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1 Introduction

Electron-phonon interactions play a crucial role in the determination of the physical prop-
erties of many mixed cristals (see [16]).

In the present paper, we study the well-posedness of a nonlinear dispersive system arising
in the framework of the electron-phonon interaction in a one-dimensional lattice. In [8], V.
Konotop treated the temporal dynamics of such a system in the presence of resonant interactions
between the electron and phonon subsystems. The Hamiltonian H for such a one-dimensional
chain of particles is given by H = Hel + Hph + Hel-ph, where, denoting by a dot the time
derivative, the Hamiltonians for each subsystem and their interaction read in braket notation

Hel = −J
∑

n

(|n >< n+ 1| + |n >< n− 1|),

Hph =
M

2

∑
n

ρ̇2
n +

U

2

∑
n

(ρn+1 − ρn)2,

Hel-ph = χ
∑

n

|n >< n|(ρn+1 − ρn−1).

Here, ρn denotes the distance to the equilibrium position of the nth atom of mass M , J is
the energetical constant determined by the overlapping of the electronic orbitals, U is a force
constant and χ represents the strenght of the electron-phonon interaction.
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In the continuum limit, the above Hamiltonians become

Hel = −J
∫

|ux|2dx, Hph =
M

2

∫
ρ2

t dx+
U

2

∫
ρ2

xdx, Hel-ph = χ

∫
|u|2ρxdx,

where u is the electronic wave-function.
Putting q = ρ, p = Mρt, we obtain the Hamilton evolution set of equations⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q̇ph =
∂(Hph +Hel-ph)

∂pph
,

ṗph = −∂(Hph +Hel-ph)
∂qph

,

i�ut =
∂(Hel +Hel-ph)

∂u
.

(1.1)

In the present paper, we will treat the Cauchy problem associated with this evolution system.
We will replace the Hamiltonian of the electronic and phonon subsystems respectively by

Hel = −J
∫

|ux|2dx+
α

4

∫
|u|4dx, α ∈ R (1.2)

and

Hph =
M

2

∫
ρ2

t dx+
U

2

∫
ρ2

xdx− β

4

∫
ρ4dx, β ∈ R, (1.3)

allowing the possibility of nonlinear cubic potentials for the evolution of u and ρ. Also, we will
incorporate in Hel-ph a term to account for the anharmonic interatomic interactions (see [1]):

Hel-ph = χ

∫
|u|2ρxdx+ λ

∫
(ρx)4dx, λ ≥ 0. (1.4)

By replacing (1.2)–(1.4) in (1.1), we obtain the system{
i�ut + Juxx = 2χuρx + α|u|2u, x ∈ R, t ≥ 0,
Mρtt − [Uρx + λρ3

x]x = χ(|u|2)x + βρ3.
(1.5)

Finally, after putting all physical constants equal to the unity and scaling out the remaining
coefficient of the term uρx by the transformation ρ̃ = 2ρ and ũ =

√
2u, we obtain the initial

value problem ⎧⎨
⎩

iut + uxx = uρx + α|u|2u, x ∈ R, t ≥ 0,
ρtt − [ρx + λρ3

x]x = (|u|2)x + βρ3,
u(0, x) = u0(x), ρ(0, x) = ρ0(x), ρt(0, x) = ρ1(x).

(1.6)

For α = β = λ = 0, by putting n = ρx, we obtain the classical Zakharov system{
iut + uxx = un,
ntt − nxx = (|u|2)xx.

(1.7)

The initial value problem for (1.7) is studied in [6, 12]. Also, in the case where β = λ = 0,
α �= 0, (1.6) falls in the scope of the Zakharov-Rubenchik equation studied in [10, 9] for the
global well-posedness and stability of solitary waves and in [11] for the adiabatic limit to the
cubic nonlinear Schrödinger equation.

The rest of this paper is organized as follows.
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In Section 2, we treat the local well-posedness of (1.6). The main difficulty of this system
is the presence of the strongly nonlinear term with derivative-loss ρ2

xρxx. In order to overcome
this problem, we translate (1.6) in terms of its Riemann invariants. Next, we perform a change
of functions technique developed in [15, 10, 5] which takes care of the derivative-loss and use
a variant of a result derived by Kato [7] to prove the existence and uniqueness of strong local
solutions to (1.6) for initial data (u0, ρ0, ρt0) ∈ H3(R) ×H3(R) ×H2(R).

In Section 3, we derive some conservation laws for (1.6) and prove the existence of solutions
which blow-up in L2 in finite time (provided that β > 0) by adapting a result due to Reed and
Simon [13]. Also, for β ≤ 0 and λ = 0, we prove that the solutions obtained in the previous
section are in fact global in time.

