε dxdt =
∫

ΩT

gεφε dxdt.

Passing to the limit gives that∫
ΩT

∫
Y

∫
Z

[a0 − f ] · ∇xφ dτdydxdt =
∫

ΩT

∫
Y

∫
Z

gφ dτdydxdt (5.4)

for any φ ∈ C∞
0 (ΩT ; C∞

per(Z)). We can also choose φ1 ∈ C∞
0 (ΩT ; C∞

per(Y × Z)) and use
εφ1(x, t, x

ε , t
ε ) as a test function in (5.1).∫

ΩT

[aε(x, t,∇xuε) − fε] ·
[
ε∇xφ1

(
x, t,

t

ε
,
τ

ε

)
+ ∇yφ1

(
x, t,

t

ε
,
τ

ε

)]
dxdt

= ε

∫
ΩT

gεφ1

(
x, t,

x

ε
,
τ

ε

)
dxdt.

Passing to the limit gives that∫
ΩT

∫
Y

∫
Z

[a0 − f ] · ∇yφ1 dτdydxdt = 0. (5.5)

From (5.4)–(5.5) and density argument, it follows that∫
ΩT

∫
Y

∫
Z

a0 · [∇xu + ∇yu1] dτdydxdt =
∫

ΩT

∫
Y

∫
Z

(f · [∇xu + ∇yu1] + gu)dτdydxdt. (5.6)

By passing to the limit in (5.3) and taking the equality (5.6) into account, we obtain that

lim
ε→0

∫
ΩT

aε(x, t,∇xuε) · ∇xuε dxdt =
∫

ΩT

∫
Y

∫
Z

(f · [∇xu + ∇yu1] + gu)dτdydxdt

=
∫

ΩT

∫
Y

∫
Z

a0 · [∇xu + ∇yu1] dτdydxdt.

This together with the Theorem 3.4 implies that

a0(x, t, y, τ) = a(x, t, y, τ,∇xu(x, t, τ) + ∇yu1(x, t, y, τ)) (5.7)
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and from the Theorem 3.5 about strong two-scale convergence and monotonicity it follows that
∇xuε two-scale converges strongly to ∇xu + ∇yu1. By inserting (5.7) into the relation (5.4),
we get the homogenized equation: Find u ∈ Lp((0, T ) × Z; W 1,p

0 (Ω)), such that∫
ΩT

∫
Z

A(x, t, τ,∇xu) · ∇xφ0 dτdxdt =
∫

ΩT

∫
Z

(F · ∇xφ0 + Gφ0)dτdxdt (5.8)

holds for any φ ∈ C∞
0 (ΩT ; C∞

per(Z)). By density, (5.8) also holds for any φ ∈ Lp((0, T ) ×
Z; W 1,p

0 (Ω)). The theorem is now proved for a subsequence. However, the continuity and
monotonicity conditions (2.10) and (2.11) imply that the homogenized equation (5.8) has a
unique solution. Hence, the desired result holds for the whole sequence.

As for the variational inequality, we have that if u, u1, ∇xu1 and ∇yu1 are admissible, then
Corollary 3.2 implies that

lim
ε→0

∫
ΩT

∣∣∣∇xuε(x, t) −∇xu
(
x, t,

t

ε

)
−∇yu1

(
x, t,

x

ε
,
t

ε

)∣∣∣pdxdt = 0, (5.9)

lim
ε→0

∫
ΩT

∣∣∣uε(x, t) − u
(
x, t,

t

ε

)∣∣∣pdxdt = 0. (5.10)

6 Some Applications in the Theory of Lubrication

We will now discuss some applications in lubrication theory, where we can apply the ho-
mogenization results to the equation (1.1) and the variational inequality (1.2), see Theorem 5.1
and Theorem 4.1. More precisely, we will study the pressure distribution in an incompressible
fluid film between two surfaces which are in relative motion. For example, this type of flow
takes place in different types of bearings.

If the surfaces are rough, then the distance between the surfaces will oscillate rapidly both
in space and time. This is the motivation of using homogenization in the analysis. When the
pressure is known, it can be used to find other relevant quantities as a load carrying capacity
and friction.

