Chin. Ann. Math. .
32B(3), 2011, 435 474 Chinese Annals of

DOT: 10.1007 /511401-011-0642-7 Mathematics, Series B
© The Editorial Office of CAM and
Springer-Verlag Berlin Heidelberg 2011

The Nonlinear Schrodinger Equations with Combined
Nonlinearities of Power-Type and Hartree-Type*
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Abstract The primary goal of this paper is to present a comprehensive study of the non-
linear Schrédinger equations with combined nonlinearities of the power-type and Hartree-
type. Under certain structural conditions, the authors are able to provide a complete
picture of how the nonlinear Schrédinger equations with combined nonlinearities interact
in the given energy space. The method used in the paper is based upon the Morawetz
estimates and perturbation principles.
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1 Introduction

Consider the Cauchy problem for the following Schrodinger equations:

{iUtJrAu: MfulPu+ Ao (|77 [ul*)u, (1.1)

u(0,2) = up(x),

where u(t, z) is a complex-valued function in spacetime R x R™ (n > 3), A\; and A2 are nonzero
constants, 0 < p < %, and v € (0,4] N (0,n). When initial data ug take value in H}!(R™)
(or ¥ ={ue HYR") :|-|u(-) € L2(R")}), this is a Hamiltonian PDE with energy and mass
functions
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Since the mass and energy are conservative, we drop the variable ¢ in energy and mass functions,
and denote them by F(u) and M (u), respectively.

When one of \; or \g is zero, the problem is well understood. When the initial data taking
value in H' space, T. Cazenave [2] had a quite thorough study of this case that A\;- Ay =0, 0 <

p < =25, 0 <y < 4: (1) for the defocusing case (i.e. A; or Ay is positive), the problem is
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globally well-posed when 0 < p < ﬁ and 0 < v < 4; (2) for the focusing case (i.e., Ay or Ao
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is negative), it is globally well-posed when 0 < p < % and 0 < v < 2. It is well-known that
p= ﬁ, vy=4and p= %, v = 2 are the critical values for the defocusing case and focusing
case, respectively. In fact, at these critical values of A and p, T. Cazenave obtained the same
results under additional assumption of initial data being small. Fortunately, in the past few
years, there was some great breakthrough into large initial data at these critical values.

For the energy-critical NLS

{mt—l—Au: Aulm2u, (1.2)

u(0,2) = ug(x).

Firstly, J. Bourgain studied the global existence of the defocusing case (A\; > 0) in R? with the
radial initial data (see [1]), then J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao
solved the problem with the general initial data in R? (see [5]). Thereafter, E. Ryckman and
M. Visan extended the results to the higher dimension system ([22, 27]). The focusing case
(A1 < 0) was considered by Carlos E. Kenig and F. Merle (see [14]) and then their obtained
results were extended to the higher dimension system by R. Killip and M. Visan (see [15]). The
name “energy-critical” refers to the fact that the scaling symmetry leaves the equation (1.2)
and the energy invariant, where the energy is defined as

1 2
E(u) = 5/|Vu|2dx—|—/\1 f2/|u

n

2n
723 da.

For the focusing mass-critical NLS

4
n U,

{iut—I—Au:/\ﬂu (13)

(0, z) = up(x),

T. Tao, M. Visan and X. Y. Zhang [25], R. Killip, M. Visan and X. Y. Zhang [16] considered
the problem. Here by “mass-critical”, we mean that the scaling symmetry leaves the equation
(1.2) and the mass invariant, where the mass is defined as

M (u(t)) = llu(®)l| Lz

The relevant results of the system with the Hartree nonlinearity

iug + Au = Ao (|z| = * [ul?)u,

{u(O,x) = wuo(z), 4
iug + Au = Ao (|2| =2 * [ul?)u,

{u(O, 2) = uo(z) o

were obtained by C. X. Miao, G. X. Xu and L. F. Zhao [18-21].

From the above cited work, it appears that most recent researches are primarily concen-
trated on the one nonlinearity. It would be interesting to investigate what would happen if
both nonlinearities are combined. When both power-type and Hartree-type nonlinearities are
presented in the Cauchy problem, there are three possible cases: (a) none of the nonlinearities
is critical, (b) one of them is critical, or (c¢) both are critical. Cazenave treated case (a) in [2],
but he did not consider other cases. In this paper, we will study cases (b) and (c¢), mainly
discussing that one nonlinearity is defocusing and the other is focusing, and we want to give a
complete view of how these both nonlinearities interact and impact on the well-posedness. For
the case that both nonlinearities are defocusing, we will discuss the Cauchy problem, especially
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with one nonlinearity being energy-critical. As for other cases, we hope that under certain
assumptions on A and p, the defocusing term may dominate the focusing term so that the
whole nonlinearity behavior exhibits the defocusing property. Then one can obtain the global
well-posedness result since the defocusing amplifies the dispersive effect of the linear equation,
but the focusing usually cancels this effect.

Before we state our first theorem, we introduce the solution of ground state whose properties
can be found in Appendix. Let W be the solution of ground state: AW + (|| =7 * [W|*)W =
4_TAYW, and define the energy: E(W) := & [|[VW|?dz — % [(|z[=7 = |[W|?)|W|*dz. Similarly,
let R be the solution of ground state: AR + |R[PR = d-(n=2)p (Zp 2P R, and define the energy:
E(R) =3 [|VR]?dz — o35 [ |R[P? da.

Then the main theorem of this paper is stated as follows.

Theorem 1.1 (Global Well-Posedness) Let ug € H.. Then there exists a unique global
solution u to (1.1) in each of the following cases:

1) >‘17>‘2 >0,0<p< ﬁv v E (074] n (O,TL) except (Pa’)’) = (ﬁvll)
2) /\1 > 0, )\2 < 0

21)0<p< 5 ,(md0<’y<mln{n

2.2) B2 <~ < 2

23) % <7 =2, and o3 < iy IWIEs

24)  <y=4(n>4), E< E|§E?a V|72 < ‘/\—IQ‘HVWHQB and ug is radial except
(P, 7) = (533:4)-

~ 2
2.5) £ <, 2 <~ <min{4,n}, EM>% < (2 - %)[%}m and HVuoH%zM% <
(nvvvn;)%

[Az] ’

(3) A< 0 Aoy > 0

(3.1) 0 <p < maux{n7 2+n T 1> and v € (0,4] N (0, n).

(32) p= 14, p> gz, ond ol < 2

(3.3) 2+n 7 S p = TQ except for (p,v) = (=25,4), in addition, if n > 5, E < |\

n—2’

B

[Vuol2 . < A |® ; z'fn = 3,4, ug is radial.
(3.4) ~<p< =5, and 5— = <p with
—(n=2)p 2 e P
EMSEEE < [ (npnp4) " E@)m,
4—(n—2)p

Vo[22 M55 < |\| =% | VR ]

7Lp np—4
Y

(4) A1 <0, \2<0, 0<p<2 and0<~v<2.

Moreover, for any compact interval I, the global solution is bounded:
[ullstrxrny < C(1], £, M). (1.6)

Remark 1.1 For case (3.3), R. Killip and M. Visan [15] proved the global well-posedness
for (1.2) if the initial data are not radial. However, their approach is not suitable for the low
dimension case, and that is why we assume that the initial data are radial when n = 3,4.

The key ingredient in the proof of this theorem is to obtain a bound for |[ul[z: which
only depends on the energy and mass. Then use perturbation principles to derive the desired
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results. As mentioned above, we hope that the defocusing term can control the focusing term,
which is not true in general, but we can show that under the assumptions in Cases 2.1 and
3.1 in Theorem 1.1, this is true. For other cases, as shown in the work of T. Cazenave, some
assumptions of the smallness about the energy and mass are required. The point is that the
smallness is characterized by the ground state. Unfortunately, our method is not applicable to
the case that both the power and Hartree nonlinearities are energy-critical.

Next, we consider the asymptotic behavior of global solutions. It is natural to use the
unconditional scattering theory for (1.3) and (1.5). However, at least at this moment, we have
to assume that the initial data are radial and the size of the mass is smaller than that of the
ground state (see [27, 16]). Therefore, we need the following assumptions.

Assumption 1.1 Let vg € H}, A\ > 0. Then there exists a unique global solution v to
(1.3), satisfying

vl 242 < C([|vol[z2)- (1.7)
L,,"  (RxRm)

t,a

Assumption 1.2 Let wg € HL, X2 > 0. Then there exists a unique global solution w to
(1.5), satisfying

ol gony < Clluolzz) (18)

Now we state the second main theorem of this paper.

Theorem 1.2 (Energy Space Scattering) Suppose that ug € H}, the conditions in Theorem
1.1 hold, and u is the unique solution to (1.1). Moreover, if p = %, Assumption 1.1 holds true;
if v = 2, Assumption 1.2 holds true. Then for both of the following cases:

Case 1 A\, Ay > 0, % <p< ﬁ, 2 < v < 4 with vy < n except (p,y) = (ﬁ,él),
especially, when (p,~y) = (%, 2), mass is small;

Case 2 A\ -\ <0, % <p< %, 2 < v <4 with v < n, and mass is small except when
(p,y) = (%,4), there exist uy,u_ € H} such that

Hu—eimuiHH; —0, ast— +oo (1.9)

and
1 9 1 2
luslze = fu-lze = Juoll e and 5 [ vus? =2 [ |vu_? = Bluo).
R7l Rﬂ,

We will prove this theorem in Section 5. The primary tools used in the proof are the
refined Morawetz estimate and the perturbation principles. To apply the refined Morawetz
estimate, we need to assume that A\; > 0, Ao > 0, p > % and v > 2. When A\; - Ay < 0, we
need to assume that the mass is sufficiently small. The refined Morawetz estimate was first
used by T. Tao to prove the dispersive property of the cubic Schrodinger equation in [6] when
the space dimension is at least 3. Then, J. Colliander, M. Grillakis and N. Tzirakis obtained
refined Morawetz estimates for 1-D and 2-D and the scattering of 2-D power type Schrodinger
equation. However, when v < 2, the Morawetz estimate is not applicable. Thus, we cannot
have scattering for Hartree type or for (1.1). When p = % and v = 2, i.e., both nonlinearities
are mass-critical, the low frequency of the solution may possess an effective control, but not
for the higher frequencies. Thus here we view (1.1) as the perturbation of the free Schrédinger
equation.



The Nonlinear Schrodinger Equations with Combined Nonlinearities 439

In Section 6, we describe the blowup phenomena with the initial data in 3 space. We believe
that the machinery we used there is also suitable for the case that the initial data are radial
and in the energy space. We refer readers to [2, Chapter 6] for details.

The major results regarding blowup phenomena are stated as follows.

Theorem 1.3 (Blowup) Let ug € X. Then blowup occurs in each of the following cases:

(1) for A1 >0, Ay <0: when 2 <y <4, O<p< 2,'y> 2P and E < 0;
(2) for A1 <0, A2 >0: when—<p< 0<’y< ,cde<O;

(3) f07">\1<0 )\2<0

(i) when 2 <p< 25 0<v<2, and 4npE + C(M) < 0;

(ii) when0<p<5,2<'y§4, and 8vE + C(M) < 0;

(iii) when%f i..2<~y<4, and E <0.

