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Abstract The primary goal of this paper is to present a comprehensive study of the non-
linear Schrödinger equations with combined nonlinearities of the power-type and Hartree-
type. Under certain structural conditions, the authors are able to provide a complete
picture of how the nonlinear Schrödinger equations with combined nonlinearities interact
in the given energy space. The method used in the paper is based upon the Morawetz
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1 Introduction

Consider the Cauchy problem for the following Schrödinger equations:{
iut + Δu = λ1|u|pu + λ2(|x|−γ ∗ |u|2)u,

u(0, x) = u0(x),
(1.1)

where u(t, x) is a complex-valued function in spacetime R×Rn (n ≥ 3), λ1 and λ2 are nonzero
constants, 0 < p ≤ 4

n−2 , and γ ∈ (0, 4] ∩ (0, n). When initial data u0 take value in H1
x(Rn)

(or Σ = {u ∈ H1
x(Rn) : | · |u( · ) ∈ L2

x(Rn)}), this is a Hamiltonian PDE with energy and mass
functions

E(u(t)) : =
1
2

∫
|∇u|2 dx +

λ1

p + 2

∫
|u|p+2 dx +

λ2

4

∫
(|x|−γ ∗ |u|2)|u|2 dx,

M(u(t)) : =
∫

|u|2 dx.

Since the mass and energy are conservative, we drop the variable t in energy and mass functions,
and denote them by E(u) and M(u), respectively.

When one of λ1 or λ2 is zero, the problem is well understood. When the initial data taking
value in H1 space, T. Cazenave [2] had a quite thorough study of this case that λ1 ·λ2 = 0, 0 <

p < 4
n−2 , 0 < γ < 4: (1) for the defocusing case (i.e. λ1 or λ2 is positive), the problem is

globally well-posed when 0 < p < 4
n−2 and 0 < γ < 4; (2) for the focusing case (i.e., λ1 or λ2
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is negative), it is globally well-posed when 0 < p < 4
n and 0 < γ < 2. It is well-known that

p = 4
n−2 , γ = 4 and p = 4

n , γ = 2 are the critical values for the defocusing case and focusing
case, respectively. In fact, at these critical values of λ and p, T. Cazenave obtained the same
results under additional assumption of initial data being small. Fortunately, in the past few
years, there was some great breakthrough into large initial data at these critical values.

For the energy-critical NLS {
iut + Δu = λ1|u| 4

n−2 u,

u(0, x) = u0(x).
(1.2)

Firstly, J. Bourgain studied the global existence of the defocusing case (λ1 > 0) in R3 with the
radial initial data (see [1]), then J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao
solved the problem with the general initial data in R3 (see [5]). Thereafter, E. Ryckman and
M. Visan extended the results to the higher dimension system ([22, 27]). The focusing case
(λ1 < 0) was considered by Carlos E. Kenig and F. Merle (see [14]) and then their obtained
results were extended to the higher dimension system by R. Killip and M. Visan (see [15]). The
name “energy-critical” refers to the fact that the scaling symmetry leaves the equation (1.2)
and the energy invariant, where the energy is defined as

E(u) =
1
2

∫
|∇u|2 dx + λ1

2n

n − 2

∫
|u| 2n

n−2 dx.

For the focusing mass-critical NLS{
iut + Δu = λ1|u| 4

n u,

u(0, x) = u0(x),
(1.3)

T. Tao, M. Visan and X. Y. Zhang [25], R. Killip, M. Visan and X. Y. Zhang [16] considered
the problem. Here by “mass-critical”, we mean that the scaling symmetry leaves the equation
(1.2) and the mass invariant, where the mass is defined as

M(u(t)) = ‖u(t)‖L2
x
.

The relevant results of the system with the Hartree nonlinearity{
iut + Δu = λ2(|x|−4 ∗ |u|2)u,

u(0, x) = u0(x),
(1.4)

{
iut + Δu = λ2(|x|−2 ∗ |u|2)u,

u(0, x) = u0(x)
(1.5)

were obtained by C. X. Miao, G. X. Xu and L. F. Zhao [18–21].
From the above cited work, it appears that most recent researches are primarily concen-

trated on the one nonlinearity. It would be interesting to investigate what would happen if
both nonlinearities are combined. When both power-type and Hartree-type nonlinearities are
presented in the Cauchy problem, there are three possible cases: (a) none of the nonlinearities
is critical, (b) one of them is critical, or (c) both are critical. Cazenave treated case (a) in [2],
but he did not consider other cases. In this paper, we will study cases (b) and (c), mainly
discussing that one nonlinearity is defocusing and the other is focusing, and we want to give a
complete view of how these both nonlinearities interact and impact on the well-posedness. For
the case that both nonlinearities are defocusing, we will discuss the Cauchy problem, especially
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with one nonlinearity being energy-critical. As for other cases, we hope that under certain
assumptions on λ and p, the defocusing term may dominate the focusing term so that the
whole nonlinearity behavior exhibits the defocusing property. Then one can obtain the global
well-posedness result since the defocusing amplifies the dispersive effect of the linear equation,
but the focusing usually cancels this effect.

Before we state our first theorem, we introduce the solution of ground state whose properties
can be found in Appendix. Let W be the solution of ground state: 	W + (|x|−γ ∗ |W |2)W =
4−γ

γ W , and define the energy: Ẽ(W ) := 1
2

∫ |∇W |2 dx − 1
4

∫
(|x|−γ ∗ |W |2)|W |2 dx. Similarly,

let R be the solution of ground state: ΔR + |R|pR = 4−(n−2)p
np R, and define the energy:

Ẽ(R) := 1
2

∫ |∇R|2 dx − 1
p+2

∫ |R|p+2 dx.
Then the main theorem of this paper is stated as follows.

Theorem 1.1 (Global Well-Posedness) Let u0 ∈ H1
x. Then there exists a unique global

solution u to (1.1) in each of the following cases:

(1) λ1, λ2 > 0, 0 < p ≤ 4
n−2 , γ ∈ (0, 4] ∩ (0, n) except (p, γ) = ( 4

n−2 , 4).

(2) λ1 > 0, λ2 < 0,

(2.1) 0 < p ≤ 4
n−2 , and 0 < γ < min {n, np

2 }.
(2.2) np

2 ≤ γ < 2.
(2.3) np

2 ≤ γ = 2, and ‖u0‖2
L2 < 1

|λ2|‖W‖2
L2.

(2.4) np
2 ≤ γ = 4 (n > 4), E < Ẽ(W )

|λ2| , ‖∇u0‖2
L2 < 1

|λ2|‖∇W‖2
L2 and u0 is radial except

(p, γ) = ( 4
n−2 , 4).

(2.5) np
2 ≤ γ, 2 < γ < min {4, n}, EM

4−γ
γ−2 < (1

2 − 1
γ )

[
2γẼ(W )
|λ2|(γ−2)

] 2
γ−2

and ‖∇u0‖2
L2M

4−γ
γ−2 <(‖∇W‖2

L2

|λ2|
) 2

γ−2
.

(3) λ1 < 0, λ2 > 0,

(3.1) 0 < p < max { 4
n , 4

2+n−γ }, and γ ∈ (0, 4] ∩ (0, n).
(3.2) p = 4

n , p ≥ 4
2+n−γ , and ‖u0‖L2 < |λ1|−n

4 ‖R‖L2.

(3.3) 4
2+n−γ ≤ p = 4

n−2 except for (p, γ) = ( 4
n−2 , 4), in addition, if n ≥ 5, E < |λ1| 2−n

2 Ẽ(R),

‖∇u0‖2
L2 < |λ1| 2−n

2 ‖∇R‖2
L2; if n = 3, 4, u0 is radial.

(3.4) 4
n < p < 4

n−2 , and 4
2+n−γ ≤ p with

EM
4−(n−2)p

np−4 < |λ1| 4
4−np

( 2np

np − 4

) 4−(n−2)p
np−4

(Ẽ(R))
2p

np−4 ,

‖∇u0‖2
L2M

4−(n−2)p
np−4 < |λ1| 4

4−np ‖∇R‖
4p

np−4

L2 ,

(4) λ1 < 0, λ2 < 0, 0 < p < 4
n , and 0 < γ < 2.

Moreover, for any compact interval I, the global solution is bounded:

‖u‖S1(I×Rn) ≤ C(|I|, E, M). (1.6)

Remark 1.1 For case (3.3), R. Killip and M. Visan [15] proved the global well-posedness
for (1.2) if the initial data are not radial. However, their approach is not suitable for the low
dimension case, and that is why we assume that the initial data are radial when n = 3, 4.

The key ingredient in the proof of this theorem is to obtain a bound for ‖u‖H1
x

which
only depends on the energy and mass. Then use perturbation principles to derive the desired
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results. As mentioned above, we hope that the defocusing term can control the focusing term,
which is not true in general, but we can show that under the assumptions in Cases 2.1 and
3.1 in Theorem 1.1, this is true. For other cases, as shown in the work of T. Cazenave, some
assumptions of the smallness about the energy and mass are required. The point is that the
smallness is characterized by the ground state. Unfortunately, our method is not applicable to
the case that both the power and Hartree nonlinearities are energy-critical.

Next, we consider the asymptotic behavior of global solutions. It is natural to use the
unconditional scattering theory for (1.3) and (1.5). However, at least at this moment, we have
to assume that the initial data are radial and the size of the mass is smaller than that of the
ground state (see [27, 16]). Therefore, we need the following assumptions.

Assumption 1.1 Let v0 ∈ H1
x, λ1 > 0. Then there exists a unique global solution v to

(1.3), satisfying

‖v‖
L

2(n+2)
n

t,x (R×Rn)
≤ C(‖v0‖L2

x
). (1.7)

Assumption 1.2 Let w0 ∈ H1
x, λ2 > 0. Then there exists a unique global solution w to

(1.5), satisfying

‖w‖
L6

t L
6n

3n−2
x (R×Rn)

≤ C(‖w0‖L2
x
). (1.8)

Now we state the second main theorem of this paper.

Theorem 1.2 (Energy Space Scattering) Suppose that u0 ∈ H1
x, the conditions in Theorem

1.1 hold, and u is the unique solution to (1.1). Moreover, if p = 4
n , Assumption 1.1 holds true;

if γ = 2, Assumption 1.2 holds true. Then for both of the following cases:

Case 1 λ1, λ2 > 0, 4
n ≤ p ≤ 4

n−2 , 2 ≤ γ ≤ 4 with γ < n except (p, γ) = ( 4
n−2 , 4),

especially, when (p, γ) = ( 4
n , 2), mass is small;

Case 2 λ1 · λ2 < 0, 4
n ≤ p ≤ 4

n−2 , 2 ≤ γ ≤ 4 with γ < n, and mass is small except when
(p, γ) = ( 4

n−2 , 4), there exist u+, u− ∈ H1
x such that

‖u − eitΔu±‖H1
x
→ 0, as t → ±∞ (1.9)

and

‖u+‖L2 = ‖u−‖L2 = ‖u0‖L2 and
1
2

∫
Rn

|�u+|2 =
1
2

∫
Rn

|�u−|2 = E(u0).

We will prove this theorem in Section 5. The primary tools used in the proof are the
refined Morawetz estimate and the perturbation principles. To apply the refined Morawetz
estimate, we need to assume that λ1 > 0, λ2 > 0, p > 4

n and γ > 2. When λ1 · λ2 < 0, we
need to assume that the mass is sufficiently small. The refined Morawetz estimate was first
used by T. Tao to prove the dispersive property of the cubic Schrödinger equation in [6] when
the space dimension is at least 3. Then, J. Colliander, M. Grillakis and N. Tzirakis obtained
refined Morawetz estimates for 1-D and 2-D and the scattering of 2-D power type Schrödinger
equation. However, when γ < 2, the Morawetz estimate is not applicable. Thus, we cannot
have scattering for Hartree type or for (1.1). When p = 4

n and γ = 2, i.e., both nonlinearities
are mass-critical, the low frequency of the solution may possess an effective control, but not
for the higher frequencies. Thus here we view (1.1) as the perturbation of the free Schrödinger
equation.
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In Section 6, we describe the blowup phenomena with the initial data in Σ space. We believe
that the machinery we used there is also suitable for the case that the initial data are radial
and in the energy space. We refer readers to [2, Chapter 6] for details.

The major results regarding blowup phenomena are stated as follows.

Theorem 1.3 (Blowup) Let u0 ∈ Σ. Then blowup occurs in each of the following cases:
(1) for λ1 > 0, λ2 < 0 : when 2 ≤ γ ≤ 4, 0 < p ≤ 4

n−2 , γ ≥ np
2 , and E < 0;

(2) for λ1 < 0, λ2 > 0 : when 4
n ≤ p ≤ 4

n−2 , 0 < γ ≤ np
2 , and E < 0;

(3) for λ1 < 0, λ2 < 0 :
( i ) when 4

n < p ≤ 4
n−2 , 0 < γ < 2, and 4npE + C(M) < 0;

( ii ) when 0 < p < 4
n , 2 < γ ≤ 4, and 8γE + C(M) < 0;

(iii) when 4
n ≤ p ≤ 4

n−2 , 2 ≤ γ ≤ 4, and E < 0.

Remark 1.2 The results in Theorems 1.1 and 1.3 are consistent. The energy in Theorem
1.1 is nonnegative. Also notice that we do not study the condition np

2 < γ ≤ 2+n− 4
p for the case

λ1 < 0, λ2 > 0, because we are not clear about the relationship between
∫
(|x|−γ ∗ |u|2)|u|2 dx

and ‖u‖p+2

Lp+2
x

. Note that the inequalities

‖u‖q
Lq

x
�

∫
(|x|−γ ∗ |u|2)|u|2 dx, ‖u‖p+2

Lp+2
x

� ‖u‖r
Lr

x

hold, where q = 2(4+n−γ)
2+n−γ , r = 2n+2γ

n . If one could prove
∫

(|x|−γ ∗ |u|2)|u|2 dx ∼ ‖u‖s
Ls

x
, for

s > p + 2, one may use the method in Subsection 4.2 for Case 2 to obtain the global well-
posedness and scattering. For s ≤ p + 2, using the method in Section 6, one can obtain the
blowup result in finite time under certain conditions.

2 Notations

In this section, we introduce the notations and several fundamental inequalities needed in
this paper.

Definition 2.1 A pair (q, r) is called Schrödinger-admissible if 2
q + n

r = n
2 and 2 ≤ q, r ≤ ∞

(if n = 1, then 2 ≤ r ≤ ∞, if n = 2, then 2 ≤ r < ∞).
Let I × Rn be a spacetime slab. We define

‖u‖Ṡ0(I×Rn) := sup ‖u‖Lq
tLr

x(I×Rn),

where the sup is taken over all admissible pairs (q, r), and

‖u‖Ṡ1(I×Rn) := ‖∇u‖Ṡ0(I×Rn).