For simplicity, assume that both surfaces are moving in the x1-direction. The velocity of
the upper surface is Vu = (vu, 0) and for the lower surface it is Vl = (vl, 0). To express the film
thickness, we introduce the following auxiliary function:

h(x, t, y, τ) = h0(x, t) + hu(y − τVu) − hl(y − τVl),

where h0, hu and hl are continuously differentiable functions. Moreover, hu and hl are assumed
to be periodic. Without loss of generality, it can also be assumed that the cell of periodicity
is Y = (0, 1) × (0, 1) for both hu and hl, i.e., the unit cube in R

2. We also assume that vu

and vl are such that h is periodic in τ and we denote the cell of periodicity by Z. Let the
bearing domain be an open bounded subset of R

2 denoted by Ω, the space variable x ∈ Ω and
t ∈ (0, T ) ⊂ R represents the time. By using the auxiliary function h, we can model the film
thickness hε by

hε(x, t) = h
(
x, t,

x

ε
,
t

ε

)
, ε > 0.

This means that ε > 0 is a parameter which describes the roughness wavelength; h0 describes
the global film thickness; the periodic functions hu and hl represent the roughness contribution



Homogenization of Nonlinear Variational Inequalities 431

of the upper and lower surfaces, respectively. We note that if h0 = h0(x), one surface is
stationary and rough and the other is smooth and moving, then hε = hε(x), i.e., the distance
between the surfaces does not depend on t. We will refer to the stationary case.

In order to apply our homogenization results, it is crucial to observe that the special form
of hε implies that there is a relation between differentiation with respect to the time variable t

and the spatial variable x. Indeed, define hu
ε and hl

ε as

hu
ε (x, t) = hu

(x

ε
− t

ε
Vu

)
and hl

ε(x, t) = hl
(x

ε
− t

ε
Vl

)
and observe that

∂hu
ε

∂t
= −vu

∂hu
ε

∂x1
and

∂hl
ε

∂t
= −vl

∂hl
ε

∂x1
.

This means that

∂hε

∂t
=

∂h0

∂t
+

∂hu
ε

∂t
− ∂hl

ε

∂t
=

∂h0

∂t
− vu

∂hu
ε

∂x1
+ vl

∂hl
ε

∂x1
.

Below, we present some Reynolds type equations which are frequently used to describe the
pressure distribution, pε, in the lubricant film.

(1) Assume that the fluid is Newtonian, with viscosity μ. Then the pressure is modeled by
the Reynolds equation (see, e.g., [35] or [20]):∫

ΩT

h3
ε∇xpε · ∇φ dxdt =

∫
ΩT

(
λhε

∂φ

∂x1
− γ

∂hε

∂t
φ
)
dxdt, (6.1)

where λ = 6μ(vu + vl) and γ = 12μ. The general homogenization result in Theorem 5.1 can be
applied by choosing aε(x, t, ξ) = h3

εξ, gε(x, t) = −γ ∂h0

∂t and fε(x, t) = (f1
ε (x, t), 0), where

f1
ε (x, t) = λhε − γvuhu

ε + γvlh
l
ε.

(2) The above example in polar coordinates, with x1 as the angular coordinate and x2 as
the radial coordinate, reads∫

ΩT

Aε(x, t)∇xpε · ∇φ dxdt =
∫

ΩT

(
λx2hε

∂φ

∂x1
− γx2

∂hε

∂t
φ
)
dxdt, (6.2)

where λ = 6μ(vu + vl), γ = 12μ and

Aε(x, t) =

(
h3

ε

x2
0

0 x2h
3
ε

)
.

In this case, we choose aε(x, t, ξ) = Aε(x, t)ξ, gε(x, t) = −γx2
∂h0

∂t and fε(x, t) = (f1
ε (x, t), 0),

where

f1
ε (x, t) = λx2hε − γvux2h

u
ε + γvlx2h

l
ε.

