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Abstract Let M be a compact orientable irreducible 3-manifold, and F be an essential
connected closed surface in M which cuts M into two manifolds M1 and M2. If Mi has
a minimal Heegaard splitting Mi = Vi ∪Hi Wi with d(H1) + d(H2) ≥ 2(g(M1) + g(M2) −
g(F )) + 1, then g(M) = g(M1) + g(M2) − g(F ).
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1 Introduction

All 3-manifolds in this paper are assumed to be compact and orientable.

Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression
bodies V and W with S = ∂+W = ∂+V , then we say that M has a Heegaard splitting, denoted
by M = V ∪S W , and S is called a Heegaard surface of M . Moreover, if the genus g(S) of S

is minimal among all Heegaard surfaces of M , then g(S) is called the genus of M , denoted by
g(M). If there are essential disks B ⊂ V and D ⊂ W such that ∂B = ∂D (resp. ∂B∩∂D = ∅),
then V ∪S W is said to be reducible (resp. weakly reducible). Otherwise, it is said to be
irreducible (resp. strongly irreducible).

Let M = V ∪S W be a Heegaard splitting. The distance between two essential simple closed
curves α and β on S, denoted by d(α, β), is the smallest integer n ≥ 0, so there is a sequence
of essential simple closed curves α0 = α, · · · , αn = β on S such that αi−1 is disjoint from αi

for 1 ≤ i ≤ n. The distance of the Heegaard splitting W ∪S V is d(S) = min{d(α, β)}, where
α bounds a disk in V and β bounds a disk in W (see [7]).

Let M be a 3-manifold, and A be an incompressible annulus on ∂M . Let M = V ∪W be a
Heegaard splitting with A ⊂ ∂−W . Recalling that a spine annulus in W is an essential annulus
of which one boundary component lies in ∂−W , the other lies in ∂+W . A spine annulus As

of W is called an A-spine annulus if one component of ∂As lies in A. V ∪ W is said to be
A-primitive if there is an essential disk in V which intersects an A-spine annulus of W in one
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point. A 3-manifold M is said to be A-primitive if one of the minimal Heegaard splittings of
M is A-primitive.

If a surface F in a 3-manifold M is incompressible and not parallel to ∂M , then F is said
to be essential.

Let M be an irreducible 3-manifold, F be an essential connected closed surface in M which
cuts M into two 3-manifolds M1 and M2. If Mi = Vi ∪Hi Wi is a Heegaard splitting of
Mi (i = 1, 2), then M has a natural Heegaard splitting called the amalgamation of V1 ∪H1 W1

and V2∪H2W2 (see [23]). From this construction, we have g(M) ≤ g(M1)+g(M2)−g(F ). Now an
interesting problem is: When g(M) = g(M1)+g(M2)−g(F ) or g(M) < g(M1)+g(M2)−g(F )?

If g(F ) = 0, any natural Heegaard splitting of the amalgamated 3-manifold M along unsta-
blized Heegaard splittings of M1 and M2 is unstablized. It is proved in [1] and [18] respectively.

There are some examples for g(M) < g(M1) + g(M2) − g(F ) (see [9, 25]).

A sufficient condition for g(M) = g(M1) + g(M2) − g(F ) was first given in [8] by using
Hemple distance in [7]. Then there are some results about this (see [3, 5, 11, 17, 19, 26]).

The amalgamated 3-manifold M can be viewed as gluing M1 to M2 via a homeomorphism
f : F1 → F2, where Fi ⊂ ∂Mi (i = 1, 2). So, from the viewpoint of homeomorphic maps of
surfaces, there are some results about g(M) = g(M1) + g(M2) − g(F ) (see [10, 12, 14, 24]).

In this paper, we give a bound of the sum of the distance of two Heegaard splittings of M1 and
M2, such that for any minimal Heegaard splitting V ∪S W of M , g(S) = g(M1)+g(M2)−g(F ).
The main result is as follows.