Finally, if λ > 0 and β ≤ 0, we establish in Section 4 the global existence of weak solutions
for (1.6) by applying a compensated-compactness method developed in [14] by Serre and Shearer
(see also [2]). The adaptation of this method to a Schrödinger-nonlinear elasticity system was
made in [4]. The technique of using this compensated-compactness result in order to prove
the existence of global weak solutions was introduced in [3] in the framework of a Schrödinger-
conservation law system.

2 Local Existence of Strong Solutions

In this section, we address the local well-posedness of the initial value problem (1.6).
Let u0 ∈ H3(R), ρ0 ∈ H3(R) and ρ1 ∈ H2(R).
By setting v = ρx, w = ρt and σ(v) = v + λv3, the Cauchy problem (1.6) is equivalent to⎧⎪⎪⎨

⎪⎪⎩
iut + uxx = uv + α|u|2u,
ρt = w,
vt − wx = 0,
wt − (σ(v))x = (|u|2)x + βρ3

(2.1)

with initial data

u( · , 0) = u0 ∈ H3(R), ρ( · , 0) = ρ0 ∈ H3(R),

v( · , 0) = v0 := ρ0x ∈ H2(R), w( · , 0) = w0 := ρ1 ∈ H2(R).
(2.2)

Let λ ≥ 0. By introducing the Riemann invariants

l = w +
∫ v

0

√
1 + 3λξ2 dξ and r = w −

∫ v

0

√
1 + 3λξ2 dξ,

we derive

l − r = 2
∫ v

0

√
1 + 3λξ2 dξ = v

√
1 + 3λv2 +

1√
3λ

arcsinh(
√

3λv), w =
l + r

2
.

Noticing that

f(v) = v
√

1 + 3λv2 +
1√
3λ

arcsinh(
√

3λ v)

is one-one and smooth, we put v = f−1(l − r) = v(l, r). For classical solutions, the Cauchy
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problem (2.1)–(2.2) is equivalent to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

iut + uxx = uv + α|u|2u,

ρt =
1
2
(l + r),

lt −
√

1 + 3λv2 lx = (|u|2)x + βρ3,

rt +
√

1 + 3λv2 rx = (|u|2)x + βρ3

(2.3)

with initial data

u( · , 0) = u0 ∈ H3(R), ρ( · , 0) = ρ0 ∈ H3(R),

l( · , 0) = l0 ∈ H2(R), r( · , 0) = r0 ∈ H2(R),
(2.4)

where

l0 = w0 +
∫ v0

0

√
1 + 3λξ2 dξ and r0 = w0 −

∫ v0

0

√
1 + 3λξ2 dξ. (2.5)

In order to obtain a local strong solution to the Cauchy problem (2.3)–(2.4) for a fixed λ ≥ 0,
we will follow the technique employed in [10, 5].

We consider the auxiliary system with non-local source terms⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

iFt + Fxx = 2α|u|2F + αu2F + Fv +
1
2
u(lx + rx),

ρt =
1
2
(l + r),

lt −
√

1 + 3λv2 lx = (|ũ|2)x + βρ3,

rt +
√

1 + 3λv2 rx = (|ũ|2)x + βρ3,

(2.6)

where F is the complex conjugate of F and

u(x, t) = u0(x) +
∫ t

0

F (x, s)ds,

ũ(x, t) = (Δ − 1)−1(α|u|2u+ u(v − 1) − iF ),
(2.7)

with initial data

F ( · , 0) = F0 ∈ H1(R), ρ( · , 0) = ρ0 ∈ H3(R), l( · , 0) = l0 ∈ H2(R),

r( · , 0) = r0 ∈ H2(R), l0 and r0 given by (2.5).
(2.8)

We will prove the following result.

Theorem 2.1 Let (F0, ρ0, l0, r0) ∈ H1 ×H3 ×H2 ×H2, l0 − r0 = f(ρx0). There exists a
T ∗ = T ∗(F0, ρ0, l0, r0) > 0, such that for all T < T ∗ there exists a unique solution (F, ρ, l, r) to
the Cauchy problem (2.6)–(2.8) with

(F, ρ, l, r) ∈ Cj([0, T ];H1−2j) × Cj([0, T ];H3−j)

× Cj([0, T ];H2−j) × Cj([0, T ];H2−j), j = 0, 1.

From this result, we will prove the following theorem.

Theorem 2.2 Let (u0, ρ0, ρ1) ∈ H3 × H3 × H2. There exists a T ∗ = T ∗(u0, ρ0, ρ1) > 0
such that for all T < T ∗ there exists a unique solution (u, ρ) to the Cauchy problem (1.6) with

(u, ρ) ∈ Cj([0, T ];H3−2j) × (Cj([0, T ];H3−j) ∩ Cj+1([0, T ];H2−j)), j = 0, 1.
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Proof of Theorem 2.1 We want to apply a variant of [7, Theorem 6]. Hence, we need
to put the Cauchy problem in the framework of real spaces. Introduce the new variables
F1 = Re(F ), F2 = Im(F ), u1 = Re(u), u2 = Im(u).