Remark 1.2 The results in Theorems 1.1 and 1.3 are consistent The energy in Theorem
1.1 is nonnegative. Also notice that we do not study the condition % < v < 24n— 4 for the case
A1 <0, )\2 > 0, because we are not clear about the relationship between S|~ * Juf?)|u)? dz
and Hqu pra- Note that the inequalities

— 2
lullzs < /(le T ful)uf? de, (73R S Jlulliy

hold, where ¢ = %W’ r = 227 If one could prove [(|z]7  [uf?)ul?dz ~ ||ul)3 1:, for
s > p+ 2, one may use the method in Subsection 4.2 for Case 2 to obtain the global “well-
posedness and scattering. For s < p 4 2, using the method in Section 6, one can obtain the

blowup result in finite time under certain conditions.

2 Notations

In this section, we introduce the notations and several fundamental inequalities needed in
this paper.

Definition 2.1 A pair (q,r) is called Schridinger-admissible if %—i—% =5 and2 < q,r <oo
(ifn=1, then 2 <r < oo, if n =2, then 2 <r < 00).
Let I x R™ be a spacetime slab. We define

lull go(rsrny = sup [lull Lorr (rxrn),
where the sup is taken over all admissible pairs (q,r), and
”u”S‘l(lx]R") = HVUHs'O(sz")-
Denote N°(I x R™) the dual space of S°(I x R™), and
NYI xR") := {u: Vue N°(I x R")}.

Furthermore, define the following norms:

u = |lu n
Pl =l
lullviny = llull 2wen ,
L,," (IxRm)
lwllwry o= [lull 2(n+2) ,
Ly, (IxR™)

llull z(ry == [|ul| 2(n+1) ,
Lyt L, (IxRm)
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and denote

: LILL(I xR"), 0<p<ig,
X0 ={ anta amein n—2
Lt n—2 Lx7z§+4 (I X Rn>mv(1), p: %7

4(p+2) r— n(p+2)

p(n—2)’ ntp ’
YO(I) o L¥PLA(I xR™), 0<~vy<2,
o L¥L2(I x RYNLYLS(I x R™), 2<v <4 andvy<n,

6n

3ntd_27’ and

where | = %, o=
BY(I):= X°(I)nY°(I), X'(I):={u:VueX°(I)}, Y'I):={u:VuecY’I)}
By the Sobolev’s embedding theorem, we get the following results.

Lemma 2.1 For any S* function u in I x R™, we have

IVullLerz + [IVUll 2en) 2ngie + [Vullv +[[Vull 2o +[[Vully
L, =2 n244 L?L;
+ HU'HL?OL;%Q + HU'HW + Hu”ngnjsz%% 5 ”uHSla (2'1)
b L " i

where all spacetime norms are taken in I X R™.

Lemma 2.2 (anrichartz Estimates) Let I be a compact time interval, k = 0,1, and u :
I xR™ — C be an S* solution to the forced Schrédinger equation

i +Au=F
for a given function F. Then we have
lull grcrxmrny S o)l gegny + 11| 5 (rmen) (2:2)
for any time to € 1.
Detailed proof of this lemma can be found in [2, 13].

In addition, we need Littlewood-Paley Theory. Let ¢(£) be a smooth bump function with
support |¢| < 2 and equal to 1 in |£] < 1. For each dyadic number N € 2% we can define the
Littlewood-Paley operators:

Pef@) = [o(%) — o (5)] 7o)
With these notations in mind, we recall several standard Bernstein type inequalities.
Lemma 2.3 Forany 1 <p<qg<o0, s>0, we have
[P>nflly S NIIVIPPon fllee,
IIVIPP<n fllrz < N°|[P<n fllLz,
V1% P fllz ~ N**|[ Py fll 2,
IP<nfllis SN? 4| P<nfllLe,
IPxfllzs S N? || Py fllze-




The Nonlinear Schrodinger Equations with Combined Nonlinearities 441

Furthermore, we also need the following maximal estimate, which follows immediately from
the sharp Hardy inequality (see [10]).

Lemma 2.4 Let 0 < v <n. We have

=7 Jul? [l < Cln,)llull?

(2.3)

In this paper, the major task is to control the nonlinearity. Here we use the Morawetz
inequality to accomplish this mission, which further means finding the connection between
nonlinearity and Morawetz inequality. It turns out that the norm Z(I) is the linkage we are
looking for.

Lemma 2.5 Let k= 0,1, % <p< % and 2 < v < min{4,n}. Then there exists a large
enough 0 > 0 such that in each slab I x R™, we have

Pl gy S Nl Nl 307 ull 27 ) s (2.4)
= a2l sy S el gl oy ™ %% ) (2.5)
where
@) =p(1-5) + gy 00 =5 (0 - )
61(9)=(3—7)+%7 WFW”‘%'

Proof The proof of the first inequality is given in [24]. The same method can be used
to prove the second. When f;(0) and (2(0) are positive, from Holder and Hardy-Littlewood-
Sobolev inequality, we have

e L e A (G e T Tl S,
tx
n41
< k 2(20+1) B2(0
SUTPul ey e I Bl 5 0 s (26)

Notice that (2+ 3, %) is Schrodinger-admissible. When 2 < v < 4, 81(0) and (2(0)

are positive as long as 6 is large enough, because both the functions are increasing in # and

61(9)_>(4_7)>0a ﬂ?(g)_)(’y_2)>07
as 0 — oo.

Lemma 2.6 Let I x R™ be a spacetime slab. Then there exists a small constant 0 < p < 1,
such that

% 77+2 P
||U " u”NO(IX*R" ||U|| ([)”u SL(Ix*Rn)» (27)
. ) e(1te) g £Chetn)
— 2(2 2(2
1] ™ s Jul®)ull yorxcgny S Nl Lo T Ml G llull 7272 || Y
T x
S Nl Iull Gy mny (2.8)

e(n+1)
2(2+¢)

where p = and € is a small constant.
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Proof The first inequality is proved in [24]. For the other, note that for sufficiently small e

_on . 2n(24e) . — nre)
Lf“L;’Z’E interpolates between the S%norm L?JrELg'Z(“E)’4 and the S-norm Lf*eL;(“E)’z(”E).

Then we have

2

||U||L2+5Ln_g_5 S Hu”Sl(IXR")-
t x

Let a(e) = ;Eéig, b(e) =2 — % Since the estimate is a simple consequence of Holder
inequality and Hardy-Littlewood-Sobolev inequality, we only need to check that a(e) and b(e)
are positive.

As functions of €, a is increasing and a(0) = 0, while b is decreasing and b(0) = 2. Thus
letting & > 0 be sufficiently small, we have a(c) > 0, b(¢) > 0. Taking p = Stb

2(2+¢)
the proof.

, we complete

Remark 2.1 A byproduc‘g1 of the proof of Lemma 2.6 is that one can get the estimates for
nonlinearities of the form |u|»-2v and (|z|~7 * |u|?)v. More precisely,

_a_ -
|||u|"'_2v||N0(Ian) S ||U||%(1)||U||sl(21xu§n)||UH51(I><1R")a (2.9)
— 2—
121 )l o ey S el ulEn sy 0]l (xR (2.10)
_ a(e b(e
(= 5 (o)l o gy S st e Il 52 Nl 101 o 211)

t T

3 Local Theory

In this section we will state the local theory for the initial value problem (1.1). As the
results are well-known, we omit the proofs and refer readers to [2-3, 11-13].

Proposition 3.1 (Local Well-Posedness for (1.1) with Energy-Subcritical Nonlinearities)
Let ug € HY, M\ and Ay be nonzero real constants and 0 < p < ﬁ, 0 <y < min{n,4}. Then,
there exists a T = T(||lul|g1) such that (1.1) admits a unique strong H-solution u in [=T,T].
Let (—Tmin, Tmax) be the mazimal time interval in which the solution u is well-defined. For
every compact time interval I C (—Timin, Tmax), we have u € ST (I x R™) satisfying the following
properties:

(1) [f Tmax < o0 (ﬂnin < OO), then
”u(t)HH% — 00, ast | Tnax (as t] _Tmin)-

(2) The solution depends continuously on the initial value. That is, there exists a T =
T(|[ullgz) such that if u(()m) — g in HY and if u'™ is the solution to (1.1) with initial condition

uém), then u™) is defined in [—T,T) for sufficiently large m and u(™ — w in S*([-T,T] x R™).

Proposition 3.2 (Local Well-Posedness for (1.1) with an Energy-Critical Nonlinearity)
Let ug € H;, A1 and Mg be nonzero real constants.
(1) When p= -5 and 0 < y < min{n,4}, for every T > 0, there exists an n = n(T) such
that, if
HeitA

uoHXl([fT,T]) <,

then (1.1) admits a unique strong H}-solution u defined in [T, T).
(2) When 0<p< ﬁ, v =4 andn > 5, for every T > 0, there exists an n = n(T) such
that, if
e uolly1 -7y < M5

then (1.1) admits a unique strong H}!-solution u defined in [—T,T)].
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(3) Let (—Timin, Tmax) be the maximal time interval on which the solution u is well-defined.
Then for each compact time interval I C (—Tiin, Tmax), © € S*(I x R™) and the following
blowup alternative holds:

If Tmax < oo (respectively, if Tinin < 00), then either [[u(t)|| g1 — oo or [[u(t)|ls1((0,6)xrn) =
00 as t T Tmax (respectively, ast | —Timin)-

Next, we state the stability results for the H}l-critical and the L2-critical NLS with Hartree
type.

Lemma 3.1 (Short-Time Perturbation) Let I be a compact interval and u a function in
I x R™ which is a near-solution to (1.4) in the sense of that

(10 + A)u = MJz|~* * |[u]®)u + e
for some function e, and
”ﬂ”Lchl(Ix]R") <E (3.1)

for some E > 0.
Furthermore, let to € I and u(to) be close to u(ty) in the sense of

[u(to) — ulto)ll g < E' (3.2)
for some E' > 0. Assume also that
[Vl ) < eo, (3.3)
[ 2T (ulto) — uto))lury < € :
lell 1 (rxmmy < 6 (3.5)

for some 0 < € < ey, where €g is a small constant €9 = eo(E, E") > 0.
Then there exists a solution u to (1.4) in I x R™ with the special initial data u(ty) at to, and

lw =l g1 (g xpny S B+, (3.6)

lullgr(rxpny S E" + E, (3.7)

[ [— Se (3.8)
LOL3" 8 (IxRn)

10 + A)(w = )| g1y xmny S € (3.9

Proof Without loss of generality, we assume tg = inf I. Define z = v —w. Then v = z+ u,
S(t) == 110 + A)z| g1 (10, x )
On one hand, by Holder and Hardy-Littlewood-Sobelov inequality, we have
(== * (@b)ell o < IValum I Vollom I Vellom- (3.10)
From (3.3), (3.5) and (3.10), we get

S() < Ml (|21 + 2+ Z0)] (2 + @) | o + (2] ™ = [@l*) 2] ger + llell o

2 2
_ . 4 ,
Se+ Z IVl Vil S e+ Z €0 " IIV2llg -
j=0 J=0
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On the other hand, we obtain
IV2lluy S 1@ 2V2(t0) o) + S(t) S S(t) + € (3.11)

and
2

St)Set+ > e (S(t) +e).