Denote Ṅ0(I × Rn) the dual space of Ṡ0(I × Rn), and

Ṅ1(I × Rn) := {u : ∇u ∈ Ṅ0(I × Rn)}.
Furthermore, define the following norms:

‖u‖U(I) := ‖u‖
L6

tL
6n

3n−2
x (I×Rn)

,

‖u‖V (I) := ‖u‖
L

2(n+2)
n

t,x (I×Rn)
,

‖u‖W (I) := ‖u‖
L

2(n+2)
n−2

t,x (I×Rn)

,

‖u‖Z(I) := ‖u‖
Ln+1

t L

2(n+1)
n−1

x (I×Rn)

,
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and denote

Ẋ0(I) =

⎧⎨⎩Lq
tL

r
x(I × Rn), 0 < p < 4

n−2 ,

L
2(n+2)

n−2
t L

2n(n+2)
n2+4

x (I × Rn) ∩ V (I), p = 4
n−2 ,

where q = 4(p+2)
p(n−2) , r = n(p+2)

n+p ,

Ẏ 0(I) :=

{
L∞

t L2
x(I × Rn), 0 < γ ≤ 2,

L∞
t L2

x(I × Rn) ∩ Lμ
t Lσ

x(I × Rn), 2 < γ ≤ 4 and γ < n,

where μ = 6
γ−2 , σ = 6n

3n+4−2γ , and

Ḃ0(I) := Ẋ0(I) ∩ Ẏ 0(I), Ẋ1(I) := {u : ∇u ∈ Ẋ0(I)}, Ẏ 1(I) := {u : ∇u ∈ Ẏ 0(I)}.
By the Sobolev’s embedding theorem, we get the following results.

Lemma 2.1 For any Ṡ1 function u in I × Rn, we have

‖∇u‖L∞
t L2

x
+ ‖∇u‖

L

2(n+2)
n−2

t L

2n(n+2)
n2+4

x

+ ‖∇u‖V + ‖∇u‖
L2

tL
2n

n−2
x

+ ‖∇u‖U

+ ‖u‖
L∞

t L
2n

n−2
x

+ ‖u‖W + ‖u‖
L

2(n+2)
n

t L

2n(n+2)
n2−2n−4
x

� ‖u‖Ṡ1, (2.1)

where all spacetime norms are taken in I × Rn.

Lemma 2.2 (Strichartz Estimates) Let I be a compact time interval, k = 0, 1, and u :
I × Rn → C be an Ṡk solution to the forced Schrödinger equation

iut + Δu = F

for a given function F . Then we have

‖u‖Ṡk(I×Rn) � ‖u(t0)‖Ḣk(Rn) + ‖F‖Ṅk(I×Rn) (2.2)

for any time t0 ∈ I.

Detailed proof of this lemma can be found in [2, 13].

In addition, we need Littlewood-Paley Theory. Let ϕ(ξ) be a smooth bump function with
support |ξ| ≤ 2 and equal to 1 in |ξ| ≤ 1. For each dyadic number N ∈ 2Z, we can define the
Littlewood-Paley operators:

P̂≤Nf(ξ) : = ϕ
( ξ

N

)
f̂(ξ),

P̂>Nf(ξ) : =
[
1 − ϕ

( ξ

N

)]
f̂(ξ),

P̂Nf(ξ) : =
[
ϕ
( ξ

N

)
− ϕ

(2ξ

N

)]
f̂(ξ).

With these notations in mind, we recall several standard Bernstein type inequalities.

Lemma 2.3 For any 1 ≤ p ≤ q ≤ ∞, s > 0, we have

‖P≥Nf‖Lp
x

� N−s‖|∇|sP≥Nf‖Lp
x
,

‖|∇|sP≤Nf‖Lp
x

� Ns‖P≤Nf‖Lp
x
,

‖|∇|±sPNf‖Lp
x

∼ N±s‖PNf‖Lp
x
,

‖P≤Nf‖Lq
x

� N
n
p
−n

q ‖P≤Nf‖Lp
x
,

‖PNf‖Lq
x

� N
n
p −n

q ‖PNf‖Lp
x
.



The Nonlinear Schrödinger Equations with Combined Nonlinearities 441

Furthermore, we also need the following maximal estimate, which follows immediately from
the sharp Hardy inequality (see [10]).

Lemma 2.4 Let 0 < γ < n. We have

‖|x|−γ ∗ |u|2‖L∞
x

≤ C(n, γ)‖u‖2

Ḣ
γ
2
. (2.3)

In this paper, the major task is to control the nonlinearity. Here we use the Morawetz
inequality to accomplish this mission, which further means finding the connection between
nonlinearity and Morawetz inequality. It turns out that the norm Z(I) is the linkage we are
looking for.

Lemma 2.5 Let k = 0, 1, 4
n < p < 4

n−2 and 2 < γ < min{4, n}. Then there exists a large
enough θ > 0 such that in each slab I × Rn, we have

‖u|pu‖Ṅk(I×Rn) � ‖u‖Ṡk(I×Rn)‖u‖
n+1

2(2θ+1)

Z(I) ‖u‖α1(θ)
L∞

t L2
x
‖u‖α2(θ)

L∞
t L

2n
n−2
x

, (2.4)

‖(|x|−γ ∗ |u|2)u‖Ṅk(I×Rn) � ‖u‖Ṡk(I×Rn)‖u‖
n+1

2(2θ+1)

Z(I) ‖u‖β1(θ)
L∞

t L2
x
‖u‖β2(θ)

L∞
t L

2n
n−2
x

, (2.5)

where

α1(θ) = p
(
1 − n

2

)
+

8θ + 1
2(2θ + 1)

, α2(θ) =
n

2

(
p − n + 8θ + 2

n(2θ + 1)

)
,

β1(θ) = (3 − γ) +
4θ − 1

2(2θ + 1)
, β2(θ) = (γ − 1) − 4θ + n

2(2θ + 1)
.

Proof The proof of the first inequality is given in [24]. The same method can be used
to prove the second. When β1(θ) and β2(θ) are positive, from Hölder and Hardy-Littlewood-
Sobolev inequality, we have

‖(|x|−γ ∗ |u|2)u‖Ṅk(I×Rn) � ‖∇|k[(|x|−γ ∗ |u|2)u]‖
L2

tL
2n

n+2
x (I×Rn)

� ‖∇|ku‖
L

2+1
θ

t L

2n(2θ+1)
n(2θ+1)−4θ
x

‖u‖
n+1

2(2θ+1)

Z(I) ‖u‖β1(θ)
L∞

t L2
x
‖u‖β2(θ)

L∞
t L

2n
n−2
x

. (2.6)

Notice that
(
2+ 1

θ , 2n(2θ+1)
n(2θ+1)−4θ

)
is Schrödinger-admissible. When 2 < γ < 4, β1(θ) and β2(θ)

are positive as long as θ is large enough, because both the functions are increasing in θ and

β1(θ) → (4 − γ) > 0, β2(θ) → (γ − 2) > 0,

as θ → ∞.

Lemma 2.6 Let I ×Rn be a spacetime slab. Then there exists a small constant 0 < ρ < 1,
such that

‖u| 4
n−2 u‖Ṅ0(I×∗Rn) � ‖u‖ρ

Z(I)‖u‖
n+2
n−2−ρ

S1(I×∗Rn), (2.7)

‖(|x|−4 ∗ |u|2)u‖Ṅ0(I×Rn) � ‖u‖
L2+ε

t L
2n

n−2−ε
x

‖u‖ρ
Z(I)‖u‖

ε(1+ε)
2(2+ε)

L∞
t L2

x
‖u‖2− ε(2+ε+n)

2(2+ε)

L∞
t L

2n
n−2
x

� ‖u‖ρ
Z(I)‖u‖3−ρ

S1(I×Rn), (2.8)

where ρ = ε(n+1)
2(2+ε) and ε is a small constant.
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Proof The first inequality is proved in [24]. For the other, note that for sufficiently small ε

L2+ε
t L

2n
n−2−ε
x interpolates between the Ṡ0-norm L2+ε

t L
2n(2+ε)

n(2+ε)−4
x and the Ṡ1-norm L2+ε

t L
2n(2+ε)

n(2+ε)−2(4+ε)
x .

Then we have
‖u‖

L2+ε
t L

2n
n−2−ε
x

� ‖u‖S1(I×Rn).

Let a(ε) = ε(1+ε)
2(2+ε) , b(ε) = 2 − ε(n+2+ε)

2(2+ε) . Since the estimate is a simple consequence of Hölder
inequality and Hardy-Littlewood-Sobolev inequality, we only need to check that a(ε) and b(ε)
are positive.

As functions of ε, a is increasing and a(0) = 0, while b is decreasing and b(0) = 2. Thus
letting ε > 0 be sufficiently small, we have a(ε) > 0, b(ε) > 0. Taking ρ = ε(n+1)

2(2+ε) , we complete
the proof.

Remark 2.1 A byproduct of the proof of Lemma 2.6 is that one can get the estimates for
nonlinearities of the form |u| 4

n−2 v and (|x|−γ ∗ |u|2)v. More precisely,

‖|u| 4
n−2 v‖Ṅ0(I×Rn) � ‖u‖ρ

Z(I)‖u‖
4

n−2−ρ

S1(I×Rn)‖v‖S1(I×Rn), (2.9)

‖(|x|−γ ∗ |u|2)v‖Ṅ0(I×Rn) � ‖u‖ρ
Z(I)‖u‖2−ρ

S1(I×Rn)‖v‖S1(I×Rn), (2.10)

‖(|x|−γ ∗ (wv))v‖Ṅ0(I×Rn) � ‖u‖S1(I×Rn)‖w‖a(ε)
L∞

t L2
x
‖v‖ρ

Z(I)‖v‖b(ε)

L∞
t L

2n
n−2
x

. (2.11)

3 Local Theory

In this section we will state the local theory for the initial value problem (1.1). As the
results are well-known, we omit the proofs and refer readers to [2–3, 11–13].

Proposition 3.1 (Local Well-Posedness for (1.1) with Energy-Subcritical Nonlinearities)
Let u0 ∈ H1

x, λ1 and λ2 be nonzero real constants and 0 < p < 4
n−2 , 0 < γ < min {n, 4}. Then,

there exists a T = T (‖u‖H1
x
) such that (1.1) admits a unique strong H1

x-solution u in [−T, T ].
Let (−Tmin, Tmax) be the maximal time interval in which the solution u is well-defined. For
every compact time interval I ⊂ (−Tmin, Tmax), we have u ∈ S1(I ×Rn) satisfying the following
properties:

(1) If Tmax < ∞ (Tmin < ∞), then

‖u(t)‖H1
x
→ ∞, as t ↑ Tmax (as t ↓ −Tmin).

(2) The solution depends continuously on the initial value. That is, there exists a T =
T (‖u‖H1

x
) such that if u

(m)
0 → u0 in H1

x and if u(m) is the solution to (1.1) with initial condition

u
(m)
0 , then u(m) is defined in [−T, T ] for sufficiently large m and u(m) → u in S1([−T, T ]×Rn).

Proposition 3.2 (Local Well-Posedness for (1.1) with an Energy-Critical Nonlinearity)
Let u0 ∈ H1

x, λ1 and λ2 be nonzero real constants.
(1) When p = 4

n−2 and 0 < γ < min {n, 4}, for every T > 0, there exists an η = η(T ) such
that, if

‖eitΔu0‖Ẋ1([−T,T ]) ≤ η,

then (1.1) admits a unique strong H1
x-solution u defined in [−T, T ].

(2) When 0 < p < 4
n−2 , γ = 4 and n ≥ 5, for every T > 0, there exists an η = η(T ) such

that, if
‖eitΔu0‖Ẏ 1([−T,T ]) ≤ η,

then (1.1) admits a unique strong H1
x-solution u defined in [−T, T ].
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(3) Let (−Tmin, Tmax) be the maximal time interval on which the solution u is well-defined.
Then for each compact time interval I ⊂ (−Tmin, Tmax), u ∈ S1(I × Rn) and the following
blowup alternative holds:

If Tmax < ∞ (respectively, if Tmin < ∞), then either ‖u(t)‖H1
x
→ ∞ or ‖u(t)‖S1((0,t)×Rn)→

∞ as t ↑ Tmax (respectively, as t ↓ −Tmin).

Next, we state the stability results for the H1
x-critical and the L2

x-critical NLS with Hartree
type.

Lemma 3.1 (Short-Time Perturbation) Let I be a compact interval and ũ a function in
I × Rn which is a near-solution to (1.4) in the sense of that

(i∂t + Δ)ũ = λ(|x|−4 ∗ |ũ|2)ũ + e

for some function e, and

‖ũ‖L∞
t Ḣ1(I×Rn) ≤ E (3.1)

for some E > 0.
Furthermore, let t0 ∈ I and u(t0) be close to ũ(t0) in the sense of

‖u(t0) − ũ(t0)‖Ḣ1
x
≤ E′ (3.2)

for some E′ > 0. Assume also that

‖∇ũ‖U(I) ≤ ε0, (3.3)

‖ei(t−t0)Δ∇(u(t0) − ũ(t0))‖U(I) ≤ ε, (3.4)

‖e‖Ṅ1(I×Rn) ≤ ε, (3.5)

for some 0 < ε < ε0, where ε0 is a small constant ε0 = ε0(E, E′) > 0.
Then there exists a solution u to (1.4) in I ×Rn with the special initial data u(t0) at t0, and

‖u − ũ‖Ṡ1(I×Rn) � E′ + ε, (3.6)

‖u‖Ṡ1(I×Rn) � E′ + E, (3.7)

‖u − ũ‖
L6

tL
6n

3n−8
x (I×Rn)

� ε, (3.8)

‖(i∂t + Δ)(u − ũ)‖Ṅ1(I×Rn) � ε. (3.9)

Proof Without loss of generality, we assume t0 = inf I. Define z = u− ũ. Then u = z + ũ,

S(t) := ‖(i∂t + Δ)z‖Ṅ1([t0,t]×Rn).

On one hand, by Hölder and Hardy-Littlewood-Sobelov inequality, we have

‖(|x|−4 ∗ (ab))c‖Ṅ1 � ‖∇a‖U(I)‖∇b‖U(I)‖∇c‖U(I). (3.10)

From (3.3), (3.5) and (3.10), we get

S(t) ≤ ‖[|x|−4 ∗ (|z|2 + zũ + zũ)](z + ũ)‖Ṅ1 + ‖(|x|−4 ∗ |ũ|2)z‖Ṅ1 + ‖e‖Ṅ1

� ε +
2∑

j=0

‖∇z‖j
U(I)‖∇ũ‖3−j

U(I) � ε +
2∑

j=0

ε3−j
0 ‖∇z‖j

U(I).
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On the other hand, we obtain

‖∇z‖U(I) � ‖e(i(t−t0)Δ)∇z(t0)‖U(I) + S(t) � S(t) + ε (3.11)

and

S(t) � ε +
2∑

j=0

ε3−j
0 (S(t) + ε)j .

By a standard continuity argument, one can show that S(t) � ε. Then from (3.11) and the
Sobolev’s embedding, we get

‖u − ũ‖
L6

tL
6n

3n−8
x

� ε,

‖ũ‖Ṡ1 � ‖ũ(t0)‖Ḣ1 + ‖∇ũ‖3
U(I) + ‖e‖Ṅ1 � E + ε30 + ε � E,

‖u − ũ‖Ṡ1 � ‖u(t0) − ũ(t0)‖Ḣ1
x

+ S(t) � E′ + ε.

Therefore
‖u‖Ṡ1 � ‖u − ũ‖Ṡ1 + ‖ũ‖Ṡ1 � E + E′.