By setting U = (F1, F2, ρ, l, r), F10 = Re(F0) and F20 = Im(F0), the initial value problem
(2.6) and (2.8) can be written in the form

⎧⎨
⎩
∂

∂t
U +A(U)U = g(t, U),

U( · , 0) = U0,
(2.9)

where

A(U) =

⎡
⎢⎢⎢⎢⎣

0 Δ 0 0 0
−Δ 0 0 0 0
0 0 0 0 0
0 0 0 −√

1 + 3λv2 0
0 0 0 0

√
1 + 3λv2

⎤
⎥⎥⎥⎥⎦ ,

g(t, U) =

⎡
⎢⎢⎢⎢⎢⎢⎣

2α|u|2F2 − α(u2
1 − u2

2)F2 + 2αu1u2F1 + F2v + 1
2u2(lx + rx)

2α|u|2F1 − α(u2
1 − u2

2)F1 − 2αu1u2F2 − F1v − 1
2u2(lx + rx)

1
2 (l + r)

(|ũ|2)x + βρ3

(|ũ|2)x + βρ3

⎤
⎥⎥⎥⎥⎥⎥⎦
,

U0 = (F10, F20, ρ0, l0, r0) ∈ Y = (H1(R))2 × (H2(R))3

(The condition ρ0 ∈ H3(R) will be used later).

Note that the source term g(t, U) is non-local.

We now set X = (H−1(R))2 × (L2(R))3 and S = (1 − Δ)I, which is an isomorphism
S : Y → X .

Furthermore, we denote by WR the open ball in Y of radius R centered at the origin and
by G(X, 1, ω) the set of linear operators Λ : D(Λ) ⊂ X → X , such that

(1) −Λ generates a C0-semigroup {e−tΛ}t∈R+ ;

(2) for all t ≥ 0, ‖e−tΛ‖ ≤ eωt, where for all U ∈ WR,

ω =
1
2

sup
x∈R

∥∥∥ ∂

∂x
a(ρ, l, r)

∥∥∥ ≤ c(R), c : [0,+∞[→ [0,+∞[ is continuous,

a(ρ, l, r) =

⎡
⎣0 0 0
0 −√

1 + 3λv2 0
0 0

√
1 + 3λv2

⎤
⎦ .

Following from [7, Paragraph 12], we get A : U = (F1, F2, ρ, l, r) ∈WR → G(X, 1, ω). It is easy
to see that g verifies for a fixed T > 0, ‖g(t, U(t))‖Y ≤ θR, t ∈ [0, T ], U ∈ C([0, T ];WR). For
(ρ, l, r) in a ball W̃ in (H2(R))3, we set

B0(ρ, l, r) = [(1 − Δ), a(ρ, l, r)](1 − Δ)−1 ∈ L((L2(R))3)
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(see [7, 12.6]). We now introduce the operator B(U) ∈ L(X), U = (F1, F2, ρ, l, r) ∈ WR by

B(U) =

⎡
⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0
0 0 B0(ρ, l, r)
0 0

⎤
⎥⎥⎥⎥⎦ .

In [7, Paragraph 12], Kato proved that for (ρ, l, r) ∈ W̃ , we have

(1 − Δ)a(ρ, l, r)(1 − Δ)−1 = a(ρ, l, r) +B0(ρ, l, r).

Hence, we easily derive for U ∈ WR, SA(U)S−1 = A(U) +B(U).
Now, for each pair U,U∗ ∈ C([0, T ];WR), U = (F1, F2, ρ, l, r), U∗ = (F ∗

1 , F
∗
2 , ρ

∗, l∗, r∗), we
claim that

‖g( · , U)− g( · , U∗)‖L1(0,T ′;X) ≤ c(T ′) sup
0≤t≤T ′

‖U(t) − U∗(t)‖X , (2.10)

where 0 ≤ T ′ ≤ T and c(T ′) is a non-decreasing continuous function such that c(0) = 0.
Indeed, let us point out that for h ∈ L2(R) and w ∈ H1(R), ‖hw‖H−1 ≤ ‖h‖H−1‖w‖H1 .

Hence, for example,

‖F1u1(u∗1 − u1)‖H−1 ≤ ‖F1‖H1‖u1‖H1‖u∗1 − u1‖H−1

and for t ≤ T ′,∥∥∥(lx + rx)
( ∫ t

0

F2ds−
∫ t

0

F ∗
2 ds

)∥∥∥
H−1

≤ ‖lx + rx‖H1

∫ t

0

‖F − F ∗ ‖H−1dτ

≤ c(T ′) sup
0≤t≤T ′

‖U(t) − U∗(t)‖X .