Jj=0

By a standard continuity argument, one can show that S(t) < e. Then from (3.11) and the
Sobolev’s embedding, we get

lu—@l e Se

lllg: < Wtto)ll g + IVl ) + el S E+ €5+ S E,
lu =l S llulto) = @(to)ll 4 + S() S E' +e.

Therefore
ullgr S llu—llg + llullg S E+ E'.

Lemma 3.2 (H}!-Critical Stability Result for Hartree Type) Let I be a compact interval,
to € I, and u be a function in I x R™ which is a near-solution to (1.4) in the sense of that

(10 + A)u = M(|z|~* * |[u|*)u +e for some function e,

and u(to) is close to u(ty) in the sense of

lu(to) — u(to)|| g < E for some E' > 0. (3.12)
Moreover, suppose that
||ﬂ||L§°H1(I><1Rn) < E for some E >0 (3.13)
and
IVallyy <M - for some M > 0, (3.14)
o' AT (ulto) — a(to))|lu(r < € (3.15)
||€||N1(1an) <e (3.16)

for some 0 < € < €y, where eg = eg(E,E', M) > 0 is a small constant.
Then there exists a solution u to (1.4) in I x R™ with the special initial data u(to) at to,
satisfying

Hu_aHSl(Ix]R") 5 C(MvE)(El+e)a (3'17)
ullgi(rxrny S C(M, B, E), (3.18)
lu—7l o < C(M,E, E')e. (3.19)

LSL3" 8 (IxRn)

Proof Without loss of generality, we assume ¢y = inf /. Divide [ into J ~ (1 + %)6
subintervals I; such that in each I;

IVallya,) < eo-
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Fix Iy = [to, t1]. By the short-time perturbation, one can get
~ /
lw =1l gy xrn)y S E' +e¢

lull 317y xmny S B+ E,
<e

~ Y

lu—ul e
LOL3"8 (Ig xR™)
G0 + A)(u = )| j1 (1o xmmy S €
Furthermore, we have
lu(ta) = @t s < llu =l gy gy S B+
and
' IAY (u(tr) = a(t) o)
S AV (ulto) = alto))lluer,) + 1105 + A)(w = @) v1 (roxmm) S €

Choosing € to be small enough, from the short-time perturbation, we have that the results also
hold in I;. By induction, we complete the proof of the lemma.

Remark 3.1 Notice that condition (3.15) is weaker than the condition stated in [18] in
which it requires

(32 1w welt=0%) u(to) - alto)) 1))
N

[N

+( Py Velt=08) (1) — TtoD2 on )ESE.
Sy (W) =TI oo,

In fact, for the Hartree type, the nonlinearity and its derivatives are Lipschitz continuous.

The same method can be used to prove the perturbation theory of the L2-critical NLS with
Hartree type. Note that by Holder and Hardy-Littlewood-Sobolev inequality, we have

(|12 * (ab)ell o < Nlallon bl v (3.20)
instead of (3.10). Arguing similarly, we can get the following result.

Lemma 3.3 (L2-Critical Stability Result for Hartree Type) Let I be a compact interval,
to € I, and @ be a function in I x R™ which is a near-solution to (1.5) in the sense of that

(i0; + A)u = N(|z| 2+ [a)*)a + e for some function e,

and u(ty) be close to u(ty) in the sense of

u(to) —u(to)||L2@ny < M'  for some M’ > 0. (3.21)
Further suppose that
1l Loor2 (rxrny < M for some M > 0 (3.22)
and
lallyry < L for some L > 0, (3.23)
&1 (u(to) — uto)) lur) < e, (3.24)

He||N0(I><R") <e (3.25)
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for some 0 < € < €1, where e = e; (M, M’, L) > 0 is a small constant.
Then there exists a solution u to (1.5) in I x R™ with the special initial data u(ty) at to, and

ot = g0 gy S C(L M, MY(M + ), (3.26)
||U’HSO(I><]R") 5 C(LaMa Ml)a (327)
”u_ﬂ”U(I) S C(LaMa Ml)6~ (328)

The corresponding stability results for the Hl-critical and the L2-critical NLS with power
type are established in [23, 24]. However, as the derivatives of the nonlinearity are merely
Holder continuous of order nf2 rather than Lipschitz, the problem becomes more subtle when
the dimension n is greater than 6. One can find the details in [23, 24]. Here we simply state
their result as follows.

Lemma 3.4 (H!-Critical Stability Result for Power Type) Let I be a compact interval,
to € I, and w be a function in I x R™ which is a near-solution to (1.2) meaning

(i0 + A)u = )\|ﬂ|ﬁﬁ +e for some function e,

and u(tg) be close to u(ty), by which we mean

u(to) — @(to)ll ;n < Eg  for some Ey > 0. (3.29)

In addition, suppose that
[l o g1 (rxrny < Eo  for some Eg >0 (3.30)

and
lullw iy < Mo for some My > 0, (3.31)
1
(D IPN Ve N w(ty) — A(t) | sy e ) S (3.32)
N L,"? Lﬁml (IxRn)

el < € (3.33)

for some 0 < e < e, and e2 = ea(Ey, Ej), My) is a small constant.
Then there exists a solution u to (1.2) in I x R™ with the special initial data u(ty) at to, and

4
||’U, - a”sl(]x]R") 5 C(an E(l)a MO)(E(I) +e+ €(n=27? )7 (334)
lull g1 (rxrny S C(Mo, Eg, Eo), (3.35)
4
Hu — ﬂ” 2(ny2) 2n(n+2) S C(Mo, FEo, E(/))(E + e(n—2)2 ) (336)

L, n—2 Lwn2+4 (IxR")

Lemma 3.5 (L2-Critical Stability Result for Power Type) Let I be a compact interval,
to € I, and w be a function in I x R™ which is a near-solution to (1.3) meaning

(i0: + A)u = )\|ﬂ|%ﬂ +e for some function e,
and u(ty) be close to u(ty) in the sense of

u(to) — w(to)llL2@ny < My for some Mg > 0. (3.37)



The Nonlinear Schrodinger Equations with Combined Nonlinearities 447

Moreover, assume that

(U]l Loer2 (1xmny < Mo for some Mg > 0 (3.38)
and
lullvry < Lo for some Lo > 0, (3.39)
le" =12 (u(to) — ato)) v () < € (3.40)
lell xorxrny < € (3.41)

for some 0 < € < e3, where €3 = e3(Moy, M), Lo) > 0 is a small constant.
Then there exists a solution u to (1.3) in I x R™ with the special initial data u(to) at ty and

= W00y S C(Loy Mo, MM, (3.42)
l[ull go(rxmny S C (Lo, Mo, M), (3.43)
||’U,—ﬂ||v(]) 5 C(LQ,M(),M(/))e (3.44)

To conclude this section, we state the results involving persistence of L2 or H' regularity
for critical NLS with Hartree type or power type as follows.

Lemma 3.6 (Persistence of Regularity) Let k=0,1, I be a compact interval, and ty € I.
Case 1 w is a solution to (1.2) in I x R™ with

l[ullwry < M.
Then, if u(to) € HY, we have
[l gn(rxmny < COM)[Julto)ll gy
Case 2 Let u be a solution to (1.3) in I x R™ and
llullvy < L.
Then, if u(to) € HY, we have
[ull g1y < CL)[lulto)l| -

Case 3 wu is a solution to (1.4) in I x R™ satisfying

Then, if u(to) € HY, we have
l[ull gt (rxmmy < CO)[[ulto)ll -
Case 4 wu is a solution to (1.5) in I x R™ satisfying
ulloa < L.
Then, if u(to) € HY, we have

[ellgr(rxcmny < O lulto)l -
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Proof All four cases can be proved similarly, and hence we only consider Case 1.
Divide the interval I into N ~ (1 + %)6 subintervals I; = [tj,t;41] such that

lullw,y <,

where 7 is a small positive constant to be chosen later. By Strichartz estimates, in each I; we
obtain

n—2
W(I;)

ol 1,y S ICED s+ el gyl
S Ml s+ 072 [l gu s
Choosing 7 to be sufficiently small (say n < %), we get
lullgnir, wmmy < Nui)l -

Next, we consider the relationship between ||u(t;)| g and [[u(to)|l -
In Iy, we have
el g < Nlull gy xrny < Cllulto)l] -

In I, we have
(o)l < Nullgeqr, xgny < Cllu)llze < C*uto)ll -
Likewise, for each I; we can obtain
oty < €9 uto) | s

Summing up the estimates over all the subinterval I;, we obtained the desired results.

4 Global Well-Posedness

We will prove Theorem 1.1 in this section. Due to the conservation of energy and mass, we
shall denote the energy F(u) and the mass M (u) by E and M, respectively. In order to prove
the global well-posedness of (1.1), we show that the blowup in Propositions 3.1 and 3.2 cannot
happen. Suppose that the initial data ug of (1.1) are in H}. When p # ﬁ and v # 4, we prove
that ||u(t)||z: is bounded for all ¢ at which the solution is defined. In view of the conservation
of mass, we focus on the bounds of |[u(t)||7,. When p = 25 or v = 4, the boundedness of
[w(t)[|z1 is not enough to prove Theorem 1.1. So we view the energy-subcritical nonlinearity

as a perturbation to the energy-critical NLS, which is known as globally well-posed.

4.1 Kinetic energy control

We will obtain a prior control on the kinetic energy which is bounded for ¢ at which the
solution is defined. Moreover, the bound only depends on energy and mass,

[u(®)ll g < C(E, M). (4.1)
Observing that the energy

At
p+2

1 A
E(u) = 5 / |Vu|2 dz + /|u|er2 do + ZQ /(|x|7”’ * |u|2)|u|2 dx

is conserved. Hence, for Case 1, we have

lu®ll S E.
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As for Case 2, from Parseval identity, Hardy-Littlewood-Sobolev inequality and interpola-
tion, we have

B o n—y
[ el P luf? o s = / (VI lalul? de = 9] o3
4 _ 2+ +2w
< llull ] jan < lull 35~ |IU|| S (4.2)
Recall that for any positive constants a, d, and p; < ps, the following inequality

a2 < C(8)a* + saP2 2 (4.3)
holds. Therefore if % <p+2ie,y< =P
Gz, < CO)ullfe + 8l
Hence
> 5 [1vuPan s 2 e - Ol 5 [ lupas - )
Let ¢ be sufficiently small. Then we get
[u@) gy < C(E, M).

If v > 22, using A\; > 0 and Appendix, we obtain
B2 £z [ 1vaP - PElow|vul ju.

For the case v < 2, by the Young’s inequality, one has

|>\2| 2(4—v)

B> [ 1vuPda Pel sy vuls - Pelow o) ul i

For ¢ small enough, we obtain
[u(®)]| gz < C(E, M).

When v = 2, we have

[PV
E > (- “2Cwulli:) IVul?a.
If
lul2s < ——— = W2,
Cwlra| ||

is true, we can obtain

[u(@)ll gz < C(E, M).

