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Abstract In this paper, a model is derived to describe a quartic anharmonic interatomic
interaction with an external potential involving a pair electron-phonon. The authors study
the corresponding Cauchy Problem in the semilinear and quasilinear cases.
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1 Introduction

Electron-phonon interactions play a crucial role in the determination of the physical prop-
erties of many mixed cristals (see [16]).

In the present paper, we study the well-posedness of a nonlinear dispersive system arising
in the framework of the electron-phonon interaction in a one-dimensional lattice. In [8], V.
Konotop treated the temporal dynamics of such a system in the presence of resonant interactions
between the electron and phonon subsystems. The Hamiltonian H for such a one-dimensional
chain of particles is given by H = H¢ + Hpn + Heph, where, denoting by a dot the time
derivative, the Hamiltonians for each subsystem and their interaction read in braket notation

Ha=-J)Y (In><n+1[+|n><n-1|),

n
M o0 U 9
Hpyn = 5 znjpn + b zn:(pn-i-l — pn)”s

Hel—ph = XZ |n >< n|(pn+1 - pn—l)-

n

Here, p, denotes the distance to the equilibrium position of the nth atom of mass M, J is
the energetical constant determined by the overlapping of the electronic orbitals, U is a force
constant and x represents the strenght of the electron-phonon interaction.
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In the continuum limit, the above Hamiltonians become

M U
Hel = —.]/l’u,x|2d$, th = ? /pfdx—l— E/pid.l?, Hel—ph = X/|u|2pxd$7

where u is the electronic wave-function.
Putting ¢ = p, p = M p;, we obtain the Hamilton evolution set of equations

. O(Hph + Helpn)
Gph 8pph )
oy = — QWHpn + Hopn) (1.1)
o O )
ihut _ ( el 'g el-ph) )
u

In the present paper, we will treat the Cauchy problem associated with this evolution system.
We will replace the Hamiltonian of the electronic and phonon subsystems respectively by

Hy = —J/ |u, [2dx + %/|u|4da:, aeR (1.2)

- /daj—|— /pmdm—ﬁ/‘ldx BER, (1.3)

allowing the possibility of nonlinear cubic potentials for the evolution of u and p. Also, we will

and

incorporate in Hepn & term to account for the anharmonic interatomic interactions (see [1]):

Hepn = X/ |u|2pmdx + )\/(px)4dx, A>0. (1.4)

By replacing (1.2)—(1.4) in (1.1), we obtain the system

{ihut + JUgy = 2xupy + afulPu, xR, t >0, (1.5)

Mpy — [Ups + Ao3]e = x(Jul?)z + Bp>.

Finally, after putting all physical constants equal to the unity and scaling out the remaining
coefficient of the term up, by the transformation p = 2p and & = v/2u, we obtain the initial
value problem

Uy + Uge = upy + afuPu, xR, t >0,
Pt — [Px + )‘pg]x = (|u|2)x + 5937 (1.6)
U(O, (E) = UO({E), P(O, (E) = Po(x), pt(ovx) = p1 ((E)

For o = f = A = 0, by putting n = p,, we obtain the classical Zakharov system

{iut + Ugy = UN, (1.7)

Nt — Ngy = (|u|2)m

The initial value problem for (1.7) is studied in [6, 12]. Also, in the case where 3 = XA =0,
a # 0, (1.6) falls in the scope of the Zakharov-Rubenchik equation studied in [10, 9] for the
global well-posedness and stability of solitary waves and in [11] for the adiabatic limit to the
cubic nonlinear Schrédinger equation.

The rest of this paper is organized as follows.
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In Section 2, we treat the local well-posedness of (1.6). The main difficulty of this system
is the presence of the strongly nonlinear term with derivative-loss p2p.,. In order to overcome
this problem, we translate (1.6) in terms of its Riemann invariants. Next, we perform a change
of functions technique developed in [15, 10, 5] which takes care of the derivative-loss and use
a variant of a result derived by Kato [7] to prove the existence and uniqueness of strong local
solutions to (1.6) for initial data (ug, po, pro) € H*(R) x H3(R) x H*(R).

In Section 3, we derive some conservation laws for (1.6) and prove the existence of solutions
which blow-up in L? in finite time (provided that 3 > 0) by adapting a result due to Reed and
Simon [13]. Also, for 8 < 0 and A = 0, we prove that the solutions obtained in the previous
section are in fact global in time.