Finally, applying [7, Theorem 6] and replacing the local condition (7.7) in [7] by (2.10), we
obtain the result described in Theorem 2.1, but with ρ ∈ Cj([0, T ];H2−j), j = 0, 1. To obtain
ρ ∈ Cj([0, T ];H3−j), it is enough to remark that, since ρt = w, ρ0 ∈ H3, v0 = ρ0x ∈ H2,
w0 ∈ ρ1 ∈ H2, we derive ρx = v ∈ Cj([0, T ], H2−j).

Proof of Theorem 2.2 We will follow here the ideas in [5].
If (F, ρ, l, r) is a solution to (2.6) and (2.8), by differenciating (2.7) with respect to t, we

obtain ut = F . Applying it to the first equation of (2.6), we obtain

(iut + uxx)t = 2α|u|2F + αu2F + Fv +
1
2
u(lx + rx) = 2α|u|2ut + αu2ut + utv + uvt.

Hence, (iut + uxx − α|u|2u − uv)t = 0 and iut + uxx − α|u|2u − uv = φ0(x), where φ0(x) =
iF0 + u′′0 − α|u0|2u0 − u0v0. By choosing F0 = i(u′′0 − α|u0|2u0 − u0v0), we obtain that φ0 = 0
and (u, v) satisfy the first equation in (2.3).

Furthermore, from this equation, we derive

u = (Δ − 1)−1(α|u|2u+ u(v − 1) − iut). (2.11)

Therefore u = ũ and (u, ρ, l, r) satisfy (2.3)–(2.4). Note that ut = F ∈ C([0, T ];H1). Moreover,

u(x, t) = u0(x) +
∫ t

0

F (x, s)ds ∈ C([0, T ];H1).

But from (2.11), we have in fact u ∈ C([0, T ];H3).
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3 Global Well-Posedness for λ = 0 and Blow-Up Results

In this section, we prove that the local solutions obtained in Theorem 2.2 are in fact global
in time in the case where β ≤ 0 and λ = 0. Conversely, if β > 0, we show the blow-up of the
local solutions in finite time under some conditions on the initial data.

We consider the initial data (u0, ρ0, ρ1) ∈ H3 ×H3 ×H2. Let

(u, ρ) ∈ Cj([0, T ];H3−2j) × (Cj([0, T ];H3−j) ∩ Cj+1([0, T ];H2−j)), j = 0, 1

be the unique corresponding maximal solution to the Cauchy problem (1.6). We begin the
proof by deriving the following conservation laws:

d
dt

∫
|u|2dx = 0, t ∈ [0, T [, (3.1)

d
dt
E(t) = 0, t ∈ [0, T [, (3.2)

where the energy E(t) is given by

E(t) =
1
2

∫
(ρt)2dx+

1
2

∫
(ρx)2dx+

λ

4

∫
(ρx)4dx− β

4

∫
ρ4dx+

∫
ρx|u|2dx

+
∫

|ux|2dx+
α

2

∫
|u|4dx.

For the first one we multiply the first equation in (1.6) by u, and integrate the imaginary
part. To obtain the conservation of energy, we derive from (1.6) that

Re
∫

iututdx+ Re
∫
uxxutdx = Re

∫
ρxuutdx+ αRe

∫
|u|2uutdx,

−1
2

d
dt

∫
|ux|2dx =

1
2

∫
ρx

∂

∂t
|u|2dx+

α

4
d
dt

∫
|u|4dx

=
1
2

d
dt

∫
ρx|u|2dx− 1

2

∫
∂

∂t
ρx|u|2dx+

α

4
d
dt

∫
|u|4dx.

Finally,

−1
2

∫
∂2ρ

∂x∂t
|u|2dx =

1
2

∫
∂ρ

∂t
(|u|2)xdx =

1
2

∫
∂ρ

∂t

{∂2ρ

∂t2
− ∂

∂x
[ρx + λ(ρx)3] − βρ3

}
dx

=
1
4

d
dt

∫
(ρt)2dx+

1
4

d
dt

∫
(ρx)2dx+

λ

8
d
dt

∫
(ρx)4 − β

8
d
dt

∫
ρ4dx,

and (3.2) is proved.
Next, we will prove the following result.

Theorem 3.1 Let β ≤ 0 and λ = 0. Then Theorem 2.2 holds for T ∗ = +∞.

Proof In order to prove this result, it is sufficient to derive a priori bounds for the norms
‖u‖H3 , ‖ρ‖H3 , ‖ρt‖H2 and ‖ρtt‖H1 .