For the case 2 < v < 4, applying Appendix and the conservation of energy and mass, we only
need to show that if

= (IVW][Z.\ 7=
Va0l (luo32) =2 < ( Az ) 7
then I H
_ VW L2
HVUHL2(HUHL2) < ( [A2] )
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We prove it by the standard continuity argument. Define

sy _ (VW2 <2
0= {tel Vulia(luli) = < ()

B(O)(full) ™ < (1= 60) (5 - 7) [miw_v;)}n}

It suffices to show that €2 is both open and closed. Note that tg € . £ is obviously open
since u € CP(I, H!). Therefore, it remains to prove that Q is closed. Let ¢, € Q, T € I be a
sequence such that t,, — T. Then we have

HVWIIQLz)%

4—x
tn)||F2 M2
Vet 22007 < (=

and
2

B (- (- 1) [BEYL)

By Lemma A.2, we have

MIARY

Vulty)|2M7% < (1-35
[9u(tn)I (-3,

Since u € CP(I, H;), and energy and mass are conserved, we get

IIVWH%z)%

T)|2.M7% < (1-3
Va0 < (1 =8) (=

and ~
1y 1 1N[ 2vE(W) 15%
ET)M>==2 <(1-060)|(z—— )| .
s -l AL
This implies that 7' € Q and [Ju(t)|| ;n < C(E, M).

Remark 4.1 When v = %2, we have

| A2

2—p
M Bt
1 [l

Lp+2-

1 A1
25 [Ivupass Bz, - o

The condition n > v = =P implies p < 2. If in addition, Pl C%M? also holds, i.e.,

p+2
2
M < (%) >~7 we can also obtain |u(t)| ;. < C(E,M).
To prove Case 3, we need the following lemma.
Lemma 4.1
VI~ fllee SNV = 1721 (4.4)

Remark 4.2 T. Tao proved the inequality for v = 3 in [24]. We can show that the same is
true for general ~.

Proof Tt suffices to prove (4.4) for a positive Schwartz function f. In fact, we only need to
prove the pointwise inequality

n—y

SV~ s

~

@) SAVI= P )2, (4.5)
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1
where Sf := (E |PNf|2) ’
N
It is clear that (4.5) implies (4.4).

77—y 77—y

V15 flles SISAV

T Pl NIV R E e S NV AP

Consequently, we will focus our attention on the estimate for each of the dyadic pieces

() e

Py (

7)) = / i E e ¢

where m(¢& ) ( )

— (2 {) mtroduced in Section 2.
m(%)

(]%), we have

Since

3nt~y

n(Nx) = N5 / f( — yyn(Ny) dy.

7 / fla — 1
Y) dy
y|>N-1 ( |Nyl?

Py ( @) ~ N

Furthermore, m is a Schwartz function, we have

PV p@I SN [ -y

where 3 is chosen later.
A simple application of Cauchy-Schwartz yields

SV~ )(@)
B (ZlPN VI DE)P)
N
: @NW /M lf(x‘”dyﬁ;N% Lo e omEal)
g @ —y)P Nk
+%:N (/y>N—1 Jljylay dy>(/y>N1|Nyy|25dy)}’

where « is to be decided later.
Note that if @ and § are chosen to satisfy n +«a — 25 < 0, # — a < 0, we have

n+'v
TXev-y @) S Y. NF Sy
N \y\SN 1
3nty | |a 3n+-y
N3 / dy ) xqpy>n-13 (Y NT=T
zN: ( ly|>N—1 |Ny|2ﬁ ) Y y;}\; 1
and
fl@—y)? fla—yl*  \2
s(vT @ s ([ HES gy %dyy
ly|<N—1 Iy z lyI>N-1 Jy| 2

e e
- ([ 1)’ ~ 11 (@)t
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This completes the proof.

Using interpolation and the Young’s inequality, we get

2(n—v)

[ullZe S IVl zz" IV

T T S e[ Vald + OOV ulda,

where q = 2(24%@. Then,

Tl > c(@)l|ullfe — (@I VullZe.

1V

On the other hand, in view of

|>\2

77—y

- s
11V [ul172 2 IIV]7 77 ull7a > c(e)|ullf, — (&) Vul 72,

from (4.3)—(4.4) and
lull 7322 < C@)llullZa + dlulf,
we have

|A1]
p+2

1 A
B2 5 [ 19uP o+ cle)ully - c@IVallze = 25Nl - 22 ful-

Choosing € and § = §(¢) to be small enough, we obtain

[ g < C(E, M).

Ifp > ﬁ, and notice Ay > 0, applying the same method used in Case 2, under the
conditions of Case 3, we have
[u(®)]| 2 < C(E, M).

About Case 4, using (A.1)—(A.2) and the Young’s inequality, we have

B2 [ (vuPar— Pl opul T val # - P2low vz,
p R L2 L2 w L2
A Ao
/IV o 1' L1 cnsv HLz—Ucwénwan— ca),

where § is chosen to be sufficiently small. We obtain

[ g < C(E, M).

4.2 Completion of the proof of Theorem 1.1

Now we are in the position to complete the proof of Theorem 1.1. Recall that when both
nonlinearities are H;—subcritical, by Proposition 3.1, the a prior control on the kinetic and
the conservation of mass can conclude that the unique strong solution u to (1.1) is a global
solution. In fact, we can find T' = T'(|[uol|z1) such that (1.1) admits a unique strong solution
ue SY[-T,T] x R") and ‘

lullst (-1, 11xRm) < C(E, M).

If we divide the interval I into subintervals of length T', compute S'-bounds on each subinterval
and then sum up the bounds over subintervals, we can get the bound (1.6).

When p = ﬁ or v = 4, we treat the other nonlinearity as a perturbation of the energy-
critical NLS, which is globally well-posed, [4, 14-15, 18, 22, 27]. Here, we only discuss the case:
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p= 25 and 0 < v < min {n,4}; the case: 0 < p <
similarly.

Let v be the unique strong global solution to the energy-critical equation (1.2) with initial
data vy = ug at time ¢ = 0. By the main results in [4, 14-15, 22, 27], we know that such a v
exists and

v = 4 with n > 5 can be discussed

n2’

[0l 51 xmmy < Cllluollg1)- (4.6)

Furthermore, by Lemma 3.6, we also have
10l g0 xrny < Cllluoll ) lluollze < C(E, M).

By time reversal symmetry, it suffices to solve the problem forward in time. By (4.6), divide
R* into J = J(E,n) subintervals I; = [t;,¢;41] such that

ol g s,y ~ (4.7)

for some small 7 to be chosen later (at last we will find 1 just depending on the energy and
mass).

We may assume that there exists J’ < J such that for any 0 < j < J’'—1, [0,T]N1; # 0.
J'—1

Thus, we can write [0,7] = | ([0,T]N I;).
§=0

According to the Strichartz estimate, Sobolev embedding and (4.7), the free evolution

elt=ti)Ay(¢t;) is small in I;

_— 4
=20t g ryy < B0l gy + IV 720 2z
L, nt4 (I; xRn)

t,z

7L2

1))

<l gr ;) + Cllvll

<+ Ot
Thus letting 1 be sufficiently small, for any 0 < j < J’ — 1, we obtain
(t—t;)A

el U(tj)”Bl(zj) < 2.

On the interval Iy, recalling that «(0) = v(0) = ug, we estimate

n+2
itA «
[ull g1z < Nl uoll g gy + CT* ully (I)+C||U||Bl(1)
< 2+ CTull ) + Cllull 57,

where o = min {1, 2 — Z}.
Assume that both n and T are sufficiently small. Then a standard continuity argument
yields
[ull g1 ry) < 40
In order to use Lemma 3.4, we notice that (3.29) holds with E} = 0 and (3.30) holds for
Ey := C(E, M). Furthermore, (3.31) holds on I := I for My := 4Cn. We only need to prove
that the error, which is the second nonlinearity in this case, is sufficiently small. In fact

||ve||N0(IO><R") S Ta”u”yl(jo) SJ Ta”uHBl([ ) SJ Ta773
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We see that by choosing T' to be sufficiently small depending on ¢, we get
IVell oo xrny <€

where € = ¢(F, M) is a small constant to be chosen later. Thus, with e sufficiently small, the
hypotheses of Lemma 3.4 are satisfied, and hence

[ = vl g1 gy xmny < C(E, M)e® (4.8)

for a small positive constant ¢ which depends only on the dimension n.
Strichartz estimates and (4.8) imply

[u(ty) = v(E)| g < C(E, M)e?, (4.9)
=02 (u(ty) = v(t1))ll g1 1) < C(E, M)e”. (4.10)
By (4.9)-(4.10) and Strichartz estimates, we get

lull gy < N R0 g,y + 12 (ltr) = o)l g1,

n2

+OTuls )+ Clull

(I1) I)
<2+ C(E, M)e® + CT"||u|| o + Cllull;

n— 2
BY(I)’

A standard continuity argument then yields

[ull 115y < 4n

provided that e is sufficiently small and depends on E and M, which amounts to taking T to
be sufficiently small depending on E' and M. We apply Lemma 3.4 again to I := I; to obtain

lu = vll g1 (g, xpny < C(E, M)e®
By induction argument, for every 0 < j < J’ — 1, we have
Il 11, < 4n (411)

provided that € (and hence T') is sufficiently small depending on £ and M. Sum (4.11) over all
0<j<J’—1 and notice that J' < J = J(E, M). We obtain

”u”Bl([o,T]) <4J'n < C(E,M). (4.12)

Using Strichartz estimates, (4.12) and T = T'(E, M), we get

+2

el o,pxmny S Mol gy + T ulls o,y + Il i

o) < C(B,M). (4.13)

Similarly, we get
Joloqg0 1y 5 M + CCE Dl g, Nl gy + 1l 2 o Tl
Subdivide [0, 7] into N = N(E, M, ) subintervals Jj such that

”u”Bl(Jk) ~0
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for some small constant § > 0 to be chosen later. Thus, we get
l[ull g0 7, xmmy S M? o+ C(EaM)‘sQHUHSO(kaRn) + 5ﬁ|\“”soukxﬂw)-
Let C(E, M)§? + §nz < % A standard continuity method then yields
HUHSO(JMR") < C(E,M).
Sum these bounds over all subintervals Ji. We get
l[ull go(jo,7)xrny < C(E, M). (4.14)
Combining (4.13) and (4.14), we get
[ulls1(0, xRy < C(E, M),

where T only depends on energy and mass. So, if we divide the interval I into subintervals of
length T', and sum up the corresponding S*-bounds in these subintervals, the proof of Theorem
1.1 is completed.

Remark 4.3 If p = -4 and v = 4, then «a is zero and ||u||f31(1]) < 47 no longer holds.

Therefore the method used in the proof is not applicable in such a case.

5 Results on Scattering
5.1 The interaction Morawetz inequality
First we state a proposition from [24].

Proposition 5.1 (General Interaction Morawetz Inequality)

~a-v [ [ ] A=) ) Pfute)f* dadya

+2// / lu(t, y) 2 ——L{ N, u},(t, x) dedydt
I JR JRn

|z —yl
VU”LgOLg(szn)

< dlullfsep2 (1 xrm
+4// / {N, u}m(t, y)u(t, 2)Vu(t, z)| dedydt, (5.1)
1 Jrn JRR

where N := A |ulPu + Xo(|x| 77 * [ul*)u, {f,g}p = Re(fVG—gV[), {f g}m =Im{fg}.
Using this proposition, we can show the following result.