Note that now vu and vl are angular speeds.
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(3) Assume that the fluid is non-Newtonian, obeying a cubic Rabinowitsch fluid model with
the viscosity μ and the constant κ accounting for the non-Newtonian effects. For this type of
fluid the following governing equation for the pressure was presented in [28] (see also [21]):∫

ΩT

{
h3

ε∇xpε · ∇φ +
3κh5

ε

20

[( ∂p

∂x1

)3 ∂φ

∂x1
+
( ∂p

∂x2

)3 ∂φ

∂x2

]}
dxdt

=
∫

ΩT

(
λhε

∂φ

∂x1
− γ

∂hε

∂t
φ
)
dxdt, (6.3)

where λ = 6μ(vu + vl) and γ = 12μ. In this case the homogenization result can be applied by
choosing gε and fε as in the first case (Newtonian and Cartesian coordinates) but with

aε(x, t, ξ) = h3
εξ +

3κh5
ε

20

(
ξ3
1

ξ3
2

)
.

Depending on hε, the pressure solution to the equations (6.1), (6.2) and (6.3), for example,
might very well be negative in some regions. However, a fluid cannot sustain negative pressure.
In such areas there will be zones where the lubricant contains air bubbles. This phenomenon
is known as cavitation and has a big impact on the hydrodynamic performance. There are
several ways to model and analyze cavitation. One way is to use variational inequalities (see,
e.g., the books [27] and [8]), another is to apply the Elrod-Adams model, which introduces a
new unknown saturation function which leads to systems of differential equations (see [19]).
For example, the first mentioned approach leads to that the pressure instead of satisfying the
equation (6.1) satisfies the variational inequality: Find pε ≥ 0, such that∫

ΩT

h3
ε∇pε · ∇x(φ − uε) dxdt ≥

∫
ΩT

[
λhε

∂

∂x1
(φ − uε) − γ

∂hε

∂t
(φ − uε)

]
dxdt (6.4)

holds for any testfunction φ ≥ 0. In the same way, we can motivate variational inequalities
corresponding to (6.2) and (6.3).

When the pressure is known, it can be used to find two fundamental quantities, load carrying
capacity and friction force. The load carrying capacity is found by integrating the pressure
over Ω (bearing domain). The friction force, Fε, is found by integrating the shear stress at the
surface. The convergence of the friction force Fε is strongly related to the two-scale convergence
of ∇pε to ∇xp0 + ∇yp1 (see [3, 13]).

We conclude by giving guidance to some of the literature, where homogenization was applied
to lubrication problems. In the stationary case and with Newtonian fluid, the equation (6.1) was
homogenized in [36] by using two-scale convergence, by H-convergence in [16] and by the formal
method of multiple scale expansions in [4, 9, 25]. By introducing two parameters, one for the film
thickness and one for the fineness of the roughness, the authors of [7, 13] studied homogenization
of the Stokes flow and its relation to Reynolds flow in the stationary and Newtonian case.
These works rigorously verify that homogenization of Reynolds equations (6.1) and (6.2) may
be used when the filmthickness is small compared with the wavelength of the roughness. Non-
linear minimization problems corresponding to the equation problem studied in this work were
studied in [30]. The stationary case with different types of non-Newtonian fluids was analyzed by
multiple scale expansions in [26]. Roughness effects in stationary Newtonian lubrication taking
cavitation into account by the Elrod-Adams model in [19] were studied by two-scale convergence



Homogenization of Nonlinear Variational Inequalities 433

in [10, 33] and by asymptotic expansions in [11, 12]. In addition to cavitation, several local
scales are taken into account in [33] and elsto hydrodynamic phenomenon in [12]. Cavitation
in the unstationary case with Newtonian fluid was modeled by variational inequalities in [8],
and the effects of surface roughness were analyzed by two-scale convergence. The present work
generalizes the results in [8] to include non-linear problems. From the viewpoint of application,
this means that we can study Non-Newtonian fluids (see (6.3)). Recently, the idea of using
bounds related to the homogenized equation has been used successfully for Newtonian fluids (see
[2, 6, 29]). We also want to mention that there are several papers in which the homogenization
process is illustrated by numerical investigations, examples being [5, 8, 25, 26, 33]. In the above
guidance to the literature, all the references concern fluid flow. Some interesting related works
considering air flow are [14, 15, 22, 23].
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