Let us begin the proof by noticing that |∫ ρx|u|2dx| ≤ 1
4

∫
(ρx)2dx +

∫ |u|4dx. By the
Gagliardo-Nirenberg inequality and (3.1), we have ‖u‖4

L4 ≤c0‖u‖3
L2‖ux‖L2 ≤ c0‖u0‖3

L2‖ux‖L2 ≤
c‖u0‖6

L2 + 1
2‖ux‖2

L2 . Since β ≤ 0, we obtain from (3.2) that∫
(ρt)2dx+

∫
[(ρx)2 + λ(ρx)4]dx+

∫
|ux|2dx ≤ c (3.3)
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with c depending only on (‖u0‖H1 , ‖ρ0‖H2 , ‖ρ1‖H1).
Moreover, since ρ(t) = ρ0 +

∫ t

0
ρt(τ)dτ, we have ‖ρ(t)‖L2 ≤ ‖ρ0‖L2 +

∫ t

0
‖ρt(τ)‖L2dτ. Hence,

since β ≤ 0, we have∫
(ρt)2dx+

∫
(ρ)2dx+

∫
(ρx)2dx+

∫
|u|2dx+

∫
|ux|2dx ≤ C(1 + t) (3.4)

with C depending exclusively on the initial data.
Next, we estimate ‖uxx‖L2, ‖ρxt‖L2 and ‖ρxx‖L2 . For λ = 0, the system (2.3) reads⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

iut + uxx = uv + α|u|2u,

ρt =
1
2
(l + r),

lt − lx = (|u|2)x + βρ3,
rt + rx = (|u|2)x + βρ3.

(3.5)

We put

γ(t) =
∫

(rx)2dx+
∫

(lx)2dx+
∫

|ut|2dx.

In what follows, we will denote by A(t) a generic positive continuous function A : R+ → R+,

which can change from line to line.
By differentiating with respect to x the last equation in (3.5), multiplying by rx and inte-

grating, we get

1
2

d
dt

∫
(rx)2dx

≤ 2
∫

|uuxxrx|dx+ 2
∫

|u2
xrx|dx + 3|β|

∫
ρ2|ρxrx|dx

≤ A(t)
[(∫

r2xdx
) 1

2
(∫

|uxx|2dx
) 1

2
+ ‖u‖∞

(∫
|ux|2dx

) 1
2
( ∫

r2xdx
) 1

2
+

(∫
r2xdx

) 1
2
]

≤ A(t)
[(∫

r2xdx
) 1

2
(∫

|uxx|2dx
) 1

2
+

( ∫
r2xdx

) 1
2
]
,

where the Sobolev injection ‖ux‖∞ ≤ c‖ux‖H1 and (3.4) are used.
By a similar estimate for lx, we obtain

1
2

d
dt

∫
((rx)2 + (lx)2)dx ≤ A(t)

[
γ

1
2 (t) + γ

1
2 (t)

( ∫
|uxx|2dx

) 1
2
]
. (3.6)

From the first equation in (3.5), we have

‖uxx‖L2 ≤ ‖ut‖L2 +A(t) ≤ γ
1
2 (t) +A(t). (3.7)

By using it in (3.6), we have

1
2

d
dt

∫
((rx)2 + (lx)2)dx ≤ A(t)[γ

1
2 (t) + γ(t)]. (3.8)

Moreover, since ρt = 1
2 (l + r), we have

‖ρxt‖L2 ≤ cγ
1
2 (t). (3.9)
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Now, multiplying the first equation in (3.5) by ut, integrating the imaginary part and using the
Cauchy-Schwarz inequality, we have

1
2

d
dt

∫
|ut|2dx =

∫
ρxtIm(uut)dx + α

∫
(|u|2)tIm(uut)dx

≤ ‖u‖∞‖ρxt‖L2

(∫
|ut|2dx

) 1
2

+ 2|α|‖u‖2
∞

∫
|ut|2dx ≤ cγ(t).

Finally, using (3.8), we get

d
dt
γ(t) ≤ A(t)[γ

1
2 (t) + γ(t)] ≤ A(t)[1 + γ(t)],

γ(t) ≤ (1 + γ(0))e
∫ t
0 A(τ)dτ − 1.

Hence, by (3.7) and (3.9), we have ‖uxx‖L2 + ‖ρxt‖L2 ≤ A(t). By the second and the third
equations in (3.5), we have ‖lt‖L2 + ‖rt‖L2 ≤ A(t). Therefore

‖ρtt‖L2 =
1
2
‖lt + rt‖L2 ≤ A(t),

‖ρxx‖L2 = ‖ρtt − (|u|2)x − βρ3‖L2 ≤ A(t).

To obtain a continuous bound on ‖ρxxx‖L2 , ‖uxxx‖L2 , ‖ρtxx‖L2 and ‖ρttx‖L2 , the exact same
method can be used by setting

γ(t) =
∫

(rxx)2dx+
∫

(lxx)2dx+
∫

|uxt|2dx

and differentiating system (3.5) with respect to x.
We now assume β > 0. In what follows, we will consider the following conditions on the

initial data: ∫
ρ0ρ1dx > 0, (3.10)

E(0) ≤ − 1
64

(9
4

+ 2|α|
)2

‖u0‖6
L2. (3.11)

We will prove the following blow-up result.