Proposition 5.2 (Morawetz Control) Let I be a compact interval, A1 and Ay positive real
numbers, and u a solution to (1.1) on the slab I x R™. Then

lull zry < lullzemz(rxmn).- (5.2)
Proof Let N:= \j|ulPu+ Xo(|z|™7 * [ul?)u. We have

ALp

N,utm =0, {N,u},=—

V([ul™*?) = XaRe{V(Ja] 7"« [uf*)|ul*}.
If one can show that the second term on the left-hand side of (5.1) is positive, then

1
[ [ ] Al Pl dudyat < Julle e (53)

lz -yl
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When n = 3, we know —A (1) = 476. Hence (5.3) implies

|]
||U||L4 J(IXR3) ~ ||u||L°°H1(I><]R3)

which is what we want to show.
When n > 4, we have —A(ﬁ) = Tx_lg

. Similarly (5.3) yields

1V o S NullZ e g (rxmny- (5.4)

By Lemma 4.1 and the above inequality, we can deduce
I U’HL“ Laxeny S llullpge(rxrny.- (5.5)

The result in this case follows from interpolation between (5.5) and the bound on the kinetic
energy

IVullerz S B2,
which is an immediate consequence of the conservation of energy when both nonlinearities are

defocusing.
To show that the second term on the left-hand side of (5.1) is positive, we note that

Jfo e =

T—y Mp
/ / / |uty|2 ;p;Q (|ufP*2) dadydt
~ JoRe / / / P AT (2l ¢ ) eyt

= (D
For (I), we have

(t, z) dedydt

Aip u(t,y)|u(t, z)|P+?
I — 1 .
D =(n p +2 // |z — vy dadydt

Note A\; > 0. Hence (I) is posmve
For (II), define h(x) = [, [u

|x yl dy. Then we have

(II) = —)\g'yRe//n /ﬂ z|“/+2 lu(t, 2))?u(t, z)|*[(z — 2)(h(z) — h(z))] dedydt.

Notice that

(@ = 2)(he) = h(2) = (2= 2) [ Jut)P (=l - 2= )y (5.6

lz—yl  |z—yl
and denote a :=x —y, b:=z —y. Then (5.6) equals

a b
ty)Pa—b(L - 2)a
/nmuw|w )(M |M)y
Since (a — b)(ﬁ - %) (|al|/b] — )(ﬁ \bl) >0 and Ay > 0, we have that (IT) is positive.

Remark 5.1 When the space dimension n = 2, we do not know whether —A( B ‘) is positive
or not. However, J. Colliander, M. Grillakis and N. Tzirakis used the refined tensor product to
prove that (5.4) still holds for n = 2 (see [4, 9]), and hence the corresponding (5.2) and (2.4)
are also true. We can employ the same approach used in Section 5.3 to show the scattering of
the power type. However, the corresponding (2.5) no longer holds, for we need v > 2, but in
this case v < n = 2. Therefore the scattering of the Hartree type cannot be obtained.
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5.2 Global bounds in the case: p = %, 2 < v < min{n,4} and A;,A2 > 0 or

%<p<ﬁ,'y:2and)\1,)\2>0

Since both cases can be treated by the same method, here we only discuss the first case.
Without loss of generality, let A\; = Ay = 1.

We view the second nonlinearity as a perturbation to (1.3). By Proposition (5.2) and the
conservation of the energy and mass, we have

lull zey S llull Lo mxrny < C(E, M).
Divide R into J = J(E, M, ¢) subintervals I;, 0 < j < J — 1, such that

lullz(1;) ~ &,

where ¢ is a small positive constant to be chosen later.
In the slab I x R"™, define

2n(2041)

XO(I) = L2Y7 L0007 (1 s R™) A V(I),

where 6 is introduced in Lemma 2.5.
In each I; (0 < j < J —1), by (2.6) we have

2 B1(0)+52(0)
(™7 * |u] )UHNO(Ijx]Rﬂ [l 2+9 %(M [u ||;i;§”” HL}OH;(EXR")
J
< C(B M= ul g, (5.7)
_ +1
where ¢ = m.
In the rest of the section, we fix an interval I;) = [a,b] and prove that u admits good

Strichartz estimates in the slab I, x R™. Let v be a solution to

{ivt + Av = |v]wo,

v(a) = u(a).

As this initial value problem is globally well-posed in H}, and by Assumption 1.1 and Lemma
3.6, the unique solution v satisfies

”UHSO(RX]Rn) < C(M).
Subdivide R into K = K (M, n) subinterval Jj such that on each Jj,

11 g0y, ~ 7 (5.8)

for a small constant n > 0 to be chosen later.
We are only interested in the subintervals J = [tg, tiy1] such that its intersection with I,
k' —1
is nonempty. Without loss of generality, we assume that [a,b] = |J Ji, to = a, tpr =D.
=0
In each Ji, by Strichartz estimates and (5.4), we get

t tk)A

4
e 20t gy ) < N0l 50, + OOl o0 iy < 1+ ClOIVE) < 5+ O

Choosing 71 to be sufficiently small, we have

||ei(t_tk)AU(tk)H )?O(Jk) < 2. (59)
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Next we will use Lemma 3.5 to obtain an estimate for the S*-norm of u in I, x R". In the
interval Jy, notice that u(to) = v(tg). We apply Strichartz estimates, (5.7) and (5.9) to get

< [l 2u 1)

el 5oy < X0(Jo)

1+4
i B, M)ef||ul -

1+4 ¢
<20+ C|ul 2oom C(E M) ull 44, -

Using a standard continuity argument, one has

provided n and ¢ are sufficiently small. In order to use Lemma 3.5, we notice that (3.39) holds in
I :=Jp for Ly := 4n, (3.37) holds with M/} = 0. It suffices to show that the error is sufficiently
small. In fact, from

el 5oy ey < COEMENull 4y, < CE, Mnee,

and choosing ¢ to be sufficiently small, we obtain
|lu — v||S~0(JoxR”) <ez,
By Strichartz estimates, we have

lu(ty) = v(t) ez < €%, (% (u(ty) — v(tr))] Set. (5.10)

X0 (1)
On the other hand, we have

é —
ull g1 ey S Nl@)ll s + Nully gy lull g1 g sy + 217 Tl el g e

S C(B) + (4n)™

ul[ 105, xrny + CE, M)e|ull g1y xrny-
Assuming that n and € are sufficiently small, we have

lull 15y xmmy < C(E).
Again applying Strichartz estimates, we find that (5.7) and (5.10) to the intervals J; yield

[l le =20 (1) + [T () —v(t)|

So) S XO(J1) XO0(J1)

1+4 ¢ )
FOl' Sy + OB M) ull 4y,

c 1+4
<2n+ez + COlul 200 + C(E, M)e||ull S0y

With 7 and ¢ sufficiently small, we obtain

Kogny S A
In a way similar to the proof in I, we choose a sufficiently small £ and use Lemma 3.5 to derive
[ = llgo (g, xmny < €7

The same arguments yield
lull 15, xpmy < C(E).
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By induction, for each 0 < k < k' — 1, we get
llw = vllgo( s xmmy < gFFFT,
[ull g1, xmny < C(E).
Adding these estimates over all the subintervals Ji, we obtain

k' —1

||U||SO(1j0xR'rt) < |‘U||s'0(1j0><R'rt) + Z Ju— U||SO(kaRn) <C(E,M),
k=0
k' —1

lall g1z, xny < D Ml ga(g, sy < C(E, M).
k=

Since intervals I;, are arbitrary, we have

[ull gomxrny < Z lullgo(r, xrny < C(E, M),
7=0

J—1
S [ull g1z, xpmy < C(E, M).

[[ull g1 @ xremy

Hence
lulls1(rxrny < C(E, M).
5.3 Global bounds in the case: % <p< —n4_2, 2 < v <min{n,4} and A1, A2 >0

The results were proved in [2] with a more complicated argument. Here we present a simpler
proof using the interaction Morawetz estimate.
By Proposition 5.2, we have

lull zwy S llull Lo i mxrny < C(E, M).
Divide R into J = J(E, M,n) subintervals I; = [t;,t;+1] such that
||u||Z(Ij) ~ 1,

where 17 > 0 is a small constant to be chosen later.
Applying Strichartz estimates and Lemma 2.5 to each I;, we can deduce

el 0)+az(0
lullsr (1, sy S Nty + 0700 [Jul| S5 624

n+1 0)+ 9
7 [l T ey

< C(E, M) + 0@ O(B, M)||ul| g1 (1, xgn)

’LL||51(IJ. xR™)

U||51(1j><Rn)

+ 260 O(B, M)lulls 7, xgn)-
Assuming 7 to be sufficiently small, we have
llulls1(z;xrny < C(E, M)
and

J—1

lulls2@xrny < D llullsr, xrey < C(E, M).
Jj=0
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5.4 Global bounds in the case: % <p< ﬁ, ~ =4 withn > 5 and A1,z > 0 or
p= ﬁ, 2 <y < min{n,4} and A1,A2 >0

Due to the same reason as in Subsection 5.3, we present the first case and the other can be
done similarly. In the slab I x R™, define

Y () := L2 7 L0701 (1 « RM) A LOLT 2 (I x R),

-0 2n(20+1) 6n
v —2

where 6 is introduced in Lemma 2.5. Replace X0(I) by YO(I) in Subsection 5.2, and Lemma
3.5 by Lemma 3.2, then apply the same approach used in Subsection 5.2. One can get

lulls1(rxrny < C(E, M).

_4
n—2"

5.5 Global bounds in the case: p = v =2and A;,A2 >0o0r p= %, Yy =4

with n Z 5 and Aq,A2 >0

Similarly, it suffices to discuss the first case. Without loss of generality, let Ay = Ay = 1.
The idea is to decompose v into the low frequency part uj, and the high frequency part up;. One
can view the former as a perturbation of mass-critical NLS, and the latter as the Hl-critical
NLS. Finally, we get the finite global Strichartz bounds in this case.