Theorem 1.1 Let M be an irreducible 3-manifold, F be an essential connected closed sur-
face in M which cuts M into two 3-manifolds M1 and M2. If Mi has a minimal Heegaard
splitting Mi = Vi ∪Hi Wi (i = 1, 2) with d(H1) + d(H2) ≥ 2(g(M1) + g(M2) − g(F )) + 1, then
g(M) = g(M1) + g(M2) − g(F ).

Corollary 1.1 If d(Hi) ≥ 2g(Mi)− g(F ) for i = 1, 2, then g(M) = g(M1)+ g(M2)− g(F ).

Question 1.1 Wether the bound of the sum of this two distances is the best?

2 Preliminary

There are some lemmas which can be used to prove the main theorem.

Lemma 2.1 (see [4, 19]) Let M = V ∪S W be a Heegaard splitting, and F be an incom-
pressible surface in M . Then either F can be isotoped to be disjoint from S or d(S) ≤ 2−χ(F ).

Lemma 2.2 Let M = V ∪S W be a strongly irreducible Heegaard splitting, and F be an
essential connected closed surface in M which cuts M into two manifolds M1 and M2. Then S

can be isotoped so that

(1) one of S∩M1 and S∩M2, say S∩M1, is incompressible while all components of S∩M2

are incompressible except one bicompressible component, or

(2) one of S ∩ M1 and S ∩M2, say S ∩M1, is incompressible while S ∩ M2 is compressible
only in one side, say M2 ∩ V , and there is a Heegaard surface S′ isotopic to S such that
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( i ) S′∩M1 is only compressible in M1∩W or incompressible while S′∩M2 is incompressible,

(ii) S′ is obtained by ∂-compressing S in M2 only one time.

This is a stronger version of [8, 17]. The arguments in [8, 17] contain this result. We give
an outline of the proof.

Proof of Lemma 2.2 By [8, Proposition 2.6], S can be isotoped such that at least one of
S ∩M1 and S ∩M2 is incompressible, and S ∩F is a collection of essential simple closed curves
on both S and F . We may assume S ∩ M1 is incompressible. Then, there are three cases for
S ∩ M2:

Case 1 S ∩ M2 is incompressible.

Case 2 S ∩ M2 is bicompressible.

Case 3 S ∩ M2 is only compressible in M2 ∩ V , incompressible in M2 ∩ W .

If Case 2 holds, then there is nothing to prove. Now we consider Case 1 and Case 3.

Case 1 Suppose that S ∩ M1 is incompressible, and S ∩ M2 is incompressible.

Since F is essential, V ∪S W is a non-trivial Heegaard splitting of M . So, there are essential
disks in both V and W . We may assume that among all the isotopies of S, satisfying

(1) S ∩ F is a collection of essential simple closed curves on both S and F ,

(2) S ∩ M1 and S ∩ M2 are incompressible,

there is an essential disk D in V or W such that |D∩F | is minimal. Since F is essential, D∩F

is a collection of arcs in D. Let a be an outermost arc in D. There is an arc b ∈ ∂D such that
a ∪ b bounds a subdisk D′ ⊂ D with intD′ ∩ F = ∅. We now prove that D′ is a ∂-compressing
disk for S1 or S2. Suppose that D′ lies in M1. If b is inessential on S1, then b can be isotoped
to b′ which lies in F such that a ∪ b′ bounds a disk in M1. Since F is essential, a ∪ b′ is an
inessential simple closed curve on F . Since M1 is irreducible, it is easy to see that D′ can be
pushed into M2 decreasing |D ∩ F |, a contradiction. So, b is an essential arc on S1 or S2.

We may assume that D′ is a ∂-compressing disk for S1. ∂-compressing S1 along D′, we
get a surface S′ isotopic to S. Note that S′ ∩ M1 is incompressible, except for possibly a ∂-
parallel disk. If there is a ∂-parallel disk, then we push it into M2. We still denote it by S′.
Note that S′ ∩ F is also a collection of essential simple closed curves on both S′ and F . By
the minimality of |D ∩ F |, S′ ∩ M2 is bicompressible or only compressible in M2 ∩ V (resp.
M2 ∩ W ), incompressible in M2 ∩ W (resp. M2 ∩ V ). So, we have Case 2 or Case 3.