Finally, if A > 0 and 3 < 0, we establish in Section 4 the global existence of weak solutions
for (1.6) by applying a compensated-compactness method developed in [14] by Serre and Shearer
(see also [2]). The adaptation of this method to a Schrodinger-nonlinear elasticity system was
made in [4]. The technique of using this compensated-compactness result in order to prove
the existence of global weak solutions was introduced in [3] in the framework of a Schrédinger-
conservation law system.

2 Local Existence of Strong Solutions

In this section, we address the local well-posedness of the initial value problem (1.6).
Let ug € H3(R), po € H3(R) and p; € H%(R).
By setting v = p,, w = p; and o(v) = v + Mv?, the Cauchy problem (1.6) is equivalent to

uy + Upy = uv + alul?u,
Pt = W,

v — 1wy = 0, (2.1)
wy — (0(v))e = ([uf*)z + Bp?
with initial data
u('70):u06H3(R)7 p(-,0)=p0€H3(R), (2.2)

v(+,0) = v = po, € H*X(R), w(-,0)=wp:=p1 € H*(R).

Let A > 0. By introducing the Riemann invariants

lzw—f—/ V1+3X2d¢ and r:w—/ V14 3X2d¢E,
0 0

we derive

v 1 l
l—r:2/ V1I+3X2dE = 1+3)\v2+\/3_>\arcsinh(v3)\v), w= —|—7".
0

Noticing that
1

V3

is one-one and smooth, we put v = f~1(l —r) = v(l,r). For classical solutions, the Cauchy

f(v) =vv1+3 2%+ arcsinh(v3Av)
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problem (2.1)—(2.2) is equivalent to

Uy + Uz = uv + alul?u,

pr = %(l +7), (2.3)

b= VIT 321, = (Juf?)s + B,
re + V1 + 3 21, = (|[u]?)z + Bp°
with initial data
u(-,0)=ug € H*(R), p(-,0)=po € H*(R), (2.4)
I(+,0)=1p € H*R), r(-,0)=ro€ H*(R),

where
Vo vo
lo =w0+/ V14+3X2d¢ and 1o = wy —/ V14 3X62d¢E. (2.5)
0 0

In order to obtain a local strong solution to the Cauchy problem (2.3)—(2.4) for a fixed A > 0,
we will follow the technique employed in [10, 5].
We consider the auxiliary system with non-local source terms

— 1
iF; 4 Frp = 2ajul*F + au®F + Fu + §u(lx +7rg),

pt = %(l +7), (2.6)

i — V14 3\21, = ([U)?). + 8p°,
re + V143 27, = (|u]?). + 8o,

where I is the complex conjugate of F' and

¢
u(x,t) = up(x) —|—/ F(z,s)ds,
0
u(z,t) = (A = 1) afu)®u+ u(v — 1) — iF),
with initial data
F(',O):FOGHl(]R), p(~,0):p06H3(R), l(',O)ZZOEHQ(R), (28)
r(-,0) =ro € H*(R), o and rq given by (2.5). '

We will prove the following result.

Theorem 2.1 Let (Fy, po,lo,r0) € H* x H3 x H?> x H?, lg — 19 = f(pug). There exists a
T* = T*(Fo, po,lo,m0) > 0, such that for all T < T* there exists a unique solution (F,p,l,r) to
the Cauchy problem (2.6)—(2.8) with

(F,p,l,r) € C7([0,T); H'™27) x C7((0, T} H* ™)
x C7((0, ) H*™7) x C7((0, T H* ™), j=0,1.

From this result, we will prove the following theorem.

Theorem 2.2 Let (ug,po,p1) € H® x H3 x H%. There exists a T* = T*(ug, po, p1) > 0
such that for all T < T* there exists a unique solution (u, p) to the Cauchy problem (1.6) with

(u, p) € C/([0,T); H*=) x (C7([0,T]; H*7) n I+ ([0, T); H* 7)), j=0,1.
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Proof of Theorem 2.1 We want to apply a variant of [7, Theorem 6]. Hence, we need
to put the Cauchy problem in the framework of real spaces. Introduce the new variables
Fy =Re(F), Fo =Im(F), u1 = Re(u), ug = Im(u).