Theorem 3.2 Let β > 0 and λ ≥ 0. Under the conditions of Theorem 2.2, by assuming
that the initial data (u0, ρ0, ρ1) satisfy conditions (3.10) and (3.11), there exists a time 0 <

T ∗ ≤ T0 := (
∫
ρ2
0dx)(

∫
ρ0ρ1dx)−1, such that, if the solution exists in [0, T ∗], then

lim
t→T∗−

∫
ρ2dx = +∞.

Proof Following [13, Chapter 10, Paragraph 13], we put

G(t) =
∫
ρ2dx and F (t) = (G(t))−

1
2 . (3.12)

We have F ′(t) = − 1
2G(t)−

3
2G′(t) = −G(t)−

3
2

∫
ρρtdx, and from (3.10), F ′(0) < 0.

Furthermore, we set Q(t) = −2G(t)
5
2F ′′(t) = G′′(t)G(t) − 3

2G
′(t)2 with

G′′(t) = 6
∫

(ρt)2dx+ 2H(t) and H(t) =
∫

[ρρtt − 2(ρt)2]dx.
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We have
Q(t) = 6

[(∫
ρ2dx

)(∫
(ρt)2dx

)
−

(∫
(ρρt)2dx

)]
+ 2G(t)H(t).

By the Cauchy-Schwarz inequality, we obtain Q(t) ≥ 0, and consequently F ′′(t) ≤ 0 provided
H(t) ≥ 0.

The last fact is easy to check. From (1.6) and (3.2), we have

H(t) = −4E(t) + 4
[ ∫

|ux|2dx+
α

2

∫
|u|4dx+

3
4

∫
ρx|u|2dx

]
+

∫
(ρx)2dx

= −4E(0) + 4
[ ∫

|ux|2dx+
α

2

∫
|u|4dx+

3
4

∫
ρx|u|2dx

]
+

∫
(ρx)2dx.

Then
3

∫
ρx|u|2dx ≤

∫
(ρx)2dx+

9
4

∫
|u|4dx.

By the Gagliardo-Nirenberg inequality and (3.1), we have

(9
4

+ 2|α|
) ∫

|u|4dx ≤
(9

4
+ 2|α|

)
‖u0‖3

L2‖ux‖L2 ≤ 4
∫

|ux|2dx+
1
16

(9
4

+ 2|α|
)2

‖u0‖6
L2 .

From condition (3.11), we have H(t) ≥ −4E(0) − 1
16 (9

4 + 2|α|)2‖u0‖6
L2 ≥ 0.

Hence, we have shown that for all t ∈ [0, T [, F ′′(t) ≤ 0, which implies Theorem 3.2.

4 Global Existence of Weak Solutions to the Quasilinear System

For the study of the existence of a global weak solution to the Cauchy problem (1.6), we
consider for ε > 0, the regularized problem (see [4] for the case β = 0)⎧⎨

⎩
iut + uxx = uρx + α|u|2u,
ρt = w,
wt − εwxx = βρ3 + (σ(ρx))x + (|u|2)x

(4.1)

with the initial data (we have dropped the ε parameter on u, w and ρ)

u(0, x) = u0(x) ∈ H1(R), ρ(0, x) = ρ0(x) ∈ H2(R),

w(x, 0) = ρt(0, x) = ρ1(x) ∈ H1(R).
(4.2)

Here, σ(v) = v + λv3 and λ > 0 (hence, σ′(v) = 1 + 3λv2 ≥ 1).
For a smooth solution to (4.1)–(4.2), the energy identity (3.2) takes the form

d
dt

{1
2

∫
w2dx+

1
2

∫
v2dx+

λ

4

∫
v4dx− β

4

∫
ρ4dx

+
∫
v|u|2dx+

∫
|ux|2dx +

α

2

∫
|u|4dx

}
= −ε

∫
(wx)2dx, (4.3)

where we have put v = ρx. On the other hand, the conservation law

d
dt

( ∫
|u|2dx

)
= 0 (4.4)
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still holds. Also, we deduce (see [4] and following [14])∫
[wtvx − σ′(v)(vx)2]dx =

∫
(|u|2)xvxdx+ β

∫
ρ3vxdx+ ε

∫
wxxvxdx,

− d
dt

∫
wxvdx +

∫
(wx)2dx−

∫
σ′(v)(vx)2dx

=
∫

(|u|2)xvxdx+ β

∫
ρ3ρxxdx+

ε

2
d
dt

∫
(vx)2dx,

since

− d
dt

∫
wxvdx = −

∫
wxtvdx−

∫
wxvtdx =

∫
wtvxdx −

∫
wxvtdx,

vt = ρxt = wx.