Case 3 Suppose that S ∩ M1 is incompressible, S ∩ M2 is only compressible in M2 ∩ V ,
incompressible in M2 ∩ W .

As in Case 1, we may assume that among all the isotopies of S, satisfying

(1) S ∩ F is a collection of essential simple closed curves on both S and F ,

(2) one of S ∩M1 and S ∩ M2 is incompressible, the other is only compressible in one side,
there is an essential disk D in W or V with |D ∩ F | being minimal. (If one of S ∩ M1 and
S ∩ M2 is compressible in V (resp. W ), we say that D lies in W (resp. V ).)

Suppose that S∩M1 is incompressible, S∩M2 is compressible in M2∩V and incompressible
in M2 ∩ W . Then, there is an essential disk D in W such that |D ∩ F | is minimal.
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By the proof as in Case 1, we choose a subdisk D′ of D with intD′ ∩ F = ∅. Note that
D′ is a ∂-compressing disk for S1 or S2. If D′ lies in S1, then ∂-compressing S1 along D′, we
get a surface S′ isotopic to S such that S′ ∩ M1 is still incompressible, except for possibly a
∂-parallel disk. By pushing the ∂-parallel into M2, we still denote this surface by S′. Note that
S′ ∩ F is also a collection of essential simple closed curves on both S′ and F , and the isotopy
decreases |D ∩ F |. Since F is essential, S′ cannot be disjoint from F . Then, S′ ∩ M1 is also
incompressible, and S′ ∩ M2 is also compressible in M2 ∩ V . By the minimality of |D ∩ F |,
S′ ∩ M2 is bicompressible. This is Case 2.

Now suppose that D′ lies in S2. ∂-compressing S2 along D′, we obtain a surface S′ isotopic
to S. Note that S′ ∩M2 is still incompressible in M2 ∩W , except for possibly a ∂-parallel disk.
If there is a ∂-parallel disk, then we push it into M1. We still denote it by S′. Note that S′ ∩F

is a collection of essential simple closed curves on both S′ and F . If S′∩M2 is still compressible
in M2 ∩ V , by the minimality of |D ∩ F |, S′ ∩ M1 is compressible in M1 ∩ V . We also denote
the disk isotopic to D by D. Then D ∩ F 
= ∅. We isotope S′ via ∂-compressing along subdisk
of D as above, by the minimality of |D ∩ F | and the finiteness of D ∩ F , we have Case 2.

If S′ ∩ M2 is incompressible in M2, by the minimality of |D ∩ F |, Lemma 2.2 holds.

Lemma 2.3 Let M be an irreducible 3-manifold, V ∪P W be a Heegaard splitting of M , Q

be a properly embedded separating connected bicompressible bounded surface in M which cuts
M into two 3-manifolds X and Y . Suppose ∂Q lies in one component of ∂−V . If d(P ) ≥ 5,
then d(P ) ≤ 2 − χ(Q) or Q lies in ∂−V × I.

This is the stronger version of the proof in [13]. There are some differences from [13], because
in [13], Q is closed. In fact, the condition d(P ) ≥ 5 can be deleted (see [4]). The argument in
[13] contains this result. We do not prove it here.

3 The Proof of Theorem 1.1 and Corollary 1.1

Proof of Theorem 1.1 and Corollary 1.1 Let V ∪S W be a minimal Heegaard splitting
of M , and ki = d(Hi) for i = 1, 2. Since F is essential, S cannot be isotoped to be disjoint from
F .

Case 1 V ∪S W is strongly irreducible.

Let S1 = S ∩ M1, S2 = S ∩ M2. By Lemma 2.2, there are the following two cases.

Case 1.1 Suppose that S1 is incompressible, S2 is compressible in M2∩V and incompressible
in M2 ∩ W .