By setting U = (F1, Fa, p, 1, 1), F10 = Re(Fp) and Fyy = Im(F)), the initial value problem
(2.6) and (2.8) can be written in the form

0
— A =g(t
50 T AU =g(t.U), (2.9)
U(-,0) = Uy,
where
[0 A O 0 0
-A 0 O 0 0
AU)= 1|0 0 0 0 0 ,
0 0 0 —v1+3\2 0
0 0 0 0 V1 + 3 02

[2a|u|?Fy — a(u? — ud)Fy 4 20uus Fy + Fov + %UQ(ZI +7y)
20jul?Fy — a(u? —u3)F — 2auiusFy — Fio — %U,Q(lx +7ry)
gt U) = s(+7) :
(l*)e + Bp®

I ([al?)z + Bp®

Uo = (F1o, Fa, po, 1o, 7o) € Y = (H'(R))* x (H*(R))?

(The condition pg € H3(R) will be used later).

Note that the source term g¢(t,U) is non-local.

We now set X = (H '(R))? x (L*(R))? and S = (1 — A)I, which is an isomorphism
S:Y — X.

Furthermore, we denote by Wg the open ball in Y of radius R centered at the origin and
by G(X,1,w) the set of linear operators A : D(A) C X — X, such that

(1) —A generates a Co-semigroup {e " },cp;
(2) for all t >0, [|[e7*|| < e“t, where for all U € Wk,

1 0
w = —sup H—a(p,l,r)H <¢(R), c¢:[0,+00[— [0,400[ is continuous,
2$€R Ox
0 0 0
a(p,l,m) = {0 —v1+ 3 02 0
0 0 V14 3\w?

Following from [7, Paragraph 12], we get A: U = (F1, Fo,p,l,1) € Wi — G(X, 1,w). It is easy
to see that g verifies for a fixed T' > 0, ||g(¢t,U(t))|ly < 0r, t €[0,T], U € C([0,T]; Wg). For
(p,1,7) in a ball W in (H2(R))?, we set

Bo(p,l,r) = [(1 = A),alp,1,1)](1 - A)~" € L(L*(R))?)
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(see [7, 12.6]). We now introduce the operator B(U) € L(X), U = (F1, F, p,l,1r) € Wgr by

0 0 O 0 0

0 0 O 0 0
B(U)=10 0

0 0 Bo(p,l,7)

0 0

In [7, Paragraph 12], Kato proved that for (p,l,r) € W, we have
(1 - A)a(p, l,?")(]. - A)il - a’(pv l,?”) + BO(P, la T)'

Hence, we easily derive for U € Wg, SA(U)S™! = A(U) + B(U).
Now, for each pair U, U* € C([0,T]; Wg), U = (F1, Fa,p,l,r), U* = (Fy, F5, p*, 1", %), we
claim that

lg(-,0) = g(-,U)zro.rx) < e(T') sup [[U(t) = U (t)]|x, (2.10)
0<t<T"

where 0 < 7”7 < T and ¢(7”) is a non-decreasing continuous function such that ¢(0) = 0.
Indeed, let us point out that for h € L2(R) and w € HY(R), |[hw||g-1 < ||h||g-1||w| g
Hence, for example,

[ Frur(uy —un)llg-1 < [|F1flg[Jua |l g lluf — wal| g

and for t < T,

t t t
‘(lx—f—rx)(/o ngs—/o Fas)| §||lx+rx|\H1/0 |F — F s |[g-rdr

<c(T') sup [[U(t) = U (t)]x-
0<t<T"

Finally, applying [7, Theorem 6] and replacing the local condition (7.7) in [7] by (2.10), we
obtain the result described in Theorem 2.1, but with p € C7([0,T]; H*>77),j = 0,1. To obtain
p € CI([0,T); H*77), it is enough to remark that, since p, = w, po € H3, vg = po, € H?,
wo € p1 € H?, we derive p, = v € CI([0,T], H>77).

Proof of Theorem 2.2 We will follow here the ideas in [5].

If (F,p,l,r) is a solution to (2.6) and (2.8), by differenciating (2.7) with respect to ¢, we
obtain u; = F. Applying it to the first equation of (2.6), we obtain

— 1
(s + Upe)t = 20|u*F + au®F + Fuv + Eu(lx +72) = 20ul*us + auT; + ugv + uvy.

Hence, (ius + gy — aful?u — uv); = 0 and iuy + upz — alul?u — uv = ¢o(x), where ¢o(z) =
iFy + uf — alug|?uo — ugvo. By choosing Fy = i(uf — a|ug|*ug — ugvg), we obtain that ¢g = 0
and (u,v) satisfy the first equation in (2.3).