Lemma 3.2 (H1
x-Critical Stability Result for Hartree Type) Let I be a compact interval,

t0 ∈ I, and ũ be a function in I × Rn which is a near-solution to (1.4) in the sense of that

(i∂t + Δ)ũ = λ(|x|−4 ∗ |ũ|2)ũ + e for some function e,

and u(t0) is close to ũ(t0) in the sense of

‖u(t0) − ũ(t0)‖Ḣ1
x
≤ E′ for some E′ > 0. (3.12)

Moreover, suppose that

‖ũ‖L∞
t Ḣ1(I×Rn) ≤ E for some E > 0 (3.13)

and

‖∇ũ‖U(I) ≤ M for some M > 0, (3.14)

‖ei(t−t0)Δ∇(u(t0) − ũ(t0))‖U(I) ≤ ε, (3.15)

‖e‖Ṅ1(I×Rn) ≤ ε (3.16)

for some 0 < ε < ε0, where ε0 = ε0(E, E′, M) > 0 is a small constant.
Then there exists a solution u to (1.4) in I × Rn with the special initial data u(t0) at t0,

satisfying

‖u − ũ‖Ṡ1(I×Rn) � C(M, E)(E′ + ε), (3.17)

‖u‖Ṡ1(I×Rn) � C(M, E′, E), (3.18)

‖u − ũ‖
L6

t L
6n

3n−8
x (I×Rn)

� C(M, E, E′)ε. (3.19)

Proof Without loss of generality, we assume t0 = inf I. Divide I into J ∼ (
1 + M

ε0

)6

subintervals Ij such that in each Ij

‖∇ũ‖U(Ij) ≤ ε0.
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Fix I0 = [t0, t1]. By the short-time perturbation, one can get

‖u − ũ‖Ṡ1(I0×Rn) � E′ + ε,

‖u‖Ṡ1(I0×Rn) � E′ + E,

‖u − ũ‖
L6

t L
6n

3n−8
x (I0×Rn)

� ε,

‖(i∂t + Δ)(u − ũ)‖Ṅ1(I0×Rn) � ε.

Furthermore, we have

‖u(t1) − ũ(t1)‖Ḣ1
x
≤ ‖u − ũ‖Ṡ1

x(I0×Rn) � E′ + ε

and

‖ei(t−t1)Δ∇(u(t1) − ũ(t1))‖U(I1)

� ‖ei(t−t0)Δ∇(u(t0) − ũ(t0))‖U(I1) + ‖(i∂t + Δ)(u − ũ)‖N1(I0×Rn) � ε.

Choosing ε to be small enough, from the short-time perturbation, we have that the results also
hold in I1. By induction, we complete the proof of the lemma.

Remark 3.1 Notice that condition (3.15) is weaker than the condition stated in [18] in
which it requires( ∑

N

‖PN∇e(i(t−t0)Δ)(u(t0) − ũ(t0))‖2
U(I)

) 1
2

+
(∑

N

‖PN∇e(i(t−t0)Δ)(u(t0) − ũ(t0))‖2

L3
t L

6n
3n−4
x (I×Rn)

) 1
2 ≤ ε.

In fact, for the Hartree type, the nonlinearity and its derivatives are Lipschitz continuous.

The same method can be used to prove the perturbation theory of the L2
x-critical NLS with

Hartree type. Note that by Hölder and Hardy-Littlewood-Sobolev inequality, we have

‖(|x|−2 ∗ (ab))c‖Ṅ0 � ‖a‖U(I)‖b‖U(I)‖c‖U(I) (3.20)

instead of (3.10). Arguing similarly, we can get the following result.

Lemma 3.3 (L2
x-Critical Stability Result for Hartree Type) Let I be a compact interval,

t0 ∈ I, and ũ be a function in I × Rn which is a near-solution to (1.5) in the sense of that

(i∂t + Δ)ũ = λ(|x|−2 ∗ |ũ|2)ũ + e for some function e,

and u(t0) be close to ũ(t0) in the sense of

‖u(t0) − ũ(t0)‖L2
x(Rn) ≤ M ′ for some M ′ > 0. (3.21)

Further suppose that

‖ũ‖L∞
t L2

x(I×Rn) ≤ M for some M > 0 (3.22)

and

‖ũ‖U(I) ≤ L for some L > 0, (3.23)

‖ei(t−t0)Δ(u(t0) − ũ(t0))‖U(I) ≤ ε, (3.24)

‖e‖Ṅ0(I×Rn) ≤ ε (3.25)
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for some 0 < ε < ε1, where ε1 = ε1(M, M ′, L) > 0 is a small constant.
Then there exists a solution u to (1.5) in I ×Rn with the special initial data u(t0) at t0, and

‖u − ũ‖Ṡ0(I×Rn) � C(L, M, M ′)(M ′ + ε), (3.26)

‖u‖Ṡ0(I×Rn) � C(L, M, M ′), (3.27)

‖u − ũ‖U(I) � C(L, M, M ′)ε. (3.28)

The corresponding stability results for the H1
x-critical and the L2

x-critical NLS with power
type are established in [23, 24]. However, as the derivatives of the nonlinearity are merely
Hölder continuous of order 4

n−2 rather than Lipschitz, the problem becomes more subtle when
the dimension n is greater than 6. One can find the details in [23, 24]. Here we simply state
their result as follows.

Lemma 3.4 (H1
x-Critical Stability Result for Power Type) Let I be a compact interval,

t0 ∈ I, and ũ be a function in I × Rn which is a near-solution to (1.2) meaning

(i∂t + Δ)ũ = λ|ũ| 4
n−2 ũ + e for some function e,

and u(t0) be close to ũ(t0), by which we mean

‖u(t0) − ũ(t0)‖Ḣ1
x
≤ E′

0 for some E′
0 > 0. (3.29)

In addition, suppose that

‖ũ‖L∞
t Ḣ1(I×Rn) ≤ E0 for some E0 > 0 (3.30)

and

‖ũ‖W (I) ≤ M0 for some M0 > 0, (3.31)( ∑
N

‖PN∇e(i(t−t0)Δ)(u(t0) − ũ(t0))‖2

L

2(n+2)
n−2

t L

2n(n+2)
n2+4

x (I×Rn)

) 1
2 ≤ ε, (3.32)

‖e‖Ṅ1(I×Rn) ≤ ε (3.33)

for some 0 < ε < ε2, and ε2 = ε2(E0, E
′
0, M0) is a small constant.

Then there exists a solution u to (1.2) in I ×Rn with the special initial data u(t0) at t0, and

‖u − ũ‖Ṡ1(I×Rn) � C(E0, E
′
0, M0)(E′

0 + ε + ε
7

(n−2)2 ), (3.34)

‖u‖Ṡ1(I×Rn) � C(M0, E
′
0, E0), (3.35)

‖u − ũ‖
L

2(n+2)
n−2

t L

2n(n+2)
n2+4

x (I×Rn)

� C(M0, E0, E
′
0)(ε + ε

7
(n−2)2 ). (3.36)

Lemma 3.5 (L2
x-Critical Stability Result for Power Type) Let I be a compact interval,

t0 ∈ I, and ũ be a function in I × Rn which is a near-solution to (1.3) meaning

(i∂t + Δ)ũ = λ|ũ| 4
n ũ + e for some function e,

and u(t0) be close to ũ(t0) in the sense of

‖u(t0) − ũ(t0)‖L2
x(Rn) ≤ M ′

0 for some M ′
0 > 0. (3.37)



The Nonlinear Schrödinger Equations with Combined Nonlinearities 447

Moreover, assume that

‖ũ‖L∞
t L2

x(I×Rn) ≤ M0 for some M0 > 0 (3.38)

and

‖ũ‖V (I) ≤ L0 for some L0 > 0, (3.39)

‖ei(t−t0)Δ(u(t0) − ũ(t0))‖V (I) ≤ ε, (3.40)

‖e‖Ṅ0(I×Rn) ≤ ε (3.41)

for some 0 < ε < ε3, where ε3 = ε3(M0, M
′
0, L0) > 0 is a small constant.

Then there exists a solution u to (1.3) in I ×Rn with the special initial data u(t0) at t0 and

‖u − ũ‖Ṡ0(I×Rn) � C(L0, M0, M
′
0)M

′
0, (3.42)

‖u‖Ṡ0(I×Rn) � C(L0, M0, M
′
0), (3.43)

‖u − ũ‖V (I) � C(L0, M0, M
′
0)ε. (3.44)

To conclude this section, we state the results involving persistence of L2 or Ḣ1 regularity
for critical NLS with Hartree type or power type as follows.

Lemma 3.6 (Persistence of Regularity) Let k = 0, 1, I be a compact interval, and t0 ∈ I.
Case 1 u is a solution to (1.2) in I × Rn with

‖u‖W (I) ≤ M.

Then, if u(t0) ∈ Ḣk
x, we have

‖u‖Ṡk(I×Rn) ≤ C(M)‖u(t0)‖Ḣk
x
.

Case 2 Let u be a solution to (1.3) in I × Rn and

‖u‖V (I) ≤ L.

Then, if u(t0) ∈ Ḣk
x, we have

‖u‖Ṡk(I×Rn) ≤ C(L)‖u(t0)‖Ḣk
x
.

Case 3 u is a solution to (1.4) in I × Rn satisfying

‖u‖
L6

tL
6n

3n−8
x (I×Rn)

≤ M.

Then, if u(t0) ∈ Ḣk
x, we have

‖u‖Ṡk(I×Rn) ≤ C(M)‖u(t0)‖Ḣk
x
.

Case 4 u is a solution to (1.5) in I × Rn satisfying

‖u‖U(I) ≤ L.

Then, if u(t0) ∈ Ḣk
x, we have

‖u‖Ṡk(I×Rn) ≤ C(L)‖u(t0)‖Ḣk
x
.
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Proof All four cases can be proved similarly, and hence we only consider Case 1.
Divide the interval I into N ∼ (1 + M

η )6 subintervals Ij = [tj , tj+1] such that

‖u‖W (Ij) ≤ η,

where η is a small positive constant to be chosen later. By Strichartz estimates, in each Ij we
obtain

‖u‖Ṡk(Ij×Rn) � ‖u(tj)‖Ḣk
x

+ ‖u‖Ṡk(Ij×Rn)‖u‖
4

n−2

W (Ij)

� ‖u(tj)‖Ḣk
x

+ η
4

n−2 ‖u‖Ṡk(Ij×Rn).

Choosing η to be sufficiently small (say η ≤ 1
2 ), we get

‖u‖Ṡk(Ij×Rn) � ‖u(tj)‖Ḣk
x
.

Next, we consider the relationship between ‖u(tj)‖Ḣk
x

and ‖u(t0)‖Ḣk
x
.

In I0, we have
‖u(t1)‖Ḣk

x
≤ ‖u‖Ṡk(I0×Rn) ≤ C‖u(t0)‖Ḣk

x
.

In I1, we have

‖u(t2)‖Ḣk
x
≤ ‖u‖Ṡk(I1×Rn) ≤ C‖u(t1)‖Ḣk

x
≤ C2‖u(t0)‖Ḣk

x
.

Likewise, for each Ij we can obtain

‖u(tj)‖Ḣk
x
≤ Cj‖u(t0)‖Ḣk

x
.

Summing up the estimates over all the subinterval Ij , we obtained the desired results.

4 Global Well-Posedness

We will prove Theorem 1.1 in this section. Due to the conservation of energy and mass, we
shall denote the energy E(u) and the mass M(u) by E and M , respectively. In order to prove
the global well-posedness of (1.1), we show that the blowup in Propositions 3.1 and 3.2 cannot
happen. Suppose that the initial data u0 of (1.1) are in H1

x. When p �= 4
n−2 and γ �= 4, we prove

that ‖u(t)‖H1
x

is bounded for all t at which the solution is defined. In view of the conservation
of mass, we focus on the bounds of ‖u(t)‖Ḣ1

x
. When p = 4

n−2 or γ = 4, the boundedness of
‖u(t)‖H1

x
is not enough to prove Theorem 1.1. So we view the energy-subcritical nonlinearity

as a perturbation to the energy-critical NLS, which is known as globally well-posed.

4.1 Kinetic energy control
We will obtain a prior control on the kinetic energy which is bounded for t at which the

solution is defined. Moreover, the bound only depends on energy and mass,

‖u(t)‖Ḣ1
x
≤ C(E, M). (4.1)

Observing that the energy

E(u) =
1
2

∫
|∇u|2 dx +

λ1

p + 2

∫
|u|p+2 dx +

λ2

4

∫
(|x|−γ ∗ |u|2)|u|2 dx

is conserved. Hence, for Case 1, we have

‖u(t)‖Ḣ1
x

� E.
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As for Case 2, from Parseval identity, Hardy-Littlewood-Sobolev inequality and interpola-
tion, we have∫

(|x|−γ ∗ |u|2)|u|2 dx : =
∫

(|∇|−(n−γ)|u|2)|u|2 dx = ‖|∇|−n−γ
2 |u|2‖2

L2

≤ ‖u‖4

L
4n

2n−γ
≤ ‖u‖4(1−n+γ

2n )

L2 ‖u‖
2n+2γ

n

L
2n+2γ

n

. (4.2)

Recall that for any positive constants a, δ, and p1 < p2, the following inequality

ap1+2 ≤ C(δ)a2 + δap2+2 (4.3)

holds. Therefore if 2n+2γ
n < p + 2, i.e., γ < np

2 ,

‖u‖
2n+2γ

n

L
2n+2γ

n

≤ C(δ)‖u‖2
L2 + δ‖u‖p+2

Lp+2.

Hence

E(u) ≥ 1
2

∫
|∇u|2 dx +

λ1

p + 2

∫
|u|p+2 dx − C‖u‖4(1−n+γ

2n )

L2 δ

∫
|u|p+2 dx − C(M).

Let δ be sufficiently small. Then we get

‖u(t)‖Ḣ1
x
≤ C(E, M).

If γ ≥ np
2 , using λ1 > 0 and Appendix, we obtain

E ≥ E1 ≥ 1
2

∫
|∇u|2 dx − |λ2|

4
CW ‖∇u‖γ

L2‖u‖4−γ
L2 .

For the case γ < 2, by the Young’s inequality, one has

E ≥ 1
2

∫
|∇u|2 dx − |λ2|

4
δCW ‖∇u‖2

L2 − |λ2|
4

CW C(δ)‖u‖
2(4−γ)
2−γ

L2 .

For δ small enough, we obtain
‖u(t)‖Ḣ1

x
≤ C(E, M).

When γ = 2, we have

E ≥
(1

2
− |λ2|

4
CW ‖u‖2

L2

)
‖∇u‖2

L2.

If
‖u‖2

L2 <
2

CW |λ2| =
1

|λ2| ‖W‖2
L2

is true, we can obtain
‖u(t)‖Ḣ1

x
≤ C(E, M).

For the case 2 < γ < 4, applying Appendix and the conservation of energy and mass, we only
need to show that if

‖∇u0‖2
L2(‖u0‖2

L2)
4−γ
γ−2 <

(‖∇W‖2
L2

|λ2|
) 2

γ−2
,

then

‖∇u‖2
L2(‖u‖2

L2)
4−γ
γ−2 <

(‖∇W‖2
L2

|λ2|
) 2

γ−2
.
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We prove it by the standard continuity argument. Define

Ω =
{
t ∈ I, ‖∇u‖2

L2(‖u‖2
L2)

4−γ
γ−2 <

(‖∇W‖2
L2

|λ2|
) 2

γ−2
,

E(u(t))(‖u‖2
L2)

4−γ
γ−2 ≤ (1 − δ0)

(1
2
− 1

γ

)[ 2γẼ(W )
|λ2|(γ − 2)

] 2
γ−2

}
.