Let

O<mCp <y Kl,

where 77; may depend on the energy, the mass and any n; greater than 7;. By Proposition 5.2
and conservation of energy and mass, we have

lullzw) < C(E,M).
We divide R into K = K(FE, M,ns) subintervals Jj such that in each slab Ji x R™ we have
lull z(y ~ s (5.11)

Fix Jy, = [a,b]. For every t € Ji,, write u(t) = wuio(t) +uni(t), where ujo(t) := P u(t), uni(t)
= Panlu(t).
In the slab Ji, x R™, we view uj,(t) as the solution to the following L2-critical Hartree NLS

{(i@t + Ao = (|z] 72 * [v]?)v,

v(a) = u(a),
which is globally well-posed in H'!. Moreover, by Assumption 1.2, one has
lolloe < Clluo(@)]12) < C(M).
By Lemma 3.6, we have

0] g0 @xmny < C(M), (5.12)
vl g1 (mxprny < C(E, M). (5.13)

Furthermore, we divide Jy, = [a,b] into J = J(M,n) subintervals I; = [t;_1,¢;] with tg =
a, tj = b such that

lvllocry ~m- (5.14)
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Proceeding inductively for each j = 1,---,J, we can establish

1-20
[wto = vll g0 (gg,e,0) < 7277

P(j) : HuhiHSl(I,) < L(E) forevery 1 <1<y, (5.15)

”u”Sl([to,tj]) < C(nlan2)a
where § > 0 is a small constant, and L(E) is a large quantity to be chosen later which depends
only on E (not on any 7;). As the method of checking that (5.15) holds for j =1 is similar to

that in inductive step, i.e., showing that P(j) implies P(j + 1), we will only prove the latter.
Assume that (5.15) is true for some 1 < j < J. We want to show
1-26
luto — U||SO([to,tj+1]) S
[unillg1(r,y) < L(E) forevery 1 <1< j+1, (5.16)
||u||Sl([to,tj+1]) < C(ﬂ17772)~

Let €21 be the set of time 7" € ;41 such that

lluio — 'U”SO([tO’T]) < 77%_267 (5.17)
l[umill g1 g2, 77y < L(E), (5.18)
llull st (to,71) < C(11,m2)- (5.19)

In order to prove €y = I;11, we notice that € is nonempty (as t; € Q1) and closed (by
Fatou). Let Qg be the set of all times T' € I, 41 such that

||ulo - v”SO([tO,T]) < 277%_26, (520)
||Uhi||51([t].,T]) <2L(E), (5.21)
[wllst(gto,77) < 2C (015 72). (5.22)

We will show Q5 C €4, which will conclude the argument.

Lemma 5.1 Let T € Q5. Then, the following properties hold:

lwollor(ry < m (5.23)
||Ulo||SO([tO,T]an) < C(M), (5.24)
llwollw (e, ) < M2s (5.25)
lwollgr (1 xrny S B (5.26)
[wioll g1 (29,71 xmm) S C(M)E, (5.27)
[unill gorxmny S M2L(E), (5.28)
[Ty el 191 A7)} (5.29)
lunill g1 (1o, 7y xmn) S C(M)L(E), (5.30)

where I € {I;,1 <1 <j}U{[t;, T}
Proof Using (5.12), (5.14), (5.20) and Bernstein inequality, we have

1—26
luollury < llwo = vlluy + olloay S ns' 7> +m S m,

26
||Ulo||s'0([tO,T]an) < [Juio — U”s’O([tO,T]an) + ”UHSO([tO,T]xR") S+ C(M) < C(M),

||Uhi||s'0(Ian) S 772||Uhi||s'1(1an) S e L(E).
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Therefore, (5.23), (5.24) and (5.28) hold. In view of J = O(n; ©), we get

J
lunill g1 (0,77 xmR) < Z llunill g1 7, ey + Nunillgr e, myxrm)
=1

< C(m)L(E) + nL(E) < C(m)L(E),
lunill gojro,7yxrn) S M2llunill g o, 7y xRny < M2C (M) L(E).
Hence, (5.29) and (5.30) hold. In the slab I x R"™, wy, satisfies the equation

w4 (|2] 72 % [ul)u)(s) ds,

t
ulo(t) _ ei(tftl)AulO(tl) _ 1/ ei(tfs)ABOGu

t

where 0 <[ < j. Then by Strichartz estimate

_a_ _
lwollgr (rxrny S Nlwo(E)ll g1 + [1Po(Jul "2 u)|l 1 (7 xmny + [1Pio((|2] 2o ul)u) | jer (1)
By Bernstein inequality, Lemma 2.6, (5.11) and (5.22), we have

[1Pio (|

_a_ _ _a_
no2 u)||N1(IxR") S, [ "’QUHNO(IXRH)
n+t2
n—2

—p _
S1(IxxR™) S 17750(771;772) < 12,

< Hlull oyl
where 73 is sufficiently small and depends on 7; and 7.
Holder and Hardy-Littlewood-Sobolev inequality, together with (5.21), (5.23) and (5.28),
implies
1P (=2 # [u*)u) | o1 1y S NliErn I Vullo
S Nwoll7 Vo llorry + NumillZry | Vemillu
+ lwollZr I Vunilloy + lunillZ o | Vo lo
= U%HUlo”s'l(Ian) + (n2L(E))*L(E)
+ 7 L(E) + (772L(E))2||ulo||s'1(1x1Rn)'
Then [[uto||g1 (ryny S E + 12 + (12 L(E))*L(E) + 7 L(E) + (1} + (12L(E))?) |lwio | g1 (1 iy -
Taking n; and 7y to be sufficiently small depending on E, we can derive
||U'10||Sl(1><]R") SE.
Thus (5.26) holds. Since J = C(m1), (5.27) follows from (5.26).

Finally, we are ready to show that (5.25) is true. We write ui, = P<;,ui0 + Pn2<~<n;1u1°'

When n > 5, by interpolation, Sobolev embedding, Bernstein inequality, (5.11) and (5.26),
we have

1P, <. <y Wollw (it 77)

c 1—c
S“ ||P772<~<n2_1u10” 2n(n+1) ||Pn2<-<n2_1u10|| 2n
L:L+1L;L27n76 ([t; T]xR") L2072 ([t;,T]xR")

SV

_3 1—
P < <oyt Wollz (e, 1ol g gy, 7y en)

__3

< 15 " fenolly e, 1)
__3

Sy mSEe

< 12,
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4(n+1)
where ¢ = (RS CEE
When n = 4, using interpolation, Sobolev embedding, Bernstein inequality, the conservation
of energy and (5.11), we get

1
||P172< <7]2 1’U'IC’HVV [tJ)T]) ~ || Na<- <172 IU,IOHL"L 2 ([t ] Rn)||P772<'<T7;IulO”z;”Li([tj,T]X]R”)
'R
1
S |||V| Na<- <n*1U10||z(t T])E6
< Oy Pma)P B
< 2.

Similarly, for n = 3, we have

3
1P, <. <ny ol lw (it 11) S 1P, <. <n_1u10||L4L‘>°([tJ ]an) 1P, <. <n2_1u10||z;?°Lg([tj,T]X]R”)
i+ 2
ST +[V))e EPn2< <ny 1U10||Z( t; T])E"
-3 2 3
S (g "n3)® B
< 2.

Hence, for any n > 3, we have
1P, <.z wollw (it 1) < 12

By Sobolev embedding, Bernstein inequality and (5.24), we have

[P<nzwollw (e, 1) S IVP<nptioll 2nsz) 2ngree Sellwoll sz zngen -
’ S LT (ke L2 L™ ([t T)xRY)

For n = 3, by interpolation, (5.24) and the conservation of mass, we get

3 2 o2
[ P<notiollw 1t 11) S M2llwoll gz, 1ol Zoo 12 11, sy S M08 M5 <2

provided that 7; is a sufficiently small constant depending on M.

2(n+2) 2n(ﬂ+2)
For n = 4, since L, "% L,""*" =U, we have

| P<nowiollw (1¢;,77) S m2m < m2.
For n > 5, by interpolation, (5.23) and (5.24), we have

6 n—4
||P§n2U10||W([tj,T]) S 772||u10||l’}a§j,T])||u10|| "
Lthn_2 ([t.}vT]XRn)
n—4

;;(2[75 T)xRm) ~ S meny +QC( ) < 1.

S meny e [|u1o

Hence, For all n > 3, we get
| P<nowollw(jt;,71) < m2-
Therefore, by the triangle inequality, (5.25) is true.
Now it remains to show Qs C Q5. We will first show (5.15). The method is to treat u, as
v via the perturbation result of Lemma 3.3. Note that w), satisfies the following initial value
problem in the slab [to, 7] x R™,

(10 + A)uio = (J] 72 # [wio|2)uro + Plo(Jul ™)
+Po[(J2] 72 * ul?)u — (|| 72 * |uio|*) o] — Pri (2] 72 * Jwio|* o),
ulo(to) = ulo(a).
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Since (5.24) and v(ty) = wio(to), in order to use Lemma 3.3, we only need to show that the
error term

4 _ _ _
e = Po(|ul 7= u) + Po[(|o| 7 [uf*)u — (|27 * |uso|*) o] — Phi (|~ * |10 )10

is small in NO([tO, T] x R™).
By Lemma 2.6, (5.11) and (5.22), we have

nt2

ni2_g nt?_g -5
||‘P10(|u Sl&to’T]an) S ng(c(nla 772))"“2 < 77% )

_4 0
n2 U)HNO([tO,T] xR™) S ||U||Z([t0,T]) [|u

if n3 is sufficiently small and depends on 1; and 7,. By Bernstein inequality, Holder inequality,
Hardy-littlewood-Sobolev inequality, (5.24) and (5.27), we have
1Pui (1172 [0 *)1110) | o (20 1y ey S M2 ll0l3 (20,2 V0l 120,70
2
S 772||u10||30([t0,T]><Rn)HvulOHSl([to,T]xR”)

SC(M)C(m)E < ny~°,

whenever 7 is sufficiently small depending on F, M and n;. From Hoélder inequality, Hardy-
littlewood-Sobolev inequality, (5.24) and (5.29), one can get
[Pol(l2] ™% # [ul*)u — (1272 * Juto|* o]l 50 1,77 x
SNl * futo* Yl o 4,7y e
1] 72 5 fuani )i | o g 7y ey + 121 % Tl wto ]| o (g 7y e

2
S HulO”SO([tO,T]XRn)Huhi”S‘O([to,T]XR")

+ HuhiHQSO([tO’T]XRn) |u10||5‘0([t0,T]><]R") + ||uhi||35.’0([t0’T]><]Rn)
< C(M)n2C(m)L(E) + (n2C(m)L(E))*C(M) + (n2C(mm)L(E))
<m’

Therefore,
1-6
||6||N0([t0,T]><]R”) <3m
and hence let 72 be a sufficiently small constant depending on M, we can use Lemma 3.3 to get

-5 —25
10 = vl g0 (0 1 xRm) < C(M)ny =" <my~.

Thus (5.15) is true. Next we prove that (5.18) is true. The idea is to view up; as the solution
to the energy-critical NLS

i Aw = |w|7-2
iwy + Aw = |w|»—2w, (5:31)
w(tj) = uhi(tj).
Based upon the results in [5, 22, 27], we know that (5.31) is globally well-posed and
[wllg1 gyrny < C(E). (5.32)

Using Lemma 3.6 and (5.28), we also get

[w]] g0 mxrny < C(E)|uni(t;)l Lz S 1C(E)L(E),
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where up; satisfies the following initial value problem in the slab [t;, T] x R™:

2 [uf?)u)

_4
=2 Upi) — Pio(uni

(10 + A)up; = |uhi|ﬁuhi + Pui((|z
+Poi(Ju
Uhi(tj) = uhi(t]‘).