Integrating this identity over the time interval [0, t], we obtain with v0(x) = v(x, 0),

−
∫
wxvdx+

∫
ρ1xv0dx+

∫ t

0

∫
(wx)2dxdτ −

∫ t

0

∫
σ′(v)(vx)2dxdτ

=
∫ t

0

∫
(|u|2)xvxdxdτ − 3β

∫ t

0

∫
ρ2(ρx)2dxdτ +

ε

2

∫
(vx)2dx− ε

2

∫
(v0x)2dx.

Since − ∫
wxvdx =

∫
wvxdx, we get

∫ t

0

∫
σ′(v)(vx)2dxdτ +

ε

2

∫
(vx)2dx

≤ ε

4

∫
(vx)2dx+

1
ε

∫
w2dx+

∫
|v0ρ1x|dx

+
ε

2

∫
(v0x)2dx+ 3β

∫ t

0

∫
ρ2v2dxdτ + ε

∫ t

0

∫
(wx)2dxdτ + 2

∫ t

0

∫
|uuxvx|dxdτ (4.5)

and

2
∫ t

0

∫
|uuxvx|dxdτ ≤ 2

∫ t

0

∫
|uux|2dxdτ +

1
2

∫ t

0

∫
(vx)2dxdτ. (4.6)

Now, we assume β ≤ 0. Since ε > 0, we can derive from (4.3), as in (3.3),

∫
w2dx+

∫
(v2 + λv4)dx +

∫
|ux|2dx+ ε

∫ t

0

∫
(wx)2dxdτ ≤ C, (4.7)

where C only depends on (‖u0‖H1 , ‖ρ0‖H2 , ‖ρ1‖H1).
Hence, from (4.4), (4.6) and (4.7), we have

2
∫ t

0

∫
|uuxvx|dxdτ ≤ Ct+

1
2

∫ t

0

∫
σ′(v)(vx)2dxdτ. (4.8)

Taking ε ≤ 1, we deduce from (4.5)–(4.8) that

ε

∫ t

0

∫
σ′(v)(vx)2dxdτ + ε2

∫
(vx)2dx+ ε|β|

∫ t

0

∫
ρ2v2dxdτ ≤ C(1 + t). (4.9)
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Let us now analyse the problem of the existence and uniqueness of a solution

(u, ρ, w) ∈ C([0,+∞[;H1) × C([0,+∞[;H2) × C([0,+∞[;H1)

to the Cauchy problem (4.1)–(4.2). Without loss of generality, we may assume ε = 1. We
start with the existence and uniqueness of a local (in time) solution. We fix 0 < T < +∞
and introduce the Banach spaces XT = C([0, T ];H1) (complex) and YT = C([0, T ];H2) (real)
endowed with the usual norms. Furthermore, we consider the product space B̃T

R ×BT
R, where

B̃T
R = {u ∈ XT : ‖u‖XT ≤ R} and BT

R = {u ∈ YT : ‖u‖YT ≤ R}.

Finally, we consider the application Φ : (ũ, ρ̃) ∈ B̃T
R ×BT

R → (u, ρ) ∈ XT × YT . Here, u denotes
the solution to the linear problem{

iut + uxx = ρ̃xũ+ α|ũ|2ũ,
u( · , 0) = u0 ∈ H1 (4.10)

and

ρ(t) = ρ0 +
∫ t

0

wdτ, ρ( · , 0) = ρ0 ∈ H2, (4.11)

where w is the unique solution to{
wt − wxx = βρ̃3 + (σ(ρ̃x))x + (|ũ|2)x,
w( · , 0) = w0(x) ∈ H1,

(4.12)

verifying w ∈ L2(0, T ;H2), wt ∈ L2(0, T ;L2). We have

u(t) = eit∂xxu0 − i
∫ t

0

ei(t−s)∂xx(ρ̃xũ+ α|ũ|2ũ)(s)ds

and βρ̃3 + (σ(ρ̃x))x + (|ũ|2)x ∈ C([0, T ];L2).
The existence and uniqueness of a local solution is a consequence of the Banach fixed-point

theorem for a convenient choice of R and T , R > max(‖u0‖H1 , ‖ρ0‖H2). We have wt − wxx =
βρ3+(σ(ρx))x +(|u|2)x. From (4.3), (4.4), (4.7) and (4.9)–(4.11), we derive the a priori estimate
|wt−wxx|L2(0,T ;L2) ≤ C(T ), C ∈ C([0,+∞[; R+), which implies w ∈ L2(0, T ;H2) and a similar
a priori estimate for ‖w‖L2(0,T ;H2) and so for ‖wt‖L2(0,T ;L2) and ‖w‖C([0,T ];H1).

We conclude that ρ ∈ YT and u ∈ XT with similar estimates for ‖ρ‖YT and ‖u‖XT . Hence,
we can extend the solution to [0,+∞[.