It suffices to show that Ω is both open and closed. Note that t0 ∈ Ω. Ω is obviously open
since u ∈ C0

t (I, Ḣ1
x). Therefore, it remains to prove that Ω is closed. Let tn ∈ Ω, T ∈ I be a

sequence such that tn → T . Then we have

‖∇u(tn)‖2
L2M

4−γ
γ−2 <

(‖∇W‖2
L2

|λ2|
) 2

γ−2

and

E(u(tn))M
4−γ
γ−2 ≤ (1 − δ0)

(1
2
− 1

γ

)[ 2γẼ(W )
|λ2|(γ − 2)

] 2
γ−2

.

By Lemma A.2, we have

‖∇u(tn)‖2
L2M

4−γ
γ−2 ≤ (1 − δ)

(‖∇W‖2
L2

|λ2|
) 2

γ−2
.

Since u ∈ C0
t (I, Ḣ1

x), and energy and mass are conserved, we get

‖∇u(T )‖2
L2M

4−γ
γ−2 ≤ (1 − δ)

(‖∇W‖2
L2

|λ2|
) 2

γ−2

and

E(u(T ))M
4−γ
γ−2 ≤ (1 − δ0)

(1
2
− 1

γ

)[ 2γẼ(W )
|λ2|(γ − 2)

] 2
γ−2

.

This implies that T ∈ Ω and ‖u(t)‖Ḣ1
x
≤ C(E, M).

Remark 4.1 When γ = np
2 , we have

E ≥ 1
2

∫
|∇u|2 dx +

|λ1|
p + 2

‖u‖p+2
Lp+2 − C

|λ2|
4

M
2−p
2 ‖u‖p+2

Lp+2.

The condition n > γ = np
2 implies p < 2. If in addition, |λ1|

p+2 > C |λ2|
4 M

2−p
2 also holds, i.e.,

M <
( 4|λ1|

(p+2)C|λ2|
) 2

2−p , we can also obtain ‖u(t)‖Ḣ1
x
≤ C(E, M).

To prove Case 3, we need the following lemma.

Lemma 4.1

‖|∇|−n−γ
4 f‖L4 � ‖|∇|−n−γ

2 |f |2‖ 1
2
L2. (4.4)

Remark 4.2 T. Tao proved the inequality for γ = 3 in [24]. We can show that the same is
true for general γ.

Proof It suffices to prove (4.4) for a positive Schwartz function f . In fact, we only need to
prove the pointwise inequality

S(|∇|−n−γ
4 f)(x) � [(|∇|− n−γ

2 |f |2)(x)]
1
2 , (4.5)
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where Sf :=
(∑

N

|PNf |2
) 1

2
.

It is clear that (4.5) implies (4.4).

‖|∇|−n−γ
4 f‖L4 � ‖S(|∇|−n−γ

4 f)‖L4 � ‖(|∇|−n−γ
2 |f |2) 1

2 ‖L4 � ‖|∇|−n−γ
2 |f |2‖ 1

2
L2 .

Consequently, we will focus our attention on the estimate for each of the dyadic pieces

PN (|∇|−n−γ
4 f)(x) =

∫
e2πix· ξ f̂(ξ)|ξ|− n−γ

4 m
( ξ

N

)
dξ,

where m(ξ) := ϕ(ξ) − ϕ(2ξ) introduced in Section 2.
Since |ξ|−n−γ

4 m( ξ
N ) ∼ N−n−γ

4 m( ξ
N ), we have

PN (|∇|− n−γ
4 f)(x) ∼ N

3n+γ
4 f ∗ m̌(Nx) = N

3n+γ
4

∫
f(x − y)m̌(Ny) dy.

Furthermore, m is a Schwartz function, we have

|PN (|∇|−n−γ
4 f)(x)| � N

3n+γ
4

∫
|y|≤N−1

f(x − y) dy + N
3n+γ

4

∫
|y|>N−1

f(x − y)
1

|Ny|β dy,

where β is chosen later.
A simple application of Cauchy-Schwartz yields

S(|∇|− n−γ
4 f)(x)

=
( ∑

N

|PN (|∇|−n−γ
4 f)(x)|2

) 1
2

�
( ∑

N

N
3n+γ

2

∣∣∣ ∫
|y|≤N−1

f(x − y) dy
∣∣∣2 +

∑
N

N
3n+γ

2

∣∣∣ ∫
|y|>N−1

f(x − y)
1

|Ny|β dy
∣∣∣2) 1

2

�
[∑

N

N
3n+γ

2 N−n

∫
|y|≤N−1

|f(x − y)|2 dy

+
∑
N

N
3n+γ

2

(∫
|y|>N−1

|f(x − y)|2
|y|α dy

)(∫
|y|>N−1

|y|α
|Ny|2β

dy
)] 1

2
,

where α is to be decided later.
Note that if α and β are chosen to satisfy n + α − 2β < 0, γ+n

2 − α < 0, we have∑
N

N
n+γ

2 χ{|y|≤N−1}(y) �
∑

|y|≤N−1

N
n+γ

2 � |y|−n+γ
2 ,

∑
N

N
3n+γ

2

(∫
|y|>N−1

|y|α
|Ny|2β

dy
)
χ{|y|>N−1}(y) �

∑
|y|>N−1

N
3n+γ

2 N−2βN−(n+α−2β) � |y|α−n+γ
2

and

S(|∇|−n−γ
4 f)(x) �

(∫
|y|≤N−1

|f(x − y)|2
|y|n+γ

2

dy +
∫
|y|>N−1

|f(x − y)|2
|y|n+γ

2

dy
) 1

2

∼

(∫ |f(x − y)|2
|y|n+γ

2

dy
) 1

2
∼ [(|∇|− n−γ

2 |f |2)(x)]
1
2 .
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This completes the proof.

Using interpolation and the Young’s inequality, we get

‖u‖q
Lq � ‖∇u‖

2(n−γ)
2+n−γ

L2 ‖|∇|−n−γ
4 u‖

8
2+n−γ

L4 � ε‖∇u‖2
L2 + C(ε)‖|∇|− n−γ

4 u‖4
L4,

where q = 2(4+n−γ)
2+n−γ . Then,

‖|∇|−n−γ
4 u‖4

L4 ≥ c(ε)‖u‖q
Lq − c(ε)‖∇u‖2

L2.

On the other hand, in view of

|λ2|
4

‖|∇|−n−γ
2 |u|2‖2

L2 � ‖|∇|−n−γ
4 u‖4

L4 ≥ c(ε)‖u‖q
Lq − c(ε)‖∇u‖2

L2,

from (4.3)–(4.4) and
‖u‖p+2

Lp+2 ≤ C(δ)‖u‖2
L2 + δ‖u‖q

Lq ,

we have

E ≥ 1
2

∫
|∇u|2 dx + c(ε)‖u‖q

Lq − c(ε)‖∇u‖2
L2 − |λ1|

p + 2
δ‖u‖q

Lq − |λ1|
p + 2

C(δ)‖u‖2
L2 .

Choosing ε and δ = δ(ε) to be small enough, we obtain

‖u(t)‖Ḣ1
x
≤ C(E, M).

If p ≥ 4
2+n−γ , and notice λ2 > 0, applying the same method used in Case 2, under the

conditions of Case 3, we have
‖u(t)‖Ḣ1

x
≤ C(E, M).

About Case 4, using (A.1)–(A.2) and the Young’s inequality, we have

E ≥ 1
2

∫
|∇u|2 dx − |λ1|

p + 2
CR‖u‖

4−(n−2)p
2

L2 ‖∇u‖
np
2

L2 − |λ2|
4

CW ‖u‖4−γ
L2 ‖∇u‖γ

L2

≥ 1
2

∫
|∇u|2 dx − |λ1|

p + 2
CRδ‖∇u‖2

L2 − |λ2|
4

CW δ‖∇u‖2
L2 − C(M),

where δ is chosen to be sufficiently small. We obtain

‖u(t)‖Ḣ1
x
≤ C(E, M).

4.2 Completion of the proof of Theorem 1.1
Now we are in the position to complete the proof of Theorem 1.1. Recall that when both

nonlinearities are Ḣ1
x-subcritical, by Proposition 3.1, the a prior control on the kinetic and

the conservation of mass can conclude that the unique strong solution u to (1.1) is a global
solution. In fact, we can find T = T (‖u0‖H1

x
) such that (1.1) admits a unique strong solution

u ∈ S1([−T, T ]× Rn) and
‖u‖S1([−T,T ]×Rn) ≤ C(E, M).

If we divide the interval I into subintervals of length T , compute S1-bounds on each subinterval
and then sum up the bounds over subintervals, we can get the bound (1.6).

When p = 4
n−2 or γ = 4, we treat the other nonlinearity as a perturbation of the energy-

critical NLS, which is globally well-posed, [4, 14–15, 18, 22, 27]. Here, we only discuss the case:
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p = 4
n−2 and 0 < γ < min {n, 4}; the case: 0 < p < 4

n−2 , γ = 4 with n ≥ 5 can be discussed
similarly.

Let v be the unique strong global solution to the energy-critical equation (1.2) with initial
data v0 = u0 at time t = 0. By the main results in [4, 14–15, 22, 27], we know that such a v

exists and

‖v‖Ṡ1(R×Rn) ≤ C(‖u0‖Ḣ1
x
). (4.6)

Furthermore, by Lemma 3.6, we also have

‖v‖Ṡ0(R×Rn) ≤ C(‖u0‖Ḣ1
x
)‖u0‖L2 ≤ C(E, M).

By time reversal symmetry, it suffices to solve the problem forward in time. By (4.6), divide
R+ into J = J(E, η) subintervals Ij = [tj , tj+1] such that

‖v‖Ḃ1(Ij)
∼ η (4.7)

for some small η to be chosen later (at last we will find η just depending on the energy and
mass).

We may assume that there exists J ′ < J such that for any 0 ≤ j ≤ J ′ − 1, [0, T ] ∩ Ij �= ∅.
Thus, we can write [0, T ] =

J′−1⋃
j=0

([0, T ] ∩ Ij).

According to the Strichartz estimate, Sobolev embedding and (4.7), the free evolution
ei(t−tj)Δv(tj) is small in Ij

‖ei(t−tj)Δv(tj)‖Ḃ1(Ij)
≤ ‖v‖Ḃ1(Ij)

+ ‖∇(|v| 4
n−2 v)‖

L

2(n+2)
n+4

t,x (Ij×Rn)

≤ ‖v‖Ḃ1(Ij)
+ C‖v‖

n+2
n−2

Ḃ1(Ij)

≤ η + Cη
n+2
n−2 .

Thus letting η be sufficiently small, for any 0 ≤ j ≤ J ′ − 1, we obtain

‖ei(t−tj)Δv(tj)‖Ḃ1(Ij)
≤ 2η.

On the interval I0, recalling that u(0) = v(0) = u0, we estimate

‖u‖Ḃ1(I0)
≤ ‖eitΔu0‖Ḃ1(I0) + CT α‖u‖3

Ḃ1(I0)
+ C‖u‖

n+2
n−2

Ḃ1(I0)

≤ 2η + CT α‖u‖3
Ḃ1(I0)

+ C‖u‖
n+2
n−2

Ḃ1(I0)
,

where α = min {1, 2 − γ
2}.

Assume that both η and T are sufficiently small. Then a standard continuity argument
yields

‖u‖Ḃ1(I0) ≤ 4η.

In order to use Lemma 3.4, we notice that (3.29) holds with E′
0 = 0 and (3.30) holds for

E0 := C(E, M). Furthermore, (3.31) holds on I := I0 for M0 := 4Cη. We only need to prove
that the error, which is the second nonlinearity in this case, is sufficiently small. In fact

‖∇e‖Ṅ0(I0×Rn) � T α‖u‖3
Ẏ 1(I0)

� T α‖u‖3
Ḃ1(I0)

� T αη3.
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We see that by choosing T to be sufficiently small depending on ε, we get

‖∇e‖Ṅ0(I0×Rn) < ε,

where ε = ε(E, M) is a small constant to be chosen later. Thus, with ε sufficiently small, the
hypotheses of Lemma 3.4 are satisfied, and hence

‖u − v‖Ṡ1(I0×Rn) ≤ C(E, M)εc (4.8)

for a small positive constant c which depends only on the dimension n.
Strichartz estimates and (4.8) imply

‖u(t1) − v(t1)‖Ḣ1
x
≤ C(E, M)εc, (4.9)

‖ei(t−t1)Δ(u(t1) − v(t1))‖Ḃ1(I1) ≤ C(E, M)εc. (4.10)

By (4.9)–(4.10) and Strichartz estimates, we get

‖u‖Ḃ1(I1)
≤ ‖ei(t−t1)Δv(t1)‖Ḃ1(I1) + ‖ei(t−t1)Δ(u(t1) − v(t1))‖Ḃ1(I1)

+ CT α‖u‖3
Ḃ1(I1)

+ C‖u‖
n+2
n−2

Ḃ1(I1)

≤ 2η + C(E, M)εc + CT α‖u‖3
Ḃ1(I1)

+ C‖u‖
n+2
n−2

Ḃ1(I1)
.

A standard continuity argument then yields

‖u‖Ḃ1(I0) ≤ 4η

provided that ε is sufficiently small and depends on E and M , which amounts to taking T to
be sufficiently small depending on E and M . We apply Lemma 3.4 again to I := I1 to obtain

‖u − v‖Ṡ1(I1×Rn) ≤ C(E, M)εc.

By induction argument, for every 0 ≤ j ≤ J ′ − 1, we have

‖u‖Ḃ1(Ij)
≤ 4η (4.11)

provided that ε (and hence T ) is sufficiently small depending on E and M . Sum (4.11) over all
0 ≤ j ≤ J ′ − 1 and notice that J ′ < J = J(E, M). We obtain

‖u‖Ḃ1([0,T ]) ≤ 4J ′η ≤ C(E, M). (4.12)

Using Strichartz estimates, (4.12) and T = T (E, M), we get

‖u‖Ṡ1([0,T ]×Rn) � ‖u0‖Ḣ1
x

+ T α‖u‖3
Ḃ1([0,T ])

+ ‖u‖
n+2
n−2

Ḃ1([0,T ])
≤ C(E, M). (4.13)

Similarly, we get

‖u‖Ṡ0([0,T ]×Rn) � M
1
2 + C(E, M)‖u‖2

Ḃ1([0,T ])
‖u‖Ṡ0([0,T ]) + ‖u‖

4
n−2

Ḃ1([0,T ])
‖u‖Ṡ0([0,T ]).

Subdivide [0, T ] into N = N(E, M, δ) subintervals Jk such that

‖u‖Ḃ1(Jk) ∼ δ
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for some small constant δ > 0 to be chosen later. Thus, we get

‖u‖Ṡ0(Jk×Rn) � M
1
2 + C(E, M)δ2‖u‖Ṡ0(Jk×Rn) + δ

4
n−2 ‖u‖Ṡ0(Jk×Rn).

Let C(E, M)δ2 + δ
4

n−2 ≤ 1
2 . A standard continuity method then yields

‖u‖Ṡ0(Jk×Rn) ≤ C(E, M).

Sum these bounds over all subintervals Jk. We get

‖u‖Ṡ0([0,T ]×Rn) ≤ C(E, M). (4.14)

Combining (4.13) and (4.14), we get

‖u‖S1([0,T ]×Rn) ≤ C(E, M),

where T only depends on energy and mass. So, if we divide the interval I into subintervals of
length T , and sum up the corresponding S1-bounds in these subintervals, the proof of Theorem
1.1 is completed.