Furthermore, from this equation, we derive

u=(A—1) " alulPu+ulv—1) —iu). (2.11)
Therefore u = @ and (u, p, [, ) satisfy (2.3)-(2.4). Note that u, = F € C([0,T]; H'). Moreover,
t
u(z,t) = up(z) —I—/ F(x,s)ds € C([0,T]; H').
0

But from (2.11), we have in fact u € C([0,T]; H?).
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3 Global Well-Posedness for A = 0 and Blow-Up Results

In this section, we prove that the local solutions obtained in Theorem 2.2 are in fact global
in time in the case where g < 0 and A = 0. Conversely, if § > 0, we show the blow-up of the
local solutions in finite time under some conditions on the initial data.

We consider the initial data (uo, po, p1) € H® x H® x H?. Let

(u, p) € C9([0,T]; H>2) x (C9([0,T]; H>) n ¢7 ([0, T]; H*7)), j=0,1

be the unique corresponding maximal solution to the Cauchy problem (1.6). We begin the
proof by deriving the following conservation laws:

T / lu|?dz =0, tel0,T], (3.1)
t) = t T 2
Cp =0, 1eo1] (32)
where the energy E(t) is given by

1 1 A
B0 =5 [fde s g [arars ] [atae =5 [paes [pufufas
+/|ux|2dx+%/|u|4dx.

For the first one we multiply the first equation in (1.6) by @, and integrate the imaginary
part. To obtain the conservation of energy, we derive from (1.6) that

Re/iutﬂtdx—i—Re/umEtdx: Re/pxuﬂtdx—l—aRe/|u|2uﬂtdx,

_]‘ 2 4
2dﬁ/|ug,:|d72/ |u|dx+4dt/|u|dx

1d 2

—ﬁ/m 2da ——/atpxu +4dt/|“' dz.

Finally,
4 Pp | o _ Ip i_a 31_ 3,3
5 [ aomluds =5 [ S quPyado = 5 [ S2{TE = 2 lpn + Xp)) - 60 fao
_1d 1d Ad a_Bd [
=g ) Pl g [ et S [ ) -5 [ o,

and (3.2) is proved.
Next, we will prove the following result.

Theorem 3.1 Let 3 <0 and A =0. Then Theorem 2.2 holds for T* = +o0.

Proof In order to prove this result, it is sufficient to derive a priori bounds for the norms

[ullzs, [lpllas, lloell a2 and [lpe | -

Let us begin the proof by noticing that |[ pylul’dz| < 1 [(ps)?dz + [ |u[*dz. By the
Gagliardo-Nirenberg inequality and (3.1), we have ||ul|7. <collu||32||us| 2 < colluol3|uslr2 <
clluoll$2 + 3|lusl|3. Since B8 < 0, we obtain from (3.2) that

/ (p)?dz + / [(p2)? + Mpa)]dz + / g 2z < ¢ (3.3)
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with ¢ depending only on (||uo|| g1, |pollaz, [|p1]|a1)-
Moreover, since p(t) = Po+f0 pi(T)dT, we have ||p(t)|| 2 < |lpoll 2 —|—f0 | p¢(7)]| 2d7. Hence,
since § < 0, we have

/(pt)de + /(p)de—i— /(pm)zdx—l— / lu|?da + / lug [*de < C(1 4 t) (3.4)

with C' depending exclusively on the initial data.
Next, we estimate ||uzs| 2, ||pat|lr2 and ||pgs||r2. For A =0, the system (2.3) reads

Uy + Uge = uv + alul?u,

pr = %(l +7), (3.5)

ly— 1y = (|u|2)x + 5937
i +1e = (Ju?)s + Bo°.

(1) :/(rx)QdaH—/(lx)2da:+/|ut|2da:.