ﬁuhi)v

_4
n—219, — |uhi

In order to use Lemma 3.4, we show that the error term

_4
n—2 uhi)

_4
=2 upi) — Pio(|Uuni

_4
e = Pri((|o] 72 % [ul*)u) + Pui(jul"—2u — Jup;

is small in N*([t;,T] x R™).
From Hoélder, Hardy-Littlewood-Sobolev inequality, (5.21), (5.23), (5.26), (5.29) and (5.30),
we have

|| Prs (|| 2 * |U|2)U||N1([tj,T]an)

S Ml e, o IV ullo oo, 1)

2 2
S ||uhi||5'0([t.,T]X]Rn)Huhi”Sl([tj,T]X]R") + ||ulo||5'0([t.7T]XRn) |u10||sl([tj,T]><]R")
J J

+ ||u10||25"0([tj,T]><]Rn)||U’hi||5’1([tj,T]><]R”) + ||uhi||2$’0([tj,T]><]R”) |“1°||S'1([tj,T]XR")

< (mC(m)L(E))*C(m)L(E) + niE 4+ ni L(E) + (12 L(E))*E < ng,

if o is sufficiently small depending on F and ;.
Using Bernstein inequality, Lemma 2.6, (5.11) and (5.22), one has
n42

s -

0 _
gl([tj7T]><R7L) SJ 2 lngc(nla 772) < 2

(| Pio(|uni

4 — 0
"2 i) || N 1 ) ey S T2 1||u||Z([tj,T])||u

with the assumption that 73 is sufficiently small depending on 7; and 7s.
4 4
Now we estimate the last term || Phi(|u|™2u — [uni| ™2 uni) || 51 (1, 77 xrn)- Since the function

_4
n—2’

we have

74 2 . .. .
z — |z|n2 éﬁ is Holder continuous of order

_4 _4
Pl 7~ s =% 00) s g 7y

_4 _4
S =2 w = Juni | "2 wnill o g, 7y e

_4 _4 _4
S lul==2 Vu — |ugi| =2 VUhi”NO([tj,T]x]Rn) + [ |ul==2 vulo"NO([tj,T]x]R")
2 2
4 U 4 Uy
+ H (|u|n_2 lu2 fang =2 |uhh-l|2)vuhi NO([t;, T]xR")
i 'R

_4 _4
n-2 — |Uhi n—2)

_4
S el ™= Vol yo e ryxmny + ([ Vanil 5o, 1 xrm)

a4
+ [lwio ”*2VUhi”NO([tj,T]an)
= (I) + (I1) + (I1). (5.33)
For (I) in (5.33), from Remark 2.1, Bernstein inequality, (5.11), (5.19) and (5.26), we have
4 < P TP
|||u|n_QVU'lOHNO([tj,T]x]R”) ~ HU’HZ([tj,T])”u”Sl([tj,T]X]R”)

S n5C 1, m2)ny Hlwells (e, 1 xem) < 72

Vo[ s1([t; 11 x®")

as long as ns is sufficiently small depending on 77 and 7,.
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For (II) in (5.33), when the dimension 3 < n < 6, by Hélder inequality, (5.21), (5.24) and
(5.26), we can get

_4 _4
n—2 — |Uhi 7L72)

[1(Jw

S (Ju

Vunill xo gt 7yxrm)

6—n
n=2 ulovuhi||N0([tj7T] xR™)

6—n 6—n

n—2
$1 (1t mxrey F o

n—2

S ([Juni Sl([tj,T]XRn))||vuhi||30([tj,T] xR™)

~

|wto || w (7))

—n 1
< (L(E) + E) =3 L(E) < n3,

provided that 7y is sufficiently small depending on FE.
When the dimension n > 6, applying the inequality (a + b)? < aP + bP as a,b > 0, p < 1,
(5.21) and (5.25), we have

_4
7L72)

a4 _4
2 fup; "2 V| o gy, 1y xme)

[1(Jw

Vunill o, myxrn) S o

_4
wollyy e, 17)

S ||Uhi||s'1([tj,T]an)
_3

_4
SL(E)ny 2 <ny 2.

3
Then (5.33) is bounded from above by ng ~>.
Therefore,

lell e, ryxmmy < M2+ nd +2m3 7 <nj.
Taking 72 to be sufficiently small depending on F, we can use Lemma 3.4 to derive
l[uni — w”s'l([tj,T]x]Rn) S
for a small constant ¢ > 0 depending only on the dimension n. So we obtain
||uhi||s'1([tj,T]an) < Juni — w”s’l([tj,T]an) + ||w||s'1([tj,T]><]R”) Sni+C(E) < L(E)

by choosing L(E) to be sufficiently large.
Finally, (5.19) follows from

lull 1 (to,71xRm) < lJumill s (o, 1) xRm) + ol 51 ((t0, 7] R)
<C(M) +C(m)E +nC(m)L(E) + C(m)L(E)
< C(m,m2).

This proves that Qo C Q4. By induction, we have
[ull st (g, xrr) < C(1,72).

As Jy, is arbitrary and the total number of intervals Jy is K = K(F, M,ns), putting these
bounds together, we obtain

lull st mxrny < C(n1,m2,m3) = C(E, M).
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5.6 Global bounds in the case: p =
< p <

ﬁ, 2<y<4withy<nand A\;-Xz <0 or
pr 2, vy =4 withy<mnand A1 - A2 <0
Here we only prove the first case, since the other case can be handled similarly. Without
loss of generality, let [\| = [A2] = 1.
We view u as the perturbation to the energy-critical problem
iwg + Aw = |w|ﬁw7
w(O) = uhi(O),

which is globally well-posed by [5, 22, 27] and
[l g1 (@xpny < C(E, M). (5.34)
By Lemma 3.6, (5.34) implies
]l go gy < CUE, M)|uo| 2 < C(E, M)M?. (5.35)

2(n+2) 2(n+2)

Definition 5.1 D°(I) := V(I) NU(I)NL," 7 Ly, and u]l pr gy = [IV[Fu]l posy-

It is easy to verify that
et~ o )l ey ol oyl (5.36)

_4
e HU”Dk([)a (5.37)

4
el ™= ull g1 xmmy S llull

where k =0, 1.
As we have done before, we divide R into J = J(E, M, n) subintervals I; = [t;,t;41] such
that

||u||D1(IJ) ~ 1,
where 17 > 0 is a small constant to be chosen later.

Moreover, let M be sufficiently small and depend on E and 7. In view of (5.35), we may
assume

Hw”SO(]Rx]Rn) <.
Then we get
lullprzyy ~ - (5.38)
As a matter of fact, in each slab I; x R", we have
i(t—t; Hass nt2
e w(t5) |y < Jollpriry + Cllwllity, <n+Cni <an, (5.39)

if Cn% <.
Let Iy = [to,t1]. Since w(ty) = u(ty) = ug, using Strichartz estimates, (5.36), (5.37) and
(5.39), we can deduce

lullps ) < 20+ Cllwl By, + Cllwl .
By a standard continuity argument, this yields

llull pr (o) < 4n (5.40)
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with 7 being sufficiently small.
On the other hand, Strichartz estimates, (5.36), (5.37) and (5.40) imply

51(2] )”uHDO(IO) + HU’HDO(I )”u”Dl(I )

lull poryy S M2 + lu

< ME 07 ul| oy + ull ol

Therefore, making n sufficiently small and v < 4, we get
1
[l poryy S M=
In order to apply Lemma 3.4, we need to show that the error (]|~ |u[?)u is small in the norm
N(Iy x R"™). In fact, by

_ _ _2 5
1= s lYull g ey S Ml gy 0l gy 77 M2 < M2

for a small constant dy > 0, together with M being sufficiently small which depends on F and
1, and by Lemma 3.4, we get
)
||U — w”Sl(IoX]R”) < M0

for a small constant ¢ > 0 that depends only on the dimension n. Strichartz estimate implies
”ei(t—t1)A(u(t1) - w(tl))HSl(Il xRy < e (5.41)

Now we turn to the interval I1 = [t1,t2]. Using Strichartz estimate, (5.36), (5.37), (5.39) and
(5.41), we can get

lull pacry < N2 utn)l] oo, +IIei“_“)A(U(tl)—w(tl))llbwm

+ R w(t) | pa g,y + Cllu

n2

D(I) + Cllullpry)

n2

S ME + M 4+ ||ul|},

iy T ||U||D1(11)
Assuming 1 and M to be sufficiently small and by a standard continuity argument, we obtain
[ullpr(ryy < 4n.

Moreover, we also get
lull poryy S M.

For an M sufficiently small, we can use Lemma 3.4 to obtain
5
flu— w“s’l(llan) < M

for a small constant 0 < d1 < dg.
By induction argument, choosing M to be the smallest one of above steps, we obtain

llull pr(r;) < 4n.

Summing these estimates over all intervals /;, and since the total number of these intervals is
J=J(E,M,n), we get
[ull pr®) S Jn < C(E, M).

Using Strichartz estimate, (5.36) and (5.37), we get

lullst@xrn) S lluollmy + [lu 51(211@) + ulprwy S M+ E+C(E) < C(E,M).
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5.7 Global bounds in the case: < p <
orp:%, 7:2and)\1,)\2>0

2<~v<4withy <nand A;:A2<0

n2’

Both cases can be discussed similarly with the method used in Subsection 5.6. The only
difference is that here we treat u as the solution to the free Schrédinger equation

iy + Au=0, u(0) = uop.
By Strichartz estimate, the global solution @ obeys the spacetime estimates
[all s @xrmy S lluollg < C(E, M)

and
~ 1
4l sorxrr) S lluollrz S M2.

Using the similar method used in Subsection 5.6, it is easy to show that

lulls1mxrry < C(E, M).

5.8 Finite global Strichartz norms imply scattering

Finally, we show that finite global Strichartz norms imply scattering. For simplicity, we only
construct the scattering state in the positive time direction. Similar arguments can be used to
construct the scattering state in the negative direction.

For 0 < t < oo, define

¢
ut(t) = uog — i/ e A ulPu + Ao (|77 * |ul?)u) ds.
0

Since u € S1(R x R™), Strichartz estimates and Holder inequality show that u. (t) € H} for all
t € Rt and for 0 < 7 < t, we have

t
o) = (s 5 | | el<t-s>A<A1|u|pu+ Na([o] =7+ fuf?)u) ds|

np_o
< HUHV( IIUI|W<Tt)||(1 + [VDullv ()

2
+ ||u||U<Tt ull "™ (X + [VDullorg),
LOL3"78 ([7,t] xR™)

L Hy ([ t]xR™)

and for € > 0, there exists a T, > 0 such that
lut(t) —up (7))l <e
for any ¢t,7 > T.. Thus u(t) converges to some function uy in H} as t — +oco. In fact
© .
Uy = Uy — i/ e BB\ ulPu + Ao (2] 77 * |ul?)u) ds.
0
Then the scattering follows because of

e 2 ute) il = | [ o752 Oufulu + Aa(lel 7 x uf?)a) ds],
t

= H /Oo ei(t—S)A()\1|u|Pu+ Xo(|z] 7 |U,|2)U,) dSHHl

np_g
S HUHV( ¢ oo)) ||U||W( ¢ oo))”(l + |V|)U||V( [t,00))

2
+ el s el (X + [VDullu (o0
LGLE" 8([t,oo)><R")
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noting that the right-hand side of the above inequality obviously tends to 0 as ¢ — +o00. The
other properties follow from conservation of mass and energy.

6 Blowup Results

From Theorem 1.1, we can see that there are still many regions in which additional con-
ditions, such as small energy and small mass, are required for the problem to be globally
well-posed. In this section, we will show that in these regions, under suitable assumptions the
solution to (1.1) will blow up at finite time. We follow the approach of Glassey [8], which is
essentially a convexity method. Consider the variance

£ = [ laPlutt.o)? d
For strong H}!-solution u to (1.1) with initial data uy € X, it is well-known that if f €

C?(—Thmin, Tmax) we have the following lemma (see, for example, [2, Chapter 6]).