Remark 4.3 If p = 4
n−2 and γ = 4, then α is zero and ‖u‖Ḃ1(Ij) ≤ 4η no longer holds.

Therefore the method used in the proof is not applicable in such a case.

5 Results on Scattering

5.1 The interaction Morawetz inequality
First we state a proposition from [24].

Proposition 5.1 (General Interaction Morawetz Inequality)

− (n − 1)
∫

I

∫
Rn

∫
Rn

Δ
( 1
|x − y|

)
|u(y)|2|u(x)|2 dxdydt

+ 2
∫

I

∫
Rn

∫
Rn

|u(t, y)|2 x − y

|x − y| {N, u}p(t, x) dxdydt

≤ 4‖u‖3
L∞

t L2
x(I×Rn)‖∇u‖L∞

t L2
x(I×Rn)

+ 4
∫

I

∫
Rn

∫
Rn

|{N, u}m(t, y)u(t, x)∇u(t, x)| dxdydt, (5.1)

where N := λ1|u|pu + λ2(|x|−γ ∗ |u|2)u, {f, g}p := Re(f∇g − g∇f), {f, g}m = Im{fg}.
Using this proposition, we can show the following result.

Proposition 5.2 (Morawetz Control) Let I be a compact interval, λ1 and λ2 positive real
numbers, and u a solution to (1.1) on the slab I × Rn. Then

‖u‖Z(I) � ‖u‖L∞
t H1

x(I×Rn). (5.2)

Proof Let N := λ1|u|pu + λ2(|x|−γ ∗ |u|2)u. We have

{N, u}m = 0, {N, u}p = − λ1p

p + 2
∇(|u|p+2) − λ2Re{∇(|x|−γ ∗ |u|2)|u|2}.

If one can show that the second term on the left-hand side of (5.1) is positive, then

−
∫

I

∫
Rn

∫
Rn

Δ
( 1
|x − y|

)
|u(y)|2|u(x)|2 dxdydt ≤ ‖u‖4

L∞
t H1

x(I×Rn). (5.3)
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When n = 3, we know −Δ
(

1
|x|

)
= 4πδ. Hence (5.3) implies

‖u‖4
L4

t,x(I×R3) � ‖u‖4
L∞

t H1
x(I×R3),

which is what we want to show.
When n ≥ 4, we have −Δ( 1

|x|) = n−3
|x|3 . Similarly (5.3) yields

‖|∇|−n−3
2 |u|2‖L2

t,x(I×Rn) � ‖u‖2
L∞

t H1
x(I×Rn). (5.4)

By Lemma 4.1 and the above inequality, we can deduce

‖|∇|−n−3
4 u‖L4

t,x(I×Rn) � ‖u‖L∞
t H1

x(I×Rn). (5.5)

The result in this case follows from interpolation between (5.5) and the bound on the kinetic
energy

‖∇u‖L∞
t L2

x
� E

1
2 ,

which is an immediate consequence of the conservation of energy when both nonlinearities are
defocusing.

To show that the second term on the left-hand side of (5.1) is positive, we note that∫
I

∫
Rn

∫
Rn

|u(t, y)|2 x − y

|x − y|{N, u}p(t, x) dxdydt

= −
∫

I

∫
Rn

∫
Rn

|u(t, y)|2 x − y

|x − y|
λ1p

p + 2
∇(|u|p+2) dxdydt

− λ2Re
∫

I

∫
Rn

∫
Rn

|u(t, y)|2 x − y

|x − y|{∇(|x|−γ ∗ |u|2)|u|2} dxdydt

= (I) + (II).

For (I), we have

(I) = (n − 1)
λ1p

p + 2

∫
I

∫
Rn

|u(t, y)|2|u(t, x)|p+2

|x − y| dxdydt.

Note λ1 > 0. Hence (I) is positive.
For (II), define h(x) =

∫
Rn |u(t, y)|2 x−y

|x−y| dy. Then we have

(II) =
1
2
λ2γRe

∫
I

∫
Rn

∫
Rn

1
|x − z|γ+2

|u(t, z)|2|u(t, x)|2[(x − z)(h(x) − h(z))] dxdydt.

Notice that

(x − z)(h(x) − h(z)) = (x − z)
∫

Rn

|u(t, y)|2
( x − y

|x − y| −
z − y

|z − y|
)

dy (5.6)

and denote a := x − y, b := z − y. Then (5.6) equals∫
Rn

|u(t, y)|2(a − b)
( a

|a| −
b

|b|
)

dy.

Since (a− b)( a
|a| − b

|b| ) = (|a‖b| − ab)( 1
|a| + 1

|b|) ≥ 0 and λ2 > 0, we have that (�) is positive.

Remark 5.1 When the space dimension n = 2, we do not know whether −Δ( 1
|x|) is positive

or not. However, J. Colliander, M. Grillakis and N. Tzirakis used the refined tensor product to
prove that (5.4) still holds for n = 2 (see [4, 9]), and hence the corresponding (5.2) and (2.4)
are also true. We can employ the same approach used in Section 5.3 to show the scattering of
the power type. However, the corresponding (2.5) no longer holds, for we need γ > 2, but in
this case γ < n = 2. Therefore the scattering of the Hartree type cannot be obtained.
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5.2 Global bounds in the case: p = 4
n

, 2 < γ < min {n, 4} and λ1, λ2 > 0 or
4
n

< p < 4
n−2

, γ = 2 and λ1, λ2 > 0

Since both cases can be treated by the same method, here we only discuss the first case.
Without loss of generality, let λ1 = λ2 = 1.

We view the second nonlinearity as a perturbation to (1.3). By Proposition (5.2) and the
conservation of the energy and mass, we have

‖u‖Z(R) � ‖u‖L∞
t H1

x(R×Rn) ≤ C(E, M).

Divide R into J = J(E, M, ε) subintervals Ij , 0 ≤ j ≤ J − 1, such that

‖u‖Z(Ij) ∼ ε,

where ε is a small positive constant to be chosen later.
In the slab I × Rn, define

˙̃
X0(I) := L

2+ 1
θ

t L
2n(2θ+1)

n(2θ+1)−4θ
x (I × Rn) ∩ V (I),

where θ is introduced in Lemma 2.5.
In each Ij (0 ≤ j ≤ J − 1), by (2.6) we have

‖(|x|−γ ∗ |u|2)u‖Ṅ0(Ij×Rn) � ‖u‖
L

2+1
θ

t L

2n(2θ+1)
n(2θ+1)−4θ
x (Ij×Rn)

‖u‖
n+1

2(2θ+1)

Z(Ij)
‖u‖β1(θ)+β2(θ)

L∞
t H1

x(Ij×Rn)

≤ C(E, M)εc‖u‖ ˙̃
X0(Ij)

, (5.7)

where c = n+1
2(2θ+1) .

In the rest of the section, we fix an interval Ij0 = [a, b] and prove that u admits good
Strichartz estimates in the slab Ij0 × Rn. Let v be a solution to{

ivt + Δv = |v| 4
n v,

v(a) = u(a).

As this initial value problem is globally well-posed in H1
x, and by Assumption 1.1 and Lemma

3.6, the unique solution v satisfies

‖v‖Ṡ0(R×Rn) ≤ C(M).

Subdivide R into K = K(M, η) subinterval Jk such that on each Jk

‖v‖ ˙̃
X0(Jk)

∼ η (5.8)

for a small constant η > 0 to be chosen later.
We are only interested in the subintervals Jk = [tk, tk+1] such that its intersection with Ij0

is nonempty. Without loss of generality, we assume that [a, b] =
k′−1⋃
k=0

Jk, t0 = a, tk′ = b.

In each Jk, by Strichartz estimates and (5.4), we get

‖ei(t−tk)Δv(tk)‖ ˙̃
X0(Jk)

≤ ‖v‖ ˙̃
X0(Jk)

+ C‖|v| 4
n v‖Ṅ0(Jk×Rn) ≤ η + C‖v‖1+ 4

n

V (Jk) ≤ η + Cη1+ 4
n .

Choosing η to be sufficiently small, we have

‖ei(t−tk)Δv(tk)‖ ˙̃
X0(Jk)

≤ 2η. (5.9)
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Next we will use Lemma 3.5 to obtain an estimate for the S1-norm of u in Ij0 ×Rn. In the
interval J0, notice that u(t0) = v(t0). We apply Strichartz estimates, (5.7) and (5.9) to get

‖u‖ ˙̃
X0(J0)

≤ ‖ei(t−t0)Δu(t0)‖ ˙̃
X0(J0)

+ C‖u‖1+ 4
n

˙̃
X0(J0)

+ C(E, M)εc‖u‖ ˙̃
X0(J0)

≤ 2η + C‖u‖1+ 4
n

˙̃
X0(J0)

+ C(E, M)εc‖u‖ ˙̃
X0(J0)

.

Using a standard continuity argument, one has

‖u‖ ˙̃
X0(J0)

≤ 4η

provided η and ε are sufficiently small. In order to use Lemma 3.5, we notice that (3.39) holds in
I := J0 for L0 := 4η, (3.37) holds with M ′

0 = 0. It suffices to show that the error is sufficiently
small. In fact, from

‖e‖Ṅ0(J0×Rn) ≤ C(E, M)εc‖u‖ ˙̃
X0(J0)

≤ C(E, M)ηεc,

and choosing ε to be sufficiently small, we obtain

‖u − v‖Ṡ0(J0×Rn) ≤ ε
c
2 .

By Strichartz estimates, we have

‖u(t1) − v(t1)‖L2
x
≤ ε

c
2 , ‖ei(t−t1)Δ(u(t1) − v(t1))‖ ˙̃

X0(J1)
� ε

c
2 . (5.10)

On the other hand, we have

‖u‖Ṡ1(J0×Rn) � ‖u(a)‖Ḣ1
x

+ ‖u‖ 4
n

V (J0)
‖u‖Ṡ1(J0×Rn) + ‖(|x|−γ ∗ |u|2)u‖Ṅ1(I×Rn)

� C(E) + (4η)
4
n ‖u‖Ṡ1(J0×Rn) + C(E, M)εc‖u‖Ṡ1(J0×Rn).

Assuming that η and ε are sufficiently small, we have

‖u‖Ṡ1(J0×Rn) ≤ C(E).

Again applying Strichartz estimates, we find that (5.7) and (5.10) to the intervals J1 yield

‖u‖ ˙̃
X0(J1)

≤ ‖ei(t−t1)Δv(t1)‖ ˙̃
X0(J1)

+ ‖ei(t−t1)Δ(u(t1) − v(t1))‖ ˙̃
X0(J1)

+ C‖u‖1+ 4
n

˙̃
X0(J1)

+ C(E, M)εc‖u‖ ˙̃
X0(J1)

≤ 2η + ε
c
2 + C‖u‖1+ 4

n

˙̃
X0(J1)

+ C(E, M)εc‖u‖ ˙̃
X0(J1)

.

With η and ε sufficiently small, we obtain

‖u‖ ˙̃
X0(J1)

≤ 4η.

In a way similar to the proof in I0, we choose a sufficiently small ε and use Lemma 3.5 to derive

‖u − v‖Ṡ0(J1×Rn) ≤ ε
c
4 .

The same arguments yield
‖u‖Ṡ1(J1×Rn) ≤ C(E).
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By induction, for each 0 ≤ k ≤ k′ − 1, we get

‖u − v‖Ṡ0(Jk×Rn) ≤ ε
c

2k+1 ,

‖u‖Ṡ1(Jk×Rn) ≤ C(E).

Adding these estimates over all the subintervals Jk, we obtain

‖u‖Ṡ0(Ij0×Rn) ≤ ‖v‖Ṡ0(Ij0×Rn) +
k′−1∑
k=0

‖u − v‖Ṡ0(Jk×Rn) ≤ C(E, M),

‖u‖Ṡ1(Ij0×Rn) ≤
k′−1∑
k=0

‖u‖Ṡ1(Jk×Rn) ≤ C(E, M).

Since intervals Ij0 are arbitrary, we have

‖u‖Ṡ0(R×Rn) ≤
J−1∑
j=0

‖u‖Ṡ0(Ij×Rn) ≤ C(E, M),

‖u‖Ṡ1(R×Rn) ≤
J−1∑
j=0

‖u‖Ṡ1(Ij×Rn) ≤ C(E, M).

Hence
‖u‖S1(R×Rn) ≤ C(E, M).

5.3 Global bounds in the case: 4
n

< p < 4
n−2

, 2 < γ < min {n, 4} and λ1, λ2 > 0

The results were proved in [2] with a more complicated argument. Here we present a simpler
proof using the interaction Morawetz estimate.

By Proposition 5.2, we have

‖u‖Z(R) � ‖u‖L∞
t H1

x(R×Rn) ≤ C(E, M).

Divide R into J = J(E, M, η) subintervals Ij = [tj , tj+1] such that

‖u‖Z(Ij) ∼ η,

where η > 0 is a small constant to be chosen later.
Applying Strichartz estimates and Lemma 2.5 to each Ij , we can deduce

‖u‖S1(Ij×Rn) � ‖u(tj)‖H1
x

+ η
n+1

2(2θ+1) ‖u‖α1(θ)+α2(θ)
L∞

t H1
x(Ij×Rn)‖u‖S1(Ij×Rn)

+ η
n+1

2(2θ+1) ‖u‖β1(θ)+β2(θ)
L∞

t H1
x(Ij×Rn)‖u‖S1(Ij×Rn)

� C(E, M) + η
n+1

2(2θ+1) C(E, M)‖u‖S1(Ij×Rn)

+ η
n+1

2(2θ+1) C(E, M)‖u‖S1(Ij×Rn).

Assuming η to be sufficiently small, we have

‖u‖S1(Ij×Rn) ≤ C(E, M)

and

‖u‖S1(R×Rn) ≤
J−1∑
j=0

‖u‖S1(Ij×Rn) ≤ C(E, M).
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5.4 Global bounds in the case: 4
n

< p < 4
n−2

, γ = 4 with n ≥ 5 and λ1, λ2 > 0 or
p = 4

n−2
, 2 < γ < min {n, 4} and λ1, λ2 > 0

Due to the same reason as in Subsection 5.3, we present the first case and the other can be
done similarly. In the slab I × Rn, define

˙̃
Y

0

(I) := L
2+ 1

θ
t L

2n(2θ+1)
n(2θ+1)−4θ
x (I × Rn) ∩ L6

t L
6n

3n−2
x (I × Rn),

where θ is introduced in Lemma 2.5. Replace ˙̃
X0(I) by ˙̃

Y 0(I) in Subsection 5.2, and Lemma
3.5 by Lemma 3.2, then apply the same approach used in Subsection 5.2. One can get

‖u‖S1(R×Rn) ≤ C(E, M).

5.5 Global bounds in the case: p = 4
n−2

, γ = 2 and λ1, λ2 > 0 or p = 4
n

, γ = 4
with n ≥ 5 and λ1, λ2 > 0

Similarly, it suffices to discuss the first case. Without loss of generality, let λ1 = λ2 = 1.
The idea is to decompose u into the low frequency part ulo and the high frequency part uhi. One
can view the former as a perturbation of mass-critical NLS, and the latter as the H1

x-critical
NLS. Finally, we get the finite global Strichartz bounds in this case.