In what follows, we will denote by A(t) a generic positive continuous function A : Ry — R4,

We put

which can change from line to line.
By differentiating with respect to z the last equation in (3.5), multiplying by 7, and inte-

grating, we get

1d ,

S2/|uumrx|dx+2/|uirx|da:+3|B|/p2|pxrx|dx
§A(t){ /r dx /|um| dx 4 [lullse /|ux| dx : /ridx); + (/ridx)%}
< A(t )[ / de /|umx|2dx (/ idx) :|a

where the Sobolev injection [|uylloc < cfuz| g1 and (3.4) are used.
By a similar estimate for [,,, we obtain

1d

s [ (027 + @)2)de < AW [y 20 + 23 () / s ) %}. (3.6)

From the first equation in (3.5), we have
ltaallze < lluel e + A(t) < 42 () + A(D). (3.7)

By using it in (3.6), we have

1d
2 dt

=

((r2)? + (Iz)*)da < A@®)[yZ(8) + (D). (3-8)

Moreover, since p; = 3 (L + ), we have

lpxtllze < ey (t). (3.9)
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Now, multiplying the first equation in (3.5) by u;, integrating the imaginary part and using the
Cauchy-Schwarz inequality, we have

2dt/|Ut| dx—/pxtlm(uut)dx+a/(|u| )eIm(uzy)da
< Nullelpalze ([ Paz)* + 2allul, [ e < exte)

Finally, using (3.8), we get

Co(t) < AN (0) + 7] < AL+ (1)
9() < (1+5(0))ed AT — 1,

Hence, by (3.7) and (3.9), we have ||uzz| 2 + [|pzt]|2 < A(f). By the second and the third
equations in (3.5), we have |||z + ||r¢]|2 < A(t). Therefore
1
lpeellzz = 5lle +rell 2 < A),
lpzallze = lloe = (lul*)a = Bp% L2 < A().

To obtain a continuous bound on ||pzazllr2, |Uzzellr2, ||Ptazllrz and || pes|| L2, the exact same
method can be used by setting

10 = [Gaafa+ [afas+ [luPds

and differentiating system (3.5) with respect to x.
We now assume (§ > 0. In what follows, we will consider the following conditions on the

initial data:

/popldx > 0, (3.10)

1 /9
< — 0,. :
B(0) <~ (3 +2lof) ol (3.11)
We will prove the following blow-up result.

Theorem 3.2 Let 3 > 0 and A > 0. Under the conditions of Theorem 2.2, by assuming
that the initial data (uo, po,p1) satisfy conditions (3.10) and (3.11), there exists a time 0 <
T* <To:= ([ p3dz)([ poprdz) =1, such that, if the solution exists in [0,T*], then

lim p’dx = 4o0.
t—T*~

Proof Following [13, Chapter 10, Paragraph 13], we put

(e

Glt) = / Pz and  F(t) = (G(t))~}. (3.12)

We have F'(t) = —3G(t)"2G'(t) = —=G(t)~ fpptda: and from (3.10), F’(0) < 0.
) = —2G()3 F"(t) = G"(t)G(t) - 3G/ (1)* with

Furthermore, we set @@

Q(t
G"(t / V2de +2H(t) and H(t) = /[pptt —2(p¢)?]dz.
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Q(t) :6[( / p2dx>( / (Pt)de> - ( / (ppt)de)} LG H(L).

By the Cauchy-Schwarz inequality, we obtain Q(t) > 0, and consequently F”(¢) < 0 provided
H(t) > 0.
The last fact is easy to check. From (1.6) and (3.2), we have

H(t) = —4E(t)+4[/|ux|2dx+%/|u|4dx+2/px|u|2dx} +/(pz)2dx
- _ 2 « 4 3 2 2
= 4E(0)+4{ |ug|*de + 5 |u|*dz + 1 polul?dz| + [ (ps)°dx

We have

Then 9
3/px|u|2dx < /(px)zda:—i— Z/|u|4da:.
By the Gagliardo-Nirenberg inequality and (3.1), we have

9 9 1 /9 2
(5 +2lat) [ fultde < (§ + 20al) uolsusllz> <4 [ JuslPde + 16 (5 +24al) Juol

From condition (3.11), we have H(t) > —4E(0) — (2 + 2|a])?||uo[/$. > 0.
Hence, we have shown that for all ¢ € [0, T[, F"(t) < 0, which implies Theorem 3.2.
4 Global Existence of Weak Solutions to the Quasilinear System

For the study of the existence of a global weak solution to the Cauchy problem (1.6), we
consider for e > 0, the regularized problem (see [4] for the case 5 = 0)

g + Ugy = UPz + CV|u|2ua
Pt = W, (41)
Wi — €Waa = Bp° + (0(pz))z + (Ju*)s

with the initial data (we have dropped the e parameter on u, w and p)

w(0,2) = uo(x) € H'(R), p(0,2) = po(x) € H(R),
U)({E,O) = Pt(OafC) = pl(x) € HI(R)