Lemma 6.1 For allt € (— Tmin, Tmax), we have
()= 4Im/ﬂx -Vudz

and

dnp —

16

If f(t) is bounded from above by a constant A in (—Tnin, Tmax), then we have
lzul|72 < 6(t), (6.2)
where

1
0(t) = ||lzpl3s + 4tIm/¢x -Vedz + §t2A.

When A is negative, we observe that 6(t) is a polynomial of degree 2, and thus 6(t) < 0 for
large enough [t]. Since ||zu7. > 0, we deduce from (6.1) that both Tynin and Thnax are finite.
However, A < 0 is not a necessary nor sufficient condition for 6(¢) to be negative. A necessary
and sufficient condition for 0(t) < 0 is actually

2
8(1m/¢m-V¢d$) > Allzg|3e.

But in many situations, T, and T.x are not both finite. Interested readers are referred to
Chapter 6 in [2].

In what follows, we will find the negative constant A such that f”(¢) < A.

Casel A\ <0, A2>0, 2<p< -4 0<y<Zand E<O.

By (6.1), the conservation of energy and our assumption, we get

1 A _
£/(6) = 168 + (anp ~ 16){E = 3Vullte 22 [(a] " x [ufuf* o}

+ 2207 -2) [ (a7 < fuP)luf? do
— dupE = (2np = 8)|Vuls — (o~ 20)%e [ (ol ufuf? do

< 4npE (6.3)
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and 4npE < 0, which is the negative constant A.
Case 2 \; >0, A\ <0, %gpgﬁ, 2<y<4and F <0.
Similarly, we get

4dnp — 16 1 A
=g Ml 4 80 = 2B = 5 IVullE — Sl

Lyt p+2" e
=8yE — 4(y — 2)||Vulli> +

() =16FE +

dnp — 8y +2
A | p
Sl

< 8yE,

where 8yF < 0 and A = 8vE.
Case 3 \; <0, Ay <0, %gpg ﬁ, 2<y<4and F <0.
When v > “2, using (6.3) and our assumption, we have

' (t) < anpE.
When v < =2, from (6.4) and our assumption, we have
f(t) < 8yE.
So we also find the negative constant A.
Case 4 A\ <0, A2 <0, 0<vy<2, %<p§%and4an+C(M)<0.
Using (A.2) and the Young’s inequality, we have that when v < 2,

[Vull 7. < 6| Vulliz + C(6).

From (6.3) and our assumption, we have

(1) < 4npE + [C(np = 29)|X2l6 — (2np = 8)][|Vul 72 + C(np — 27) Ao C(8) ul 12"

When 4 is sufficiently small, we have
" (t) < 4npE + C(M).

Then A = 4npE + C(M) < 0.
Case 5 A\; <0, A2<0,2<y<4, 0<p<2and8yE+C(M)<0.
By (A.1) and the Young’s inequality, we have, when p < %,

IVull 22 < 8] VulZ. +C(9).

From (6.4) and our assumption, we have

dnp — dnp
P55 ool + T2 E o) ) full

"(t) < 8YE — 4(y — 2)||Vul/7 +
7(t) < 8YE — 4ty = 2)| Vullf + (<7 o

With § being sufficiently small, we have
1"(t) < 8yE+ C(M).

We can take A = 8yE + C(M) < 0, which defines the desired negative constant A.

471

4—(n—2)p




472 D. Y. Fang, Z. Han and J. L. Dai
References
[1] Bourgain, J., Global well-posedness of defocusing 3D critical NLS in the radial case, J. Amer. Math. Soc.,
2, 1999, 145-171.
[2] Cazenave, T., Semilinear Schrodinger Equation, Courant Lecture Notes in Mathematics, New York Uni-
versity, Courant Institute of Mathematical Sciences, Vol. 10, A. M. S., Providence, RI, 2003.
[3] Cazenave, T. and Weissler, F. B., Critical nonlinear Schrodinger equation, Nonlinear Anal. TMA, 14,
1990, 807-836.
[4] Colliander, J., Grillakis, M. and Tzirakis, N., Tensor products and corrolation estimates with applications
to nonlinear Schrodinger equations, Comm. Pure Appl. Math., 62(7), 2009, 920-968.
[5] Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T., Global well-posedness and scattering for
the energy-critical nonlinear Schrédinger equation in R?, Ann. of Math., 167(3), 2008, 767-865.
[6] Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T., Global existence and scattering for rough
solutions of a nonlinear Schrédinger equation on R3, Comm. Pure Appl. Math., 57(8), 2004, 987-1014.
[7] Giorgio, T., Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110(4), 1976, 353-372.
[8] Glassey, R. T., On the blowing up of solution to the Cauchy problem for nonlinear Schrodinger equations,
J. Math. Phys., 18, 1977, 1794-1797.
[9] Holmer, J. and Tzirakis, N., Asymptotically linear solutions in H! of the 2D defocusing nonlinear
Schrodinger and Hartree equations, J. Hyperbolic Diff. Equ., 7(1), 2010, 117-138.
[10] Kato, T., Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin, 1980.
[11] Kato, T., On nonlinear Schrodinger equations, Ann. Inst. H. Poincare Phys. Theor., 46, 1987, 113-129.
[12] Kato, T., On nonlinear Schrodinger equations II, H*-solutions and unconditional well-posedness, J.
d’Analyse. Math., 67, 1995, 281-306.
[13] Keel, M. and Tao, T., Endpoint Strichartz estimates, Amer. Math. J., 120, 1998, 955-980.
[14] Kenig, C. E. and Merle, F., Global well-posedness, scattering and blow-up for the energy-critical, focusing,
non-linear Schrodinger equation in the radial case, Invent. Math., 166(3), 2006, 645-675.
[15] Killip, R. and Visan, M., The focusing energy-critical nonlinear Schrodinger equation in five and high,
Amer. J. Math., 132(2), 2010, 361-424.
[16] Killip, R., Visan, M. and Zhang, X., The mass-critical nonlinear Schrdodinger equation with radial data in
dimensions three and higher, Anal. Part. Diff. Egs., 1(2), 2008, 229-266.
[17] Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math.,
118(2), 1983, 349-374.
[18] Miao, C., Xu, G. and Zhao, L., Global well-posedness and scattering for the energy-critical, defocusing
Hartree equation in R'*7. arXiv: 0707.3254v1 [math.AP] 22 Jul 2007.
[19] Miao, C., Xu, G. and Zhao, L., Global well-posedness, scattering and blow-up for the energy-critical,
focusing Hartree equation in the radial case, Colloguium Mathematicum, 114, 2009, 213-236.
[20] Miao, C., Xu, G. and Zhao, L., Global well-posedness and scattering for the mass-critical Hartree equation
with radial data, J. Math. Pures Appl., 91, 2009, 49-79.
[21] Miao, C., Xu, G. and Zhao, L., The Cauchy problem of the Hartree equation, J. PDEs., 21, 2008, 22-44.
[22] Ryckman, E. and Visan, M., Global well-posedness and scattering for the defocusing energy-critical non-
linear Schrédinger equation in R4 Amer. J. Math., 129(1), 2007, 1-60.
[23] Tao, T. and Visan, M., Stability of energy-critical nonlinear Schrédinger equations in high dimensions,
Electron. J. Diff. Eqns., 118, 2005, 1-28.
[24] Tao, T., Visan, M. and Zhang, X., The nonlinear Schrodinger equation with combined power-type nonlin-
earities, Comm. Part. Diff. Eqs., 32, 2007, 1281-1343.
[25] Tao, T., Visan, M. and Zhang, X. Y., Minimal-mass blowup solutions of the mass-critical NLS, Forum
Math., 20(5), 2008, 881-919.
[26] Thierry, A., Equations différentielles non linéaires et probleme de Yamabe concernant la courbure scalaire,
J. Math. Pures Appl. (9), 55(3), 1976, 269-296.
[27] Visan, M., The defocusing energy-critical Schrédinger equation in higher dimensions, Duke Math. J.,

138(2), 2007, 281-374.



The Nonlinear Schrodinger Equations with Combined Nonlinearities 473

Appendix Bound State and Properties
Let R(z) and W (x) be the positive radial Schwartz solutions of the ground state to the

elliptic equations, respectively:
4—(n—2 4 —
%R and AW + (Jo| 7« |WPW = =—w.

AR+ |R|PR =
Based upon the work of [2, 7, 17, 26], we have the following characterization of R and W
np A—(n=2)p
lall732: < CrlIVull 2 lull = =, Ve Hy, (A1)
(A.2)

1l = % o) o lls < OwlIVollTalloll 727,

where
2(p+2 _ 2(p+2
Cn =202 Ry = 2022 gy
np np
Cw = 2192 = 2Iwl;2,

which are the best constants for their inequalities, respectively

If we define
_ 1/|VR|2dx— L/|R|p+2dx
2 p+2 ’
~ 1 1
Bow): = 5/|VW|2dx _ Z/(mr7 L W)W da,
then we have
= 2\ /2(p+2)\7
Br)= (-2 24 ore)
- (- 2) [ (b 2) ()
o= (L_1 2 4y — g.
W / VW de = 20

Also define Ey := 3 [ |Vul[*dz — 1‘))-\1:2 [ |u|PT2 dx, where \; is the constant in (1.1).

Lemma A.1 Assume that

4—(n—2)p

np—1 < |/\1|4 7Lp

er np—4a
)

VR

IVullZs (flull72)

Inp \ it~ 2p
) (E(R))nr=1, where oy > 0.

By -l S5 < (1 - aowﬁ(
7 < o

Then we have that when ~ <p < =5, there exists a & = (0, n) > 0, such that
4—(n—2)p
IVull2:(ul32) 75" < (1=3)|M|==||VR]]

’”’ =T and By > 0.

PI‘OOf By (A.l), we have
1 2 |A1 np  4-(n-2)p
E12§/|Vul de =~ CrlIVall & ful= *
Let : \ -
A-(n=2)p
o - P o 5

f(x):i Cp+2
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and a = [ |Vu|?>dz. Note that

, Ca _ 24— (n=2)) _dp
fl@)=0 & x=|N[=7|ull,, ™" |[VR|5" =0
and
f(x) >0 forx <z,
1 2 4 2np 4_752:2)7) A-(n-2)p ~ _2p
=0, = (= — — )|\ 4—np( ) 2 np—4 E np—4
F0) =0, flao) = (5 = )l (2 (Iull72) (E(R))

Using the fact that a € [0,20) and the condition Ey < (1 — d¢)f(z0), we deduce that there
exists & = 0(dg, n), such that

a < (1 —E)mo and E; > f(a) > 0.
Define E, := & [ |Vo|*dz — % [ (Jz|77 *|v|?) [v[* dz, where Az is the constant in (1.1).
We can obtain a similar result for W(x) as follows.

Lemma A.2 Assume that

(VW
V)| 22(Jv]22) 72 < (7L2) .
| A2

Ea 13 < 003 - RS

where 6y > 0. Then when 2 < y < 4, there exists a § = 6(69,n) > 0, such that

4

3 g (1YW
IVollge(lol) = < (1 =8) (e

2
=2
and FE5 > 0.
Rl ) ) >