Let
0 < η3 � η2 � η1 � 1,

where ηj may depend on the energy, the mass and any ηi greater than ηj . By Proposition 5.2
and conservation of energy and mass, we have

‖u‖Z(R) ≤ C(E, M).

We divide R into K = K(E, M, η3) subintervals Jk such that in each slab Jk × Rn we have

‖u‖Z(Jk) ∼ η3. (5.11)

Fix Jk0 = [a, b]. For every t ∈ Jk0 , write u(t) = ulo(t)+uhi(t), where ulo(t) := P<η−1
2

u(t), uhi(t)
:= P≥η−1

2
u(t).

In the slab Jk0 ×Rn, we view ulo(t) as the solution to the following L2
x-critical Hartree NLS{

(i∂t + Δ)v = (|x|−2 ∗ |v|2)v,

v(a) = ulo(a),

which is globally well-posed in H1
x. Moreover, by Assumption 1.2, one has

‖v‖U(R) ≤ C(‖ulo(a)‖L2
x
) ≤ C(M).

By Lemma 3.6, we have

‖v‖Ṡ0(R×Rn) ≤ C(M), (5.12)

‖v‖Ṡ1(R×Rn) ≤ C(E, M). (5.13)

Furthermore, we divide Jk0 = [a, b] into J = J(M, η1) subintervals Ij = [tj−1, tj ] with t0 =
a, tJ = b such that

‖v‖U(Ij) ∼ η1. (5.14)
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Proceeding inductively for each j = 1, · · · , J , we can establish

P (j) :

⎧⎪⎨⎪⎩
‖ulo − v‖Ṡ0([t0,tj ])

≤ η1−2δ
2 ,

‖uhi‖Ṡ1(Il)
≤ L(E) for every 1 ≤ l ≤ j,

‖u‖S1([t0,tj ]) ≤ C(η1, η2),

(5.15)

where δ > 0 is a small constant, and L(E) is a large quantity to be chosen later which depends
only on E (not on any ηj). As the method of checking that (5.15) holds for j = 1 is similar to
that in inductive step, i.e., showing that P (j) implies P (j + 1), we will only prove the latter.

Assume that (5.15) is true for some 1 ≤ j < J . We want to show⎧⎪⎨⎪⎩
‖ulo − v‖Ṡ0([t0,tj+1]) ≤ η1−2δ

2 ,

‖uhi‖Ṡ1(Il)
≤ L(E) for every 1 ≤ l ≤ j + 1,

‖u‖S1([t0,tj+1]) ≤ C(η1, η2).

(5.16)

Let Ω1 be the set of time T ∈ Ij+1 such that

‖ulo − v‖Ṡ0([t0,T ]) ≤ η1−2δ
2 , (5.17)

‖uhi‖Ṡ1([tj ,T ]) ≤ L(E), (5.18)

‖u‖S1([t0,T ]) ≤ C(η1, η2). (5.19)

In order to prove Ω1 = Ij+1, we notice that Ω1 is nonempty (as tj ∈ Ω1) and closed (by
Fatou). Let Ω2 be the set of all times T ∈ Ij+1 such that

‖ulo − v‖Ṡ0([t0,T ]) ≤ 2η1−2δ
2 , (5.20)

‖uhi‖Ṡ1([tj ,T ]) ≤ 2L(E), (5.21)

‖u‖S1([t0,T ]) ≤ 2C(η1, η2). (5.22)

We will show Ω2 ⊂ Ω1, which will conclude the argument.

Lemma 5.1 Let T ∈ Ω2. Then, the following properties hold:

‖ulo‖U(I) � η1, (5.23)

‖ulo‖Ṡ0([t0,T ]×Rn) ≤ C(M), (5.24)

‖ulo‖W ([tj ,T ]) � η2, (5.25)

‖ulo‖Ṡ1(I×Rn) � E, (5.26)

‖ulo‖Ṡ1([t0,T ]×Rn) � C(η1)E, (5.27)

‖uhi‖Ṡ0(I×Rn) � η2L(E), (5.28)

‖uhi‖Ṡ0([t0,T ]×Rn) � η2C(η1)L(E), (5.29)

‖uhi‖Ṡ1([t0,T ]×Rn) � C(η1)L(E), (5.30)

where I ∈ {Il, 1 ≤ l ≤ j} ∪ {[tj , T ]}.
Proof Using (5.12), (5.14), (5.20) and Bernstein inequality, we have

‖ulo‖U(I) ≤ ‖ulo − v‖U(I) + ‖v‖U(I) � η
(1−2δ)
2 + η1 � η1,

‖ulo‖Ṡ0([t0,T ]×Rn) ≤ ‖ulo − v‖Ṡ0([t0,T ]×Rn) + ‖v‖Ṡ0([t0,T ]×Rn) � η1−2δ
2 + C(M) ≤ C(M),

‖uhi‖Ṡ0(I×Rn) � η2‖uhi‖Ṡ1(I×Rn) � η2L(E).
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Therefore, (5.23), (5.24) and (5.28) hold. In view of J = O(η−C
1 ), we get

‖uhi‖Ṡ1([t0,T ]×Rn) �
j∑

l=1

‖uhi‖Ṡ1(Il×Rn) + ‖uhi‖Ṡ1([tj ,T ]×Rn)

≤ C(η1)L(E) + η2L(E) ≤ C(η1)L(E),

‖uhi‖Ṡ0([t0,T ]×Rn) � η2‖uhi‖Ṡ1([t0,T ]×Rn) ≤ η2C(η1)L(E).

Hence, (5.29) and (5.30) hold. In the slab I × Rn, ulo satisfies the equation

ulo(t) = ei(t−tl)Δulo(tl) − i
∫ t

tl

ei(t−s)ΔPlo(|u| 4
n−2 u + (|x|−2 ∗ |u|2)u)(s) ds,

where 0 ≤ l ≤ j. Then by Strichartz estimate

‖ulo‖Ṡ1(I×Rn) � ‖ulo(tl)‖Ḣ1
x

+ ‖Plo(|u| 4
n−2 u)‖Ṅ1(I×Rn) + ‖Plo((|x|−2 ∗ |u|2)u)‖Ṅ1(I×Rn).

By Bernstein inequality, Lemma 2.6, (5.11) and (5.22), we have

‖Plo(|u| 4
n−2 u)‖Ṅ1(I×Rn) � η−1

2 ‖|u| 4
n−2 u‖Ṅ0(I×Rn)

� η−1
2 ‖u‖ρ

Z(I)‖u‖
n+2
n−2−ρ

S1(I×∗Rn) � η−1
2 ηρ

3C(η1, η2) ≤ η2,

where η3 is sufficiently small and depends on η1 and η2.
Hölder and Hardy-Littlewood-Sobolev inequality, together with (5.21), (5.23) and (5.28),

implies

‖Plo((|x|−2 ∗ |u|2)u)‖Ṅ1(I×Rn) � ‖u‖2
U(I)‖∇u‖U(I)

� ‖ulo‖2
U(I)‖∇ulo‖U(I) + ‖uhi‖2

U(I)‖∇uhi‖U(I)

+ ‖ulo‖2
U(I)‖∇uhi‖U(I) + ‖uhi‖2

U(I)‖∇ulo‖U(I)

� η2
1‖ulo‖Ṡ1(I×Rn) + (η2L(E))2L(E)

+ η2
1L(E) + (η2L(E))2‖ulo‖Ṡ1(I×Rn).

Then ‖ulo‖Ṡ1(I×Rn) � E + η2 + (η2L(E))2L(E) + η2
1L(E) + (η2

1 + (η2L(E))2)‖ulo‖Ṡ1(I×Rn).
Taking η1 and η2 to be sufficiently small depending on E, we can derive

‖ulo‖Ṡ1(I×Rn) � E.

Thus (5.26) holds. Since J = C(η1), (5.27) follows from (5.26).
Finally, we are ready to show that (5.25) is true. We write ulo = P≤η2ulo + Pη2<·<η−1

2
ulo.

When n ≥ 5, by interpolation, Sobolev embedding, Bernstein inequality, (5.11) and (5.26),
we have

‖Pη2<·<η−1
2

ulo‖W ([tj ,T ])

� ‖Pη2<·<η−1
2

ulo‖c

Ln+1
t L

2n(n+1)
n2−n−6
x ([tj ,T ]×Rn)

‖Pη2<·<η−1
2

ulo‖1−c

L2
tL

2n
n−4
x ([tj,T ]×Rn)

� ‖|∇| 3
n+1 Pη2<·<η−1

2
ulo‖c

Z([tj ,T ])‖ulo‖1−c

Ṡ1([tj ,T ]×Rn)

� η
− 3

n+1
2 ‖ulo‖c

Z([tj,T ])E
1−c

� η
− 3

n+1
2 ηc

3E
1−c

≤ η2,
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where c = 4(n+1)
(n−1)(n+2) .

When n = 4, using interpolation, Sobolev embedding, Bernstein inequality, the conservation
of energy and (5.11), we get

‖Pη2<·<η−1
2

ulo‖W ([tj,T ]) � ‖Pη2<·<η−1
2

ulo‖
5
6

L5
t L

20
3

x ([tj ,T ]×Rn)
‖Pη2<·<η−1

2
ulo‖

1
6
L∞

t L4
x([tj ,T ]×Rn)

� ‖|∇| 35 Pη2<·<η−1
2

ulo‖
5
6
Z([tj,T ])E

1
6

� (η− 3
5

2 η3)
5
6 E

1
6

≤ η2.

Similarly, for n = 3, we have

‖Pη2<·<η−1
2

ulo‖W ([tj,T ]) � ‖Pη2<·<η−1
2

ulo‖
2
5
L4

t L∞
x ([tj ,T ]×Rn)

‖Pη2<·<η−1
2

ulo‖
3
5
L∞

t L6
x([tj ,T ]×Rn)

� ‖(1 + |∇|) 3
4+εPη2<·<η−1

2
ulo‖

2
5
Z([tj ,T ])E

3
5

� (η− 3
4

2 η3)
2
5 E

3
5

≤ η2.

Hence, for any n ≥ 3, we have

‖Pη2<·<η−1
2

ulo‖W ([tj ,T ]) ≤ η2.

By Sobolev embedding, Bernstein inequality and (5.24), we have

‖P≤η2ulo‖W ([tj,T ]) � ‖∇P≤η2ulo‖
L

2(n+2)
n−2

t L

2n(n+2)
n2+4

x ([tj ,T ]×Rn)

� η2‖ulo‖
L

2(n+2)
n−2

t L

2n(n+2)
n2+4

x ([tj ,T ]×Rn)

.

For n = 3, by interpolation, (5.24) and the conservation of mass, we get

‖P≤η2ulo‖W ([tj ,T ]) � η2‖ulo‖
3
5
U([tj ,T ])‖ulo‖

2
5
L∞

t L2
x([tj ,T ]×Rn) � η2η

3
5
1 M

2
5 ≤ η2

provided that η1 is a sufficiently small constant depending on M .

For n = 4, since L
2(n+2)

n−2
t L

2n(n+2)
n2+4

x = U , we have

‖P≤η2ulo‖W ([tj ,T ]) � η2η1 ≤ η2.

For n ≥ 5, by interpolation, (5.23) and (5.24), we have

‖P≤η2ulo‖W ([tj ,T ]) � η2‖ulo‖
6

n+2

U([tj ,T ])‖ulo‖
n−4
n+2

LtL
2n

n−2
x ([tj ,T ]×Rn)

� η2η
6

n+2
1 ‖ulo‖

n−4
n+2

Ṡ0([tj ,T ]×Rn)
� η2η

6
n+2
1 C(M) ≤ η2.

Hence, For all n ≥ 3, we get
‖P≤η2ulo‖W ([tj,T ]) ≤ η2.

Therefore, by the triangle inequality, (5.25) is true.
Now it remains to show Ω2 ⊂ Ω1. We will first show (5.15). The method is to treat ulo as

v via the perturbation result of Lemma 3.3. Note that ulo satisfies the following initial value
problem in the slab [t0, T ] × Rn,⎧⎪⎨⎪⎩

(i∂t + Δ)ulo = (|x|−2 ∗ |ulo|2)ulo + Plo(|u| 4
n−2 u)

+Plo[(|x|−2 ∗ |u|2)u − (|x|−2 ∗ |ulo|2)ulo] − Phi((|x|−2 ∗ |ulo|2)ulo),
ulo(t0) = ulo(a).
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Since (5.24) and v(t0) = ulo(t0), in order to use Lemma 3.3, we only need to show that the
error term

e = Plo(|u| 4
n−2 u) + Plo[(|x|−2 ∗ |u|2)u − (|x|−2 ∗ |ulo|2)ulo] − Phi((|x|−2 ∗ |ulo|2)ulo)

is small in Ṅ0([t0, T ]× Rn).
By Lemma 2.6, (5.11) and (5.22), we have

‖Plo(|u| 4
n−2 u)‖Ṅ0([t0,T ]×Rn) � ‖u‖θ

Z([t0,T ])‖u‖
n+2
n−2−θ

Ṡ1([t0,T ]×Rn)
� ηθ

3(C(η1, η2))
n+2
n−2−θ ≤ η1−δ

2 ,

if η3 is sufficiently small and depends on η1 and η2. By Bernstein inequality, Hölder inequality,
Hardy-littlewood-Sobolev inequality, (5.24) and (5.27), we have

‖Phi((|x|−2 ∗ |ulo|2)ulo)‖Ṅ0([t0,T ]×Rn) � η2‖ulo‖2
U([t0,T ])‖∇ulo‖U([t0,T ])

� η2‖ulo‖2
Ṡ0([t0,T ]×Rn)

‖∇ulo‖Ṡ1([t0,T ]×Rn)

� η2C(M)C(η1)E ≤ η1−δ
2 ,

whenever η2 is sufficiently small depending on E, M and η1. From Hölder inequality, Hardy-
littlewood-Sobolev inequality, (5.24) and (5.29), one can get

‖Plo[(|x|−2 ∗ |u|2)u − (|x|−2 ∗ |ulo|2)ulo]‖Ṅ0([t0,T ]×Rn)

� ‖(|x|−2 ∗ |ulo|2)uhi‖Ṅ0([t0,T ]×Rn)

+ ‖(|x|−2 ∗ |uhi|2)uhi‖Ṅ0([t0,T ]×Rn) + ‖(|x|−2 ∗ |uhi|2)ulo‖Ṅ0([t0,T ]×Rn)

� ‖ulo‖2
Ṡ0([t0,T ]×Rn)

‖uhi‖Ṡ0([t0,T ]×Rn)

+ ‖uhi‖2
Ṡ0([t0,T ]×Rn)

‖ulo‖Ṡ0([t0,T ]×Rn) + ‖uhi‖3
Ṡ0([t0,T ]×Rn)

� C(M)η2C(η1)L(E) + (η2C(η1)L(E))2C(M) + (η2C(η1)L(E))3

≤ η1−δ
2 .

Therefore,
‖e‖Ṅ0([t0,T ]×Rn) ≤ 3η1−δ

2 ,

and hence let η2 be a sufficiently small constant depending on M , we can use Lemma 3.3 to get

‖ulo − v‖Ṡ0([t0,T ]×Rn) ≤ C(M)η1−δ
2 ≤ η1−2δ

2 .