Here, o(v) = v + A3 and A > 0 (hence, o’/ (v) = 1+ 3 v? > 1).
For a smooth solution to (4.1)-(4.2), the energy identity (3.2) takes the form

d (1l 9 1 9 A 4 Ié] 4
dt{z/wdx+2/vdx+4/vdx 4/pdx
+/v|u|2dx+/|um|2dx+%/|u|4dx}

——c [(w,)ds, (43)

where we have put v = p,. On the other hand, the conservation law

%</|u|2dx) =0 (4.4)
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still holds. Also, we deduce (see [4] and following [14])

/[wtvgC — O'I(U)(Ux)2]dl‘ = /(|u|2)xvxdm + B/p3vxda: + e/wmvxdm,

(i /wxvdx+/(wx)2da: - /UI(U)(U;c)QdJ?

d
- /(|u|2)mvmdx+ﬂ/p3pxxd$+ 5&/(%5)2(311',

d
T wyvdr = /thvdx — /wxvtdx = /wtvmdx — /wxvtdx,

UVt = Pxt = Wy

since

Integrating this identity over the time interval [0, ¢], we obtain with vg(z) = v(x,0),

/wxvdx—i—/plxvodx—f—/ /wx dxdT—/ / d(Ed’T
:/ /(|u|2)xvxdxd7 - 36/ /pQ(px)Qda;dT—l- B} /(Ux)de 3 /(on)de.
0 0
Since — [wyvdr = [wuydz, we get
// dde+2/( ) 2de
€ 1 9
< (v,)2dz + s jw dz + [ |vop1,|de
c t t t
+§/(v0z)2dx+3ﬁ/ /p2v2dxdr+e/ /(wx)zdxdr—l—Z/ /|uuxvx|dxdr
0 0 0

t t 1/t
2/ /|uuxvx|dxdr < 2/ /|uux|2dmd7'+ —/ /(vx)zdxdr.
0 0 2 Jo

Now, we assume 3 < 0. Since € > 0, we can derive from (4.3), as in (3.3),

¢
/dex + /(1)2 + Mot)dr + / |ug |2 da + e/ /(wx)dedT <C,
0

where C' only depends on (||uo|| g1, ||poll a2, || 1] 21 )-
Hence, from (4.4), (4.6) and (4.7), we have

/ /|uuxvx|dmd7 <Ct+- / / )2dadr.

Taking € < 1, we deduce from (4.5)—(4.8) that

// )(vg)2dzdr + €2 /(vm dx+e|ﬂ|// v?dadr < C(1 +1).

=~ |
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(4.5)

(4.6)

(4.7)

(4.8)
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Let us now analyse the problem of the existence and uniqueness of a solution
(u, p,w) € C([0, +o0f; H') x C([0, +oc[; H?) x C([0, +o0f; H')

to the Cauchy problem (4.1)—(4.2). Without loss of generality, we may assume ¢ = 1. We
start with the existence and uniqueness of a local (in time) solution. We fix 0 < T' < 400
and introduce the Banach spaces X7 = C([0,T]; H') (complex) and Y7 = C([0,T]; H?) (real)
endowed with the usual norms. Furthermore, we consider the product space Eg x B, where

BE ={ue Xy :|ulx, <R} and BE ={ueYy:|uly, <R}

Finally, we consider the application ® : (u, p) € Eg x B% — (u,p) € X x Yp. Here, u denotes
the solution to the linear problem

iUy + Upe = prti + |,
{u(~,0)—u0 c H! (4.10)
and
t
p(t) = po +/ wdr, p(-,0) =po € H?, (4.11)
0
where w is the unique solution to
Wy — Wgz = Bﬁs + (U(ﬁx)):c + (|a|2)x; (4 12)
w(-,0) = w(x) € HY, -

verifying w € L*(0,T; H?), w; € L?(0,T; L?). We have

t

u(t) _ eitamuO _ i/ ei(t—s)aw (ﬁxﬁ‘F 0&|ﬂ|2ﬂ)(8)d5
0

and ﬂﬁﬁ + (0(pz))z + (|a|2)x € C([0,T}; LQ)'

The existence and uniqueness of a local solution is a consequence of the Banach fixed-point
theorem for a convenient choice of R and T', R > max(||uo| g1, ||pollg2). We have wy — wy, =
Bp%+(0(pz))z + (|u|?)z. From (4.3), (4.4), (4.7) and (4.9)—(4.11), we derive the a priori estimate
|wy — Waa|r2(0,1;02) < C(T), C € C([0, +00[; Ry.), which implies w € L*(0,T’; H?) and a similar
a priori estimate for [|w||p2(0,r;m2) and so for |Jw||p20,r;z2) and [|w||c(o,r;m7)-

We conclude that p € Yr and u € Xp with similar estimates for ||p||y, and |u||x,. Hence,
we can extend the solution to [0, +o0l.