By Lemma 2.1, we have χ(S1) ≤ 2 − k1. By Lemma 2.2, we get an incompressible surface
S′

2 after ∂-compressing S2 in M2 only one time. By Lemma 2.1, we have χ(S′
2) ≤ 2− k2. Since

χ(S2) = χ(S′
2) − 1, χ(S) = χ(S1) + χ(S2) ≤ 2 − k1 + 1 − k2 = 3 − (k1 + k2) ≤ 3 − 2(g(M1) +

g(M2) − g(F )) − 1, i.e., g(S) ≥ g(M1) + g(M2) − g(F ).

Case 1.2 Suppose that S1 is incompressible, S2 is bicompressible.

By Lemma 2.1, we have χ(S1) ≤ 2− k1. If S2 is not connected, let H be an incompressible
component. Since S is strongly irreducible, the bicompressible component of S2 is not annulus.
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So χ(H) ≥ χ(S2) + 2. By Lemma 2.1, χ(H) ≤ 2 − k2. So χ(S2) ≤ −k2. Then χ(S) = χ(S1) +
χ(S2) ≤ 2− k1 − k2 ≤ 2− 2(g(M1)+ g(M2)− g(F ))− 1, i.e., g(S) ≥ g(M1)+ g(M2)− g(F )+1,
a contradiction.

Hence, S2 is connected. After maximally compressing S2 in M2 ∩ V (resp. M2 ∩ W ), we
denote it by SV (resp. SW ). By the no nested lemma in [21], SV and SW are incompressible.
If there is a bounded component H of SV (resp. SW ) which is not ∂-parallel, by Lemma 2.1,
χ(S2)+2 ≤ χ(H) ≤ 2−k2. Then χ(S) = χ(S1)+χ(S2) ≤ 2−k1−k2 ≤ 2−2(g(M1)+ g(M2)−
g(F )) − 1, i.e., g(S) ≥ g(M1) + g(M2) − g(F ) + 1, which is a contradiction.

Hence, each bounded component of SV and SW is ∂-parallel. If the bounded components
of SV (resp. SW ) are nested, since S2 is connected, they are as in Figure 1. Let H be the
outermost component of SV , FH be a subsurface of F parallel to H , and F × I be a small
regular neighborhood of F in M2, where F = F ×{0}. Then F ′ = H − F × I ∪ (F − FH ×{1})
is parallel to F . We can push F ′ slightly such that F ′ ∩ H = ∅. Since H is outermost, F ′ is
disjoint from S2. So, F ′ lies in V or W , a contradiction. Hence, each bounded component of
SV is ∂-parallel and non-nested. So does SW .

Figure 1 The bounded component of SV

Let FV = F ∩ (M2 ∩ V ), FW = F ∩ (M2 ∩ W ). It is easy to see that H ′ = S2 − F × I ∪
(FV ×{1}) and H ′′ = S2 − F × I ∪ (FW ×{1}) are Heegaard surfaces of M2. We have χ(S2)+
χ(FV ) = χ(H ′), χ(S2) + χ(FW ) = χ(H ′′). Note that χ(H ′) ≤ χ(H2), χ(H ′′) ≤ χ(H2), so
2χ(S2)+χ(F ) = χ(H ′)+χ(H ′′) ≤ 2χ(H2), i.e., χ(S2) ≤ χ(H2)− 1

2χ(F ). Since χ(S1) ≤ 2−k1,
χ(S) = χ(S1) + χ(S2) ≤ 2 − k1 + χ(H2) − 1

2χ(F ). Since g(S) ≤ g(M1) + g(M2) − g(F ),
k1 ≤ 2g(M1)− g(F ) + 1. Since k1 + k2 ≥ 2(g(M1) + g(M2)− g(F )) + 1, k2 ≥ 2g(M2)− g(F ) ≥
2(g(F ) + 1) − g(F ) ≥ 3. But H ′ and H ′′ are A-primitive, by [14], d(H ′), d(H ′′) ≤ 2, so
g(H ′), g(H ′′) ≥ g(H2) + 1, i.e., χ(H ′), χ(H ′′) ≤ χ(H2) − 2. Then, by the proof as above,
χ(S2) ≤ χ(H2) − 2 − 1