Thus (5.15) is true. Next we prove that (5.18) is true. The idea is to view uhi as the solution
to the energy-critical NLS {

iwt + Δw = |w| 4
n−2 w,

w(tj) = uhi(tj).
(5.31)

Based upon the results in [5, 22, 27], we know that (5.31) is globally well-posed and

‖w‖Ṡ1(R×Rn) ≤ C(E). (5.32)

Using Lemma 3.6 and (5.28), we also get

‖w‖Ṡ0(R×Rn) ≤ C(E)‖uhi(tj)‖L2
x

� η2C(E)L(E),
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where uhi satisfies the following initial value problem in the slab [tj , T ] × Rn:⎧⎪⎨⎪⎩
(i∂t + Δ)uhi = |uhi| 4

n−2 uhi + Phi((|x|−2 ∗ |u|2)u)
+Phi(|u| 4

n−2 u − |uhi| 4
n−2 uhi) − Plo(|uhi| 4

n−2 uhi),
uhi(tj) = uhi(tj).

In order to use Lemma 3.4, we show that the error term

e = Phi((|x|−2 ∗ |u|2)u) + Phi(|u| 4
n−2 u − |uhi| 4

n−2 uhi) − Plo(|uhi| 4
n−2 uhi)

is small in Ṅ1([tj , T ]× Rn).
From Hölder, Hardy-Littlewood-Sobolev inequality, (5.21), (5.23), (5.26), (5.29) and (5.30),

we have

‖Phi((|x|−2 ∗ |u|2)u‖Ṅ1([tj ,T ]×Rn)

� ‖u‖2
U([tj,T ])‖∇u‖U([t0,T ])

� ‖uhi‖2
Ṡ0([tj ,T ]×Rn)

‖uhi‖Ṡ1([tj,T ]×Rn) + ‖ulo‖2
Ṡ0([tj ,T ]×Rn)

‖ulo‖Ṡ1([tj ,T ]×Rn)

+ ‖ulo‖2
Ṡ0([tj ,T ]×Rn)

‖uhi‖Ṡ1([tj ,T ]×Rn) + ‖uhi‖2
Ṡ0([tj ,T ]×Rn)

‖ulo‖Ṡ1([tj ,T ]×Rn)

� (η2C(η1)L(E))2C(η1)L(E) + η2
1E + η2

1L(E) + (η2L(E))2E ≤ η2,

if η2 is sufficiently small depending on E and η1.
Using Bernstein inequality, Lemma 2.6, (5.11) and (5.22), one has

‖Plo(|uhi| 4
n−2 uhi)‖Ṅ1([tj ,T ]×Rn) � η−1

2 ‖u‖θ
Z([tj,T ])‖u‖

n+2
n−2−θ

Ṡ1([tj,T ]×Rn)
� η−1

2 ηθ
3C(η1, η2) ≤ η2

with the assumption that η3 is sufficiently small depending on η1 and η2.
Now we estimate the last term ‖Phi(|u| 4

n−2 u− |uhi| 4
n−2 uhi)‖Ṅ1([tj ,T ]×Rn). Since the function

z → |z| 4
n−2 z2

|z|2 is Hölder continuous of order 4
n−2 , we have

‖Phi(|u| 4
n−2 u − |uhi| 4

n−2 uhi)‖Ṅ1([tj ,T ]×Rn)

� ‖|u| 4
n−2 u − |uhi| 4

n−2 uhi‖Ṅ1([tj ,T ]×Rn)

� ‖|u| 4
n−2∇u − |uhi| 4

n−2∇uhi‖Ṅ0([tj ,T ]×Rn) + ‖|u| 4
n−2∇ulo‖Ṅ0([tj ,T ]×Rn)

+
∥∥∥(

|u| 4
n−2

u2

|u|2 − |uhi| 4
n−2

u2
hi

|uhi|2
)
∇uhi

∥∥∥
Ṅ0([tj ,T ]×Rn)

� ‖|u| 4
n−2∇ulo‖Ṅ0([tj ,T ]×Rn) + ‖(|u| 4

n−2 − |uhi| 4
n−2 )∇uhi‖Ṅ0([tj ,T ]×Rn)

+ ‖|ulo| 4
n−2∇uhi‖Ṅ0([tj ,T ]×Rn)

= (I) + (II) + (III). (5.33)

For (I) in (5.33), from Remark 2.1, Bernstein inequality, (5.11), (5.19) and (5.26), we have

‖|u| 4
n−2∇ulo‖Ṅ0([tj ,T ]×Rn) � ‖u‖ρ

Z([tj,T ])‖u‖
4

n−2−ρ

S1([tj ,T ]×Rn)‖∇ulo‖S1([tj ,T ]×Rn)

� ηρ
3C(η1, η2)η−1

2 ‖ulo‖S1([tj,T ]×Rn) ≤ η2

as long as η3 is sufficiently small depending on η1 and η2.
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For (II) in (5.33), when the dimension 3 ≤ n < 6, by Hölder inequality, (5.21), (5.24) and
(5.26), we can get

‖(|u| 4
n−2 − |uhi| 4

n−2 )∇uhi‖Ṅ0([tj ,T ]×Rn)

� ‖(|u| 6−n
n−2 ulo∇uhi‖Ṅ0([tj ,T ]×Rn)

� (‖uhi‖
6−n
n−2

Ṡ1([tj ,T ]×Rn)
+ ‖ulo‖

6−n
n−2

Ṡ1([tj,T ]×Rn)
)‖∇uhi‖Ṡ0([tj ,T ]×Rn)‖ulo‖W ([tj ,T ])

� (L(E) + E)
6−n
n−2 η2L(E) ≤ η

1
2
2 ,

provided that η2 is sufficiently small depending on E.
When the dimension n ≥ 6, applying the inequality (a + b)p ≤ ap + bp as a, b ≥ 0, p ≤ 1,

(5.21) and (5.25), we have

‖(|u| 4
n−2 − |uhi| 4

n−2 )∇uhi‖Ṅ0([tj,T ]×Rn) � ‖ulo| 4
n−2∇uhi‖Ṅ0([tj ,T ]×Rn)

� ‖uhi‖Ṡ1([tj ,T ]×Rn)‖ulo‖
4

n−2

W ([tj ,T ])

� L(E)η
4

n−2
2 ≤ η

3
n−2
2 .

Then (5.33) is bounded from above by η
3

n−2
2 .

Therefore,

‖e‖Ṅ1([tj ,T ]×Rn) ≤ η2 + η
1
2
2 + 2η

3
n−2
2 ≤ η

3
n
2 .

Taking η2 to be sufficiently small depending on E, we can use Lemma 3.4 to derive

‖uhi − w‖Ṡ1([tj,T ]×Rn) � ηc
1

for a small constant c > 0 depending only on the dimension n. So we obtain

‖uhi‖Ṡ1([tj ,T ]×Rn) ≤ ‖uhi − w‖Ṡ1([tj ,T ]×Rn) + ‖w‖Ṡ1([tj ,T ]×Rn) � ηc
1 + C(E) ≤ L(E)

by choosing L(E) to be sufficiently large.
Finally, (5.19) follows from

‖u‖S1([t0,T ]×Rn) ≤ ‖uhi‖S1([t0,T ]×Rn) + ‖ulo‖S1([t0,T ]×Rn)

≤ C(M) + C(η1)E + η2C(η1)L(E) + C(η1)L(E)

≤ C(η1, η2).

This proves that Ω2 ⊂ Ω1. By induction, we have

‖u‖S1(Jk0×Rn) ≤ C(η1, η2).

As Jk0 is arbitrary and the total number of intervals Jk is K = K(E, M, η3), putting these
bounds together, we obtain

‖u‖S1(R×Rn) ≤ C(η1, η2, η3) = C(E, M).
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5.6 Global bounds in the case: p = 4
n−2

, 2 ≤ γ < 4 with γ < n and λ1 · λ2 < 0 or
4
n

≤ p < 4
n−2

, γ = 4 with γ < n and λ1 · λ2 < 0

Here we only prove the first case, since the other case can be handled similarly. Without
loss of generality, let |λ1| = |λ2| = 1.

We view u as the perturbation to the energy-critical problem{
iwt + Δw = |w| 4

n−2 w,

w(0) = uhi(0),

which is globally well-posed by [5, 22, 27] and

‖w‖Ṡ1(R×Rn) ≤ C(E, M). (5.34)

By Lemma 3.6, (5.34) implies

‖w‖Ṡ0(R×Rn) ≤ C(E, M)‖u0‖L2
x
≤ C(E, M)M

1
2 . (5.35)

Definition 5.1 Ḋ0(I) := V (I) ∩ U(I) ∩ L
2(n+2)

n−2
t L

2(n+2)
n2+4

x , and ‖u‖Ḋk(I) := ‖|∇|ku‖Ḋ0(I).

It is easy to verify that

‖(|x|−γ ∗ |u|2)u‖Ṅk(I×Rn) � ‖u‖Ḋk(I)‖u‖4−γ

Ḋ0(I)
‖u‖γ−2

Ḋ1(I)
, (5.36)

‖|u| 4
n−2 u‖Ṅk(I×Rn) � ‖u‖

4
n−2

Ḋ1(I)
‖u‖Ḋk(I), (5.37)

where k = 0, 1.
As we have done before, we divide R into J = J(E, M, η) subintervals Ij = [tj , tj+1] such

that
‖u‖Ḋ1(Ij)

∼ η,

where η > 0 is a small constant to be chosen later.
Moreover, let M be sufficiently small and depend on E and η. In view of (5.35), we may

assume
‖w‖Ṡ0(R×Rn) ≤ η.

Then we get

‖u‖D1(Ij) ∼ η. (5.38)

As a matter of fact, in each slab Ij × Rn, we have

‖ei(t−tj)Δw(tj)‖D1(Ij) ≤ ‖w‖D1(Ij) + C‖w‖
n+2
n−2

D1(Ij)
≤ η + Cη

n+2
n−2 ≤ 2η, (5.39)

if Cη
n+2
n−2 ≤ η.

Let I0 = [t0, t1]. Since w(t0) = u(t0) = u0, using Strichartz estimates, (5.36), (5.37) and
(5.39), we can deduce

‖u‖D1(I0) ≤ 2η + C‖w‖
n+2
n−2

D1(I0)
+ C‖w‖3

D1(I0).

By a standard continuity argument, this yields

‖u‖D1(I0) ≤ 4η (5.40)
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with η being sufficiently small.
On the other hand, Strichartz estimates, (5.36), (5.37) and (5.40) imply

‖u‖Ḋ0(I0) � M
1
2 + ‖u‖

4
n−2

Ḋ1(I0)
‖u‖Ḋ0(I0) + ‖u‖5−γ

Ḋ0(I0)
‖u‖γ−2

Ḋ1(I0)

� M
1
2 + η

4
n−2 ‖u‖Ḋ0(I0)

+ ‖u‖5−γ

Ḋ0(I0)
ηγ−2.

Therefore, making η sufficiently small and γ < 4, we get

‖u‖Ḋ0(I0) � M
1
2 .

In order to apply Lemma 3.4, we need to show that the error (|x|−γ ∗ |u|2)u is small in the norm
Ṅ1(I0 × Rn). In fact, by

‖(|x|−γ ∗ |u|2)u‖Ṅ1(I0×Rn) � ‖u‖γ−1

Ḋ1(I0)
‖u‖4−γ

Ḋ0(I0)
� ηγ−1M2− γ

2 ≤ M δ0

for a small constant δ0 > 0, together with M being sufficiently small which depends on E and
η, and by Lemma 3.4, we get

‖u − w‖Ṡ1(I0×Rn) ≤ M cδ0

for a small constant c > 0 that depends only on the dimension n. Strichartz estimate implies

‖ei(t−t1)Δ(u(t1) − w(t1))‖Ṡ1(I1×Rn) ≤ M cδ0 . (5.41)

Now we turn to the interval I1 = [t1, t2]. Using Strichartz estimate, (5.36), (5.37), (5.39) and
(5.41), we can get

‖u‖D1(I1) ≤ ‖ei(t−t1)Δu(t1)‖Ḋ0(I1) + ‖ei(t−t1)Δ(u(t1) − w(t1))‖Ḋ1(I1)

+ ‖ei(t−t1)Δw(t1)‖Ḋ1(I1) + C‖u‖
n+2
n−2
D1(I1) + C‖u‖3

D1(I1)

� M
1
2 + M cδ0 + η + ‖u‖

n+2
n−2

D1(I1) + ‖u‖3
D1(I1).

Assuming η and M to be sufficiently small and by a standard continuity argument, we obtain

‖u‖D1(I1) ≤ 4η.

Moreover, we also get
‖u‖Ḋ0(I1) � M

1
2 .

For an M sufficiently small, we can use Lemma 3.4 to obtain

‖u − w‖Ṡ1(I1×Rn) ≤ M cδ1

for a small constant 0 < δ1 < δ0.
By induction argument, choosing M to be the smallest one of above steps, we obtain

‖u‖D1(Ij) ≤ 4η.

Summing these estimates over all intervals Ij , and since the total number of these intervals is
J = J(E, M, η), we get

‖u‖D1(R) � Jη ≤ C(E, M).

Using Strichartz estimate, (5.36) and (5.37), we get

‖u‖S1(R×Rn) � ‖u0‖H1
x

+ ‖u‖
n+2
n−2

D1(R) + ‖u‖3
D1(R) � M + E + C(E) ≤ C(E, M).
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5.7 Global bounds in the case: 4
n

≤ p < 4
n−2

, 2 ≤ γ < 4 with γ < n and λ1 ·λ2 < 0
or p = 4

n
, γ = 2 and λ1, λ2 > 0

Both cases can be discussed similarly with the method used in Subsection 5.6. The only
difference is that here we treat u as the solution to the free Schrödinger equation

iũt + Δũ = 0, ũ(0) = u0.

By Strichartz estimate, the global solution ũ obeys the spacetime estimates

‖ũ‖S1(R×Rn) � ‖u0‖Ḣ1
x
≤ C(E, M)

and
‖ũ‖S0(R×Rn) � ‖u0‖L2

x
� M

1
2 .

Using the similar method used in Subsection 5.6, it is easy to show that

‖u‖S1(R×Rn) ≤ C(E, M).

5.8 Finite global Strichartz norms imply scattering
Finally, we show that finite global Strichartz norms imply scattering. For simplicity, we only

construct the scattering state in the positive time direction. Similar arguments can be used to
construct the scattering state in the negative direction.

For 0 < t < ∞, define

u+(t) = u0 − i
∫ t

0

e−isΔ(λ1|u|pu + λ2(|x|−γ ∗ |u|2)u) ds.

Since u ∈ S1(R×Rn), Strichartz estimates and Hölder inequality show that u+(t) ∈ H1
x for all

t ∈ R+, and for 0 < τ < t, we have

‖u+(t) − u+(τ)‖H1
x

�
∥∥∥ ∫ t

τ

ei(t−s)Δ(λ1|u|pu + λ2(|x|−γ ∗ |u|2)u) ds
∥∥∥

L∞
t H1

x([τ,t]×Rn)

� ‖u‖2− (n−2)p
2

V ([τ,t]) ‖u‖
np
2 −2

W ([τ,t])‖(1 + |∇|)u‖V ([τ,t])

+ ‖u‖4−γ
U([τ,t])‖u‖γ−2

L6
tL

6n
3n−8
x ([τ,t]×Rn)

‖(1 + |∇|)u‖U([τ,t]),

and for ε > 0, there exists a Tε > 0 such that

‖u+(t) − u+(τ)‖H1
x
≤ ε

for any t, τ > Tε. Thus u+(t) converges to some function u+ in H1
x as t → +∞. In fact

u+ := u0 − i
∫ ∞

0

e−isΔ(λ1|u|pu + λ2(|x|−γ ∗ |u|2)u) ds.