Hence, if we write

pe(t)zpo—i—/otwgdr, po € H*(R), 0 <e<1, (4.13)
we get, with
u(0,2) = up(x) € H', v(0,2) =vo(x) € H', wc(0,2) = ps(0,2) = py(x) € H', (4.14)
a unique solution

(te, ve, we) € (C([0, +o00f; HY))? (4.15)
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to the Cauchy problem

ey + Uegy = Uele + a|ue|2uev
Uet = w€z7 (416)
Wey = (U('U))x + (|'U'e|2)9c + 5Pe3 + €Weyy

with the initial data (4.14).
Moreover, for each T' > 0, by (4.4), (4.7) and the first equation in (4.1), we have

{ue}e bounded in LOO(O7+OO7H1),
{tec} bounded in L(0, o0 ),

Hence, {uc}. belongs to a compact set of L?(0,T;L?(Ig)) for each interval I = [-R, R,
R > 0. By applying a standard diagonalization method, we conclude that there exists a
u € L>®(0,+00; H') and a subsequence, still denoted by {u.}, such that
ue — u, in L>(0,+o0; H') weak* and in Li (R x [0, 00]).
By (4.7), we also have {w,} bounded in L (R x [0, 00[). With }"(v) = 202 + 20, we have
{vc}e bounded in L;? (R x [0, 00[), where v € L (R X [0, 00[) means [ > (v)dzdt < +oo for
each compact K C R x [0, +oc[. Finally, by (4.13), we have {p. } bounded in L% (R x [0, +00]).
By (4.7) and (4.9), we derive for e < 1,

¢ / t / [(we)? + 0" (v0) (vep2)dardr < C(1+1), (4.17)

where C only depends on (||uo|| g1, ||poll a2, || 1] 21 )-
Now we consider the quasilinear hyperbolic system

i = oo w19

and let (n(v,w),q(v,w)) ((v,w) € R?) be a pair of smooth convex entropy-entropy flux for
(4.18), such that 7y, Mww and :7/(;&, are bounded in R2.
From (4.4) and the estimates (4.7) and (4.17), we can deduce that (see [14, 2, 4])

0 0
an(ve, we) + %Q(ve, we)

belongs to a compact subset of W’l;ClQ(R x [0, +o0[).

Hence, we can use a result on compensated compactness of Serre and Shearer [14] to con-
LR % [0,40c[))?. Hence, there exist a subsequence
{(te,ve,we) }e and a (u,v,w) € L*(]0, +oc; H') x L (R x [0, +00[) x L2 (R x [0, +00]), such

loc loc
that

clude that {(ve,we)}e is pre-compact in (L.

(ueavevwe) - (’LL,’U,U}), in (LIIOC(R X [07+OO[))3a
t t
Pe = po + / wedr — p=po + / wdr, in Llloc(R X [Oa +OOD
0 0

Hence, we obtain from (4.16) the following result.
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Theorem 4.1 Assume (ug, po,p1) € H' x H> x H', X > 0 and 3 < 0. Then, there

exists a (u,v,w) € L>(0,4o00; H') x L (R x [0,+00[) x L& (R x [0, +oc[), such that, with

p(z,

loc loc

t) = po(x) + fg w(x, 7)dT, we have

+oo +oo
—i/ /u&tdfcdt—/ /uxﬁmdfcdt—l—/uo(x)G(x,O)dx
0 0
+oo +oo
z/ /vu@dxdt—l—a/ /|u|2u9dxdt
0 0

for all 0 € CA(R x [0, +c[) (complex-valued), and

/;OO /(U¢t — woy)dadt + /poM(x,O)dx + /;OO /(wwt — o(0)s + Bp)dadt
+/p1¢(x,0)dx+/+oo /(|u|2)xwdxdtzo
0

for all ¢,v € CL(R x [0, +00]) (real-valued).
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