Hence, if we write

ρε(t) = ρ0 +
∫ t

0

wεdτ, ρ0 ∈ H2(R), 0 < ε ≤ 1, (4.13)

we get, with

uε(0, x) = u0(x) ∈ H1, vε(0, x) = v0(x) ∈ H1, wε(0, x) = ρt(0, x) = ρ1(x) ∈ H1, (4.14)

a unique solution

(uε, vε, wε) ∈ (C([0,+∞[;H1))3 (4.15)
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to the Cauchy problem ⎧⎨
⎩

iuεt + uεxx = uεvε + α|uε|2uε,
vεt = wεx,
wεt = (σ(v))x + (|uε|2)x + βρε

3 + εwεxx

(4.16)

with the initial data (4.14).
Moreover, for each T > 0, by (4.4), (4.7) and the first equation in (4.1), we have

{uε}ε bounded in L∞(0,+∞;H1),

{uεt}ε bounded in L∞(0,+∞;H−1).

Hence, {uε}ε belongs to a compact set of L2(0, T ;L2(IR)) for each interval IR = [−R,R],
R ≥ 0. By applying a standard diagonalization method, we conclude that there exists a
u ∈ L∞(0,+∞;H1) and a subsequence, still denoted by {uε}ε, such that

uε → u, in L∞(0,+∞;H1) weak* and in L1
loc(R × [0,∞[).

By (4.7), we also have {wε}ε bounded in L2
loc(R × [0,∞[). With

∑
(v) = 1

2v
2 + λ

4 v
4, we have

{vε}ε bounded in LΣ
loc(R × [0,∞[), where v ∈ LΣ

loc(R × [0,∞[) means
∫

K

∑
(v)dxdt < +∞ for

each compact K ⊂ R× [0,+∞[. Finally, by (4.13), we have {ρε}ε bounded in L2
loc(R× [0,+∞[).

By (4.7) and (4.9), we derive for ε ≤ 1,

ε

∫ t

0

∫
[(wεx)2 + σ′(vε)(vεx)2]dxdτ ≤ C(1 + t), (4.17)

where C only depends on (‖u0‖H1 , ‖ρ0‖H2 , ‖ρ1‖H1).
Now we consider the quasilinear hyperbolic system{

vt = wx,
wt = (σ(v))x,

(4.18)

and let (η(v, w), q(v, w)) ((v, w) ∈ R
2) be a pair of smooth convex entropy-entropy flux for

(4.18), such that ηw, ηww and ηvw√
σ′ are bounded in R

2.
From (4.4) and the estimates (4.7) and (4.17), we can deduce that (see [14, 2, 4])

∂

∂t
η(vε, wε) +

∂

∂x
q(vε, wε)

belongs to a compact subset of W−1,2
loc (R × [0,+∞[).

Hence, we can use a result on compensated compactness of Serre and Shearer [14] to con-
clude that {(vε, wε)}ε is pre-compact in (L1

loc(R× [0,+∞[))2. Hence, there exist a subsequence
{(uε, vε, wε)}ε and a (u, v, w) ∈ L∞(]0,+∞[;H1)×LΣ

loc(R× [0,+∞[)×L2
loc(R× [0,+∞[), such

that

(uε, vε, wε) → (u, v, w), in (L1
loc(R × [0,+∞[))3,

ρε = ρ0 +
∫ t

0

wεdτ → ρ = ρ0 +
∫ t

0

wdτ, in L1
loc(R × [0,+∞[).

Hence, we obtain from (4.16) the following result.
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Theorem 4.1 Assume (u0, ρ0, ρ1) ∈ H1 × H2 × H1, λ > 0 and β ≤ 0. Then, there
exists a (u, v, w) ∈ L∞(0,+∞;H1) × LΣ

loc(R × [0,+∞[) × L2
loc(R × [0,+∞[), such that, with

ρ(x, t) = ρ0(x) +
∫ t

0
w(x, τ)dτ , we have

− i
∫ +∞

0

∫
uθtdxdt−

∫ +∞

0

∫
uxθxdxdt +

∫
u0(x)θ(x, 0)dx

=
∫ +∞

0

∫
vuθdxdt+ α

∫ +∞

0

∫
|u|2uθdxdt

for all θ ∈ C1
0 (R × [0,+∞[) (complex-valued), and∫ +∞

0

∫
(vφt − wφx)dxdt+

∫
ρ0xφ(x, 0)dx +

∫ +∞

0

∫
(wψt − σ(v)ψx + βρ3ψ)dxdt

+
∫
ρ1ψ(x, 0)dx +

∫ +∞

0

∫
(|u|2)xψdxdt = 0

for all φ, ψ ∈ C1
0 (R × [0,+∞[) (real-valued).
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