Then the scattering follows because of

‖e−itΔu(t) − u+‖H1
x

=
∥∥∥ ∫ ∞

t

e−isΔ(λ1|u|pu + λ2(|x|−γ ∗ |u|2)u) ds
∥∥∥

H1
x

=
∥∥∥ ∫ ∞

t

ei(t−s)Δ(λ1|u|pu + λ2(|x|−γ ∗ |u|2)u) ds
∥∥∥

H1
x

� ‖u‖2− (n−2)p
2

V ([t,∞)) ‖u‖
np
2 −2

W ([t,∞))‖(1 + |∇|)u‖V ([t,∞))

+ ‖u‖4−γ
U([t,∞))‖u‖γ−2

L6
tL

6n
3n−8
x ([t,∞)×Rn)

‖(1 + |∇|)u‖U([t,∞)),



470 D. Y. Fang, Z. Han and J. L. Dai

noting that the right-hand side of the above inequality obviously tends to 0 as t → +∞. The
other properties follow from conservation of mass and energy.

6 Blowup Results

From Theorem 1.1, we can see that there are still many regions in which additional con-
ditions, such as small energy and small mass, are required for the problem to be globally
well-posed. In this section, we will show that in these regions, under suitable assumptions the
solution to (1.1) will blow up at finite time. We follow the approach of Glassey [8], which is
essentially a convexity method. Consider the variance

f(t) =
∫

Rn

|x|2|u(t, x)|2 dx.

For strong H1
x-solution u to (1.1) with initial data u0 ∈ Σ, it is well-known that if f ∈

C2(−Tmin, Tmax) we have the following lemma (see, for example, [2, Chapter 6]).

Lemma 6.1 For all t ∈ (−Tmin, Tmax), we have

f ′(t) = 4Im
∫

ux · ∇u dx

and

f ′′(t) = 16E +
4np− 16

p + 2
λ1‖u‖p+2

Lp+2
x

+ 2λ2(γ − 2)
∫

(|x|−γ ∗ |u|2)|u|2 dx. (6.1)

If f ′′(t) is bounded from above by a constant A in (−Tmin, Tmax), then we have

‖xu‖2
L2 ≤ θ(t), (6.2)

where
θ(t) = ‖xϕ‖2

L2 + 4tIm
∫

ϕx · ∇ϕdx +
1
2
t2A.

When A is negative, we observe that θ(t) is a polynomial of degree 2, and thus θ(t) < 0 for
large enough |t|. Since ‖xu‖2

L2 ≥ 0, we deduce from (6.1) that both Tmin and Tmax are finite.
However, A < 0 is not a necessary nor sufficient condition for θ(t) to be negative. A necessary
and sufficient condition for θ(t) < 0 is actually

8
(
Im

∫
ϕx · ∇ϕdx

)2

> A‖xϕ‖2
L2 .

But in many situations, Tmin and Tmax are not both finite. Interested readers are referred to
Chapter 6 in [2].

In what follows, we will find the negative constant A such that f ′′(t) ≤ A.
Case 1 λ1 < 0, λ2 > 0, 4

n ≤ p ≤ 4
n−2 , 0 < γ ≤ np

2 and E < 0.
By (6.1), the conservation of energy and our assumption, we get

f ′′(t) = 16E + (4np − 16)
{
E − 1

2
‖∇u‖2

L2 − λ2

4

∫
(|x|−γ ∗ |u|2)|u|2 dx

}
+ 2λ2(γ − 2)

∫
(|x|−γ ∗ |u|2)|u|2 dx

= 4npE − (2np− 8)‖∇u‖2
L2 − (np − 2γ)λ2

∫
(|x|−γ ∗ |u|2)|u|2 dx

≤ 4npE (6.3)
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and 4npE < 0, which is the negative constant A.
Case 2 λ1 > 0, λ2 < 0, 2γ

n ≤ p ≤ 4
n−2 , 2 ≤ γ ≤ 4 and E < 0.

Similarly, we get

f ′′(t) = 16E +
4np− 16

p + 2
λ1‖u‖p+2

Lp+2
x

+ 8(γ − 2)
{

E − 1
2
‖∇u‖2

L2 − λ1

p + 2
‖u‖p+2

Lp+2
x

}
= 8γE − 4(γ − 2)‖∇u‖2

L2 +
4np− 8γ

p + 2
λ1‖u‖p+2

Lp+2
x

≤ 8γE, (6.4)

where 8γE < 0 and A = 8γE.
Case 3 λ1 < 0, λ2 < 0, 4

n ≤ p ≤ 4
n−2 , 2 ≤ γ ≤ 4 and E < 0.

When γ ≥ np
2 , using (6.3) and our assumption, we have

f ′′(t) ≤ 4npE.

When γ < np
2 , from (6.4) and our assumption, we have

f ′′(t) ≤ 8γE.

So we also find the negative constant A.
Case 4 λ1 < 0, λ2 < 0, 0 < γ < 2, 4

n < p ≤ 4
n−2 and 4npE + C(M) < 0.

Using (A.2) and the Young’s inequality, we have that when γ < 2,

‖∇u‖γ
L2 ≤ δ‖∇u‖2

L2 + C(δ).

From (6.3) and our assumption, we have

f ′′(t) ≤ 4npE + [C(np − 2γ)|λ2|δ − (2np − 8)]‖∇u‖2
L2 + C(np − 2γ)|λ2|C(δ)‖u‖4−γ

L2 .

When δ is sufficiently small, we have

f ′′(t) ≤ 4npE + C(M).

Then A = 4npE + C(M) < 0.
Case 5 λ1 < 0, λ2 < 0, 2 < γ ≤ 4, 0 < p < 4

n and 8γE + C(M) < 0.
By (A.1) and the Young’s inequality, we have, when p < 4

n ,

‖∇u‖
np
2

L2 ≤ δ‖∇u‖2
L2 + C(δ).

From (6.4) and our assumption, we have

f ′′(t) ≤ 8γE − 4(γ − 2)‖∇u‖2
L2 +

(4np− 8γ

p + 2
λ1Cδ‖∇u‖2

L2 +
4np− 8γ

p + 2
λ1C(δ)

)
‖u‖

4−(n−2)p
2

L2 .

With δ being sufficiently small, we have

f ′′(t) ≤ 8γE + C(M).

We can take A = 8γE + C(M) < 0, which defines the desired negative constant A.



472 D. Y. Fang, Z. Han and J. L. Dai

References

[1] Bourgain, J., Global well-posedness of defocusing 3D critical NLS in the radial case, J. Amer. Math. Soc.,
2, 1999, 145–171.

[2] Cazenave, T., Semilinear Schrödinger Equation, Courant Lecture Notes in Mathematics, New York Uni-
versity, Courant Institute of Mathematical Sciences, Vol. 10, A. M. S., Providence, RI, 2003.

[3] Cazenave, T. and Weissler, F. B., Critical nonlinear Schrödinger equation, Nonlinear Anal. TMA, 14,
1990, 807–836.

[4] Colliander, J., Grillakis, M. and Tzirakis, N., Tensor products and corrolation estimates with applications
to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 62(7), 2009, 920–968.

[5] Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T., Global well-posedness and scattering for
the energy-critical nonlinear Schrödinger equation in R

3, Ann. of Math., 167(3), 2008, 767–865.

[6] Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T., Global existence and scattering for rough
solutions of a nonlinear Schrödinger equation on R

3, Comm. Pure Appl. Math., 57(8), 2004, 987–1014.

[7] Giorgio, T., Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110(4), 1976, 353–372.

[8] Glassey, R. T., On the blowing up of solution to the Cauchy problem for nonlinear Schrödinger equations,
J. Math. Phys., 18, 1977, 1794–1797.

[9] Holmer, J. and Tzirakis, N., Asymptotically linear solutions in H1 of the 2D defocusing nonlinear
Schrödinger and Hartree equations, J. Hyperbolic Diff. Equ., 7(1), 2010, 117–138.

[10] Kato, T., Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin, 1980.

[11] Kato, T., On nonlinear Schrödinger equations, Ann. Inst. H. Poincare Phys. Theor., 46, 1987, 113–129.

[12] Kato, T., On nonlinear Schrödinger equations II, Hs-solutions and unconditional well-posedness, J.
d’Analyse. Math., 67, 1995, 281–306.

[13] Keel, M. and Tao, T., Endpoint Strichartz estimates, Amer. Math. J., 120, 1998, 955–980.

[14] Kenig, C. E. and Merle, F., Global well-posedness, scattering and blow-up for the energy-critical, focusing,
non-linear Schrödinger equation in the radial case, Invent. Math., 166(3), 2006, 645–675.

[15] Killip, R. and Visan, M., The focusing energy-critical nonlinear Schrödinger equation in five and high,
Amer. J. Math., 132(2), 2010, 361–424.

[16] Killip, R., Visan, M. and Zhang, X., The mass-critical nonlinear Schrödinger equation with radial data in
dimensions three and higher, Anal. Part. Diff. Eqs., 1(2), 2008, 229–266.

[17] Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math.,
118(2), 1983, 349–374.

[18] Miao, C., Xu, G. and Zhao, L., Global well-posedness and scattering for the energy-critical, defocusing
Hartree equation in R

1+n. arXiv: 0707.3254v1 [math.AP] 22 Jul 2007.

[19] Miao, C., Xu, G. and Zhao, L., Global well-posedness, scattering and blow-up for the energy-critical,
focusing Hartree equation in the radial case, Colloquium Mathematicum, 114, 2009, 213–236.

[20] Miao, C., Xu, G. and Zhao, L., Global well-posedness and scattering for the mass-critical Hartree equation
with radial data, J. Math. Pures Appl., 91, 2009, 49–79.

[21] Miao, C., Xu, G. and Zhao, L., The Cauchy problem of the Hartree equation, J. PDEs., 21, 2008, 22–44.

[22] Ryckman, E. and Visan, M., Global well-posedness and scattering for the defocusing energy-critical non-
linear Schrödinger equation in R

1+4, Amer. J. Math., 129(1), 2007, 1–60.

[23] Tao, T. and Visan, M., Stability of energy-critical nonlinear Schrödinger equations in high dimensions,
Electron. J. Diff. Eqns., 118, 2005, 1–28.

[24] Tao, T., Visan, M. and Zhang, X., The nonlinear Schrödinger equation with combined power-type nonlin-
earities, Comm. Part. Diff. Eqs., 32, 2007, 1281–1343.

[25] Tao, T., Visan, M. and Zhang, X. Y., Minimal-mass blowup solutions of the mass-critical NLS, Forum
Math., 20(5), 2008, 881–919.
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Appendix Bound State and Properties

Let R(x) and W (x) be the positive radial Schwartz solutions of the ground state to the
elliptic equations, respectively:

ΔR + |R|pR =
4 − (n − 2)p

np
R and ΔW + (|x|−γ ∗ |W |2)W =

4 − γ

γ
W.

Based upon the work of [2, 7, 17, 26], we have the following characterization of R and W :

‖u‖p+2
Lp+2 ≤ CR‖∇u‖

np
2

L2 ‖u‖
4−(n−2)p

2
L2 , ∀u, v ∈ H1

x, (A.1)

‖(|x|−γ ∗ |v|2)|v|2‖L1 ≤ CW ‖∇v‖γ
L2‖v‖4−γ

L2 , (A.2)

where

CR =
2(p + 2)

np
‖∇R‖−p

L2 =
2(p + 2)

np
‖R‖−p

L2 ,

CW =
4
γ
‖∇W‖−2

L2 =
4
γ
‖W‖−2

L2 ,

which are the best constants for their inequalities, respectively.
If we define

Ẽ(R) : =
1
2

∫
|∇R|2 dx − 1

p + 2

∫
|R|p+2 dx,

Ẽ(W ) : =
1
2

∫
|∇W |2 dx − 1

4

∫
(|x|−γ ∗ |W |2)|W |2 dx,

then we have

Ẽ(R) =
(1

2
− 2

np

) ∫
|∇R|2 dx =

(1
2
− 2

np

)(2(p + 2)
npCR

) 2
p

,

Ẽ(W ) =
(1

2
− 1

γ

) ∫
|∇W |2 dx =

2(γ − 2)
γ2CW

.

Also define E1 := 1
2

∫ |∇u|2 dx − |λ1|
p+2

∫ |u|p+2 dx, where λ1 is the constant in (1.1).

Lemma A.1 Assume that

‖∇u‖2
L2(‖u‖2

L2)
4−(n−2)p

np−4 < |λ1| 4
4−np ‖∇R‖

4p
np−4

L2 ,

E1 · (‖u‖2
L2)

4−(n−2)p
np−4 ≤ (1 − δ0)|λ1| 4

4−np

( 2np

np − 4

) 4−(n−2)p
np−4

(Ẽ(R))
2p

np−4 , where δ0 > 0.

Then we have that when 4
n < p ≤ 4

n−2 , there exists a δ = δ(δ0, n) > 0, such that

‖∇u‖2
L2(‖u‖2

L2)
4−(n−2)p

np−4 ≤ (1 − δ)|λ1| 4
4−np ‖∇R‖

4p
np−4

L2 and E1 ≥ 0.

Proof By (A.1), we have

E1 ≥ 1
2

∫
|∇u|2 dx − |λ1|

p + 2
CR‖∇u‖

np
2

L2 ‖u‖
4−(n−2)p

2
L2 .

Let

f(x) =
1
2
x − |λ1|

p + 2
CR‖u‖

4−(n−2)p
2

L2 x
np
4
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and a =
∫ |∇u|2 dx. Note that

f ′(x) = 0 ⇔ x = |λ1| 4
4−np ‖u‖−

2[4−(n−2)p]
np−4

L2 ‖∇R‖
4p

np−4

L2 := x0

and

f ′(x) > 0 for x < x0,

f(0) = 0, f(x0) =
(1

2
− 2

np

)
|λ1| 4

4−np

( 2np

np − 4

) 4−(n−2)p
np−4

(‖u‖2
L2)−

4−(n−2)p
np−4 (Ẽ(R))

2p
np−4 .

Using the fact that a ∈ [0, x0) and the condition E1 ≤ (1 − δ0)f(x0), we deduce that there
exists δ = δ(δ0, n), such that

a ≤ (1 − δ)x0 and E1 ≥ f(a) ≥ 0.

Define E2 := 1
2

∫ |∇v|2 dx − |λ2|
4

∫ (|x|−γ ∗ |v|2) |v|2 dx, where λ2 is the constant in (1.1).
We can obtain a similar result for W (x) as follows.

Lemma A.2 Assume that

‖∇v‖2
L2(‖v‖2

L2)
4−γ
γ−2 <

(‖∇W‖2
L2

|λ2|
) 2

γ−2
,

E2 · (‖v‖2
L2)

4−γ
γ−2 ≤ (1 − δ0)

(1
2
− 1

γ

)[ 2γẼ(W )
|λ2|(γ − 2)

] 2
γ−2

,

where δ0 > 0. Then when 2 < γ ≤ 4, there exists a δ = δ(δ0, n) > 0, such that

‖∇v‖2
L2(‖v‖2

L2)
4−γ
γ−2 ≤ (1 − δ)

(‖∇W‖2
L2

|λ2|
) 2

γ−2
and E2 ≥ 0.