2χ(F ). Thus, χ(S) = χ(S1) + χ(S2) ≤ 2 − k1 + χ(H2) − 2 − 1
2χ(F ). We

have k1 ≤ 2g(M1)−g(F )−1. Then k2 ≥ 2g(M2)−g(F )+2 ≥ 5. Thus, by Lemma 2.3, we have
χ(S2) ≤ 2−k2. Hence, χ(S) = χ(S1)+χ(S2) ≤ 2−k1+2−k2 ≤ 4−2(g(M1)+g(M2)−g(F ))−1,
i.e., g(S) ≥ g(M1) + g(M2) − g(F ) − 1

2 .
Note that k1 ≤ 2g(M1) − g(F ) − 1. If we suppose ki ≥ 2g(Mi) − g(F ) for each i, then this

case does not happen. Corollary 1.1 holds.
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Case 2 V ∪S W is weakly reducible.
Since V ∪S W is weakly reducible, by [2, 16, 22], we have

M = V ∪S W = (V1 ∪P1 W1) ∪F1 · · · ∪Fn−1 (Vn ∪Pn Wn),

where each Vi ∪Pi Wi is strongly irreducible, each Fi is incompressible.
If there is Fi for some i, such that Fi ∩ F 
= ∅ after isotopies, we may assume that Fi ∩ F

is a collection of essential simple closed curves on both Fi and F , and |Fi ∩ F | is minimal. Let
F 1

i = Fi ∩M1, F 2
i = Fi ∩M2. By Lemma 2.1, χ(F 1

i ) ≤ 2 − k1, χ(F 2
i ) ≤ 2− k2. Then, we have

χ(S)+4 ≤ χ(Fi) = χ(F 1
i )+χ(F 2

i ) ≤ 2−k1+2−k2. Since k1+k2 ≥ 2(g(M1)+g(M2)−g(F ))+1,
g(S) > g(M1) + g(M2) − g(F ) + 3

2 , which is a contradiction.
Hence, for each i, Fi ∩ F = ∅. Then, F lies in Vi ∪Pi Wi for some i. If Pi ∩ F = ∅, then F

is parallel to Fi−1 or Fi, we have g(S) = g(M1) + g(M2)− g(F ). Next, we suppose Pi ∩F 
= ∅.
Note that Pi is strongly irreducible. Let P 1

i = Pi ∩ M1, P 2
i = Pi ∩ M2, and Mi = Vi ∪Pi Wi.

By Lemma 2.2, there are two cases.
Case 2.1 Suppose that P 1

i is incompressible in Mi ∩ M1, P 2
i is compressible in Vi ∩ M2,

and incompressible in Wi ∩ M2.
Since each Fi is incompressible, P 1

i is incompressible in M1. By Lemma 2.1, χ(P 1
i ) ≤ 2−k1.

Then we get P 2′
i obtained by ∂-compressing P 2

i , such that P 2′
i is incompressible in M2 ∩ Mi.

So, P 2′
i is incompressible in M2. Hence, again by Lemma 2.1, χ(P 2′

i ) = χ(P 2
i )+1 ≤ 2−k2, i.e.,

χ(P 2
i ) ≤ 1− k2. So, χ(Pi) = χ(P 1

i ) + χ(P 2
i ) ≤ 2− k1 + 1− k2 ≤ 2− 2(g(M1) + g(M2)− g(F )).

Since χ(S) + 2 ≤ χ(Pi), we have g(S) > g(M1) + g(M2) − g(F ), which is a contradiction.
Case 2.2 Suppose that P 1

i is incompressible in Mi ∩M1, P 2
i is bicompressible in Mi ∩M2.

Since each Fi is incompressible, P 1
i is incompressible in M1, all compressing disks of P 2

i

in M2 lie in M2 ∩ Mi. By Lemma 2.1, χ(P 1
i ) ≤ 2 − k1. If P 2

i is not connected, let H be
an incompressible component of P 2

i , then χ(H) ≤ 2 − k2. Since χ(P 2
i ) + 2 ≤ χ(H), we have

χ(P 2
i ) ≤ −k2. So χ(Pi) = χ(P 1

i ) + χ(P 2
i ) ≤ 2 − k1 − k2. Since χ(S) ≤ χ(Pi) − 2, we have

g(S) > g(M1) + g(M2) − g(F ), which is a contradiction.
Hence, P 2

i is connected. Maximally compressing P 2
i in M2 ∩ Vi (resp. M2 ∩Wi), we denote

it by PV (resp. PW ). By the no nested lemma in [21], PV and PW are incompressible. If
there is a bounded component H of PV (resp. PW ) which is not ∂-parallel, by Lemma 2.1,
χ(H) ≤ 2 − k2. Since χ(P 2

i ) + 2 ≤ χ(H), we have χ(P 2
i ) ≤ −k2. Since χ(S) ≤ χ(Pi) − 2, we

have g(S) > g(M1) + g(M2) − g(F ), which is a contradiction.
Hence, each bounded component of PV and PW is ∂-parallel. If the bounded components

of PV (resp. PW ) are nested, since P 2
i is connected, they are also as in Figure 1. Let H be

the outermost component of PV , FH be a subsurface of F parallel to H , and F × I be a small
regular neighborhood of F in M2, where F = F ×{0}. Then F ′ = H − F × I ∪ (F − FH ×{1})
is parallel to F . We can push F ′ slightly such that F ′ ∩ H = ∅. Since H is outermost, F ′

is disjoint from P 2
i . So, F ′ lies in Vi or Wi, which is a contradiction. Hence, each bounded

component of PV is ∂-parallel and non-nested. So does PW .
Let FV = F ∩ (M2 ∩ Vi), FW = F ∩ (M2 ∩ Wi), and M ′

i = M2 ∩ Mi. It is easy to see
that H ′ = P 2

i − F × I ∪ (FV ×{1}) and H ′′ = P 2
i − F × I ∪ (FW × {1}) are Heegaard surfaces
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of M ′
i . We have χ(P 2

i ) + χ(FV ) = χ(H ′), χ(P 2
i ) + χ(FW ) = χ(H ′′). So 2χ(P 2

i ) + χ(F ) =
χ(H ′) + χ(H ′′) ≤ 4− 4g(M ′

i), i.e., χ(P 2
i ) ≤ 2− 2g(M ′

i)− 1
2χ(F ). We have χ(S) ≤ χ(Pi)− 2 ≤

2 − k1 + 2 − 2g(M ′
i) − 1

2χ(F ) − 2, i.e., k1 ≤ 2g(M1) + 2g(M2) − 2g(M ′
i) − g(F ) − 1. Since

k1+k2 ≥ 2(g(M1)+g(M2)−g(F ))+1, we have k2 ≥ 2g(M ′
i)−g(F )+2 ≥ 5. By Lemma 2.3, we get

χ(P 2
i ) ≤ 2−k2. Hence, χ(S) ≤ χ(Pi)−2 ≤ 2−k1+2−k2−2, i.e., g(S) ≥ g(M1)+g(M2)−g(F )+1,

which is a contradiction. Theorem 1.1 is proved.

Note that if ki ≥ 2g(Mi)−g(F ) for each i, then the proof of Case 2.1 is the same. In Case 2.2,
2g(M1)−g(F ) ≤ k1 ≤ 2g(M1)+2g(M2)−2g(M ′

i)−g(F )−1, we have g(M2) ≥ g(M ′
i)+1. Note

that k2 ≥ 2g(M2)− g(F ) ≥ 5. By Lemma 2.3, χ(P 2
i ) ≤ 2− k2. By Lemma 2.1, χ(P 1

i ) ≤ 2− k1.
Thus, χ(S) ≤ χ(Pi)− 2 ≤ 2− (k1 + k2). We have g(S) ≥ g(M1) + g(M2)− g(F ). Corollary 1.1
holds.
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