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Abstract Let T be a Wakamatsu tilting module. A module M is called (n, T )-copure
injective (resp. (n, T )-copure flat) if E1

T (N, M) = 0 (resp. ΓT
1 (N, M) = 0) for any module

N with T -injective dimension at most n (see Definition 2.2). In this paper, it is shown that
M is (n, T )-copure injective if and only if M is the kernel of an In(T )-precover f : A → B
with A ∈ Prod T . Also, some results on Prod T -syzygies are presented. For instance, it
is shown that every nth Prod T -syzygy of every module, generated by T , is (n, T )-copure
injective.
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1 Introduction

The study of tilting theory has become an exciting subject in homological algebra. Many
subjects in homological algebra are based on the properties of tilting and cotilting modules
(see [1, 2, 4, 8, 9] for instance). Throughout this paper, R is an associative ring with non-zero
identity, all modules are unitary R-modules and T is a fixed R-module. We denote by AddT

(ProdT ) the class of modules isomorphic to direct summands of direct sum (direct product) of
copies of T , by PresnT and Pres∞T the set of all modules M such that there exist the exact
sequences

Tn −→ Tn−1 −→ · · · −→ T1 −→ M −→ 0 and

· · · −→Tn −→ Tn−1 −→ · · · −→ T1 −→ T0 −→ M −→ 0,

respectively, where Ti ∈ Add T for every i ≥ 1. A module M is said to be generated by T ,
denoted by M ∈ Gen T (resp. cogenerated by T , denoted by M ∈ CogenT ) if there exists an
exact sequence T n −→ M −→ 0 (resp. M −→ T n −→ 0), for some positive integer n. Let
C be a class of modules and M be a module. A left (resp. right) C-resolution of M is a long
exact sequence · · · −→ C1 −→ C0 −→ M −→ 0 (resp. 0 −→ M −→ C0 −→ C1 −→ · · · ), where
Ci ∈ C for every i ≥ 0. A module T is called Wakamatsu tilting if Exti(T, T ) = 0 for every
i ≥ 1, and there exists a long exact sequence

f0 f1 f20 −→ R −→ T0 −→ T1 −→ · · · ,
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where Ti ∈ Add T and Ext1(Cokerfi, T ) = 0 for every i ≥ 0. We refer the reader to [4, 8] for
more details. In fact, the concept of a Wakamatsu tilting module generalizes both tilting and
cotilting modules (see [8, Proposition 2.1]). Let T be a Wakamatsu tilting module.

In Section 2, some relative homological dimensions and derived functors are introduced.
The existence of AddT -resolutions and ProdT -resolutions and some properties of their syzy-
gies will be studied, too. For every M ∈ Gen T (resp. M ∈ CogenT ), we define T -projective
(resp. T -injective) dimension of M to be the length of a left Add T -resolution (resp. right
ProdT -resolution) of M . We denote by Pn(T ) and In(T ) the class of modules with T -projective
dimension at most n and the class of modules with T -injective dimension at most n, respec-
tively. If T is a 1-quasi-projective module (see [9, Definition 2.1]), then T -projective dimension
of a module equals its T -dimension which has been studied by the authors in [6]. For any
homomorphism f of R-modules, we denote by Ker f and Im f , the kernel and the image of f ,
respectively. Let B and M be modules. If M ∈ Gen T , then we define ΓT

n (M, B) = Ker(δn⊗1B)
Im(δn+1⊗1B) ,

where
δ2 δ1 δ0· · · −→ T2 −→ T1 −→ T0 −→ M −→ 0

is a left AddT -resolution of M . Also, if M ∈ CogenT , then we define En
T (C, M) = Ker δn

∗
Im δn−1

∗
,

where
δ0 δ1 δ2

0 −→ M −→ T 0 −→ T 1 −→ T 2 −→ · · ·
is a right ProdT -resolution of M and δn∗ = Hom(δn, T ).

A module M is said to be (n, T )-copure injective (resp. (n, T )-copure flat) if E1
T (N, M) = 0

(resp. ΓT
1 (N, M) = 0) for every N ∈ In(T ). Let C be a class of R-modules. Recall that

an epimorphism φ : C −→ M with C ∈ C is a C-precover of M if for every homomorphism
f : C′ −→ M with C′ ∈ C, there exists a homomorphism g : C′ −→ C such that f = φg.
Moreover, if C′ = C implies that g is an automorphism, then φ : C −→ M is called a C-cover
of M . Preenvelopes and envelopes are defined dually (see [3] for more details).

Section 3 is devoted to some characterization of (n, T )-copure injective modules and (n, T )-
copure flat modules. For instance, it is shown that a module is an (n, T )-copure injective if and
only if it is the Kernel of an In(T )-precover f : A −→ B with A ∈ ProdT . Also it is proved
that a module M is (n, T )-copure injective (resp. (n, T )-copure flat) if and only if Hom(T 0, M)
(resp. T 0⊗M) is (n, T )-copure injective (resp. (n, T )-copure flat), for any T 0 ∈ ProdT . Among
other results, we study Wakamatsu tilting modules with finite T -injective dimension.

2 Relative Homological Dimensions and Derived Functors

In this section, we give basic notions and results and we recall some relevant background
in tilting theory from [2, 4, 8, 9]. First let us recall the following definition of (not necessarily
finitely generated) tilting modules (see [2]).

A module M is called tilting (1-tilting) if it satisfies the following conditions:
(1) pd(T ) ≤ 1, where pd(T ) denotes the projective dimension of T ;
(2) Exti(T, T (λ)) = 0 for every i > 0 and for every cardinal λ;
(3) There exists an exact sequence 0 −→ R −→ T0 −→ T1 −→ 0, where T0, T1 ∈ Add T .
The 1-cotilting module is defined dually (see [2] for more details). Wakamatsu generalized

the concept of the tilting module in [8]. An R-module T is said to be a Wakamatsu tilting
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module if Exti(T, T ) = 0 for every i ≥ 1, and there exists a long exact sequence

f0 f1 f20 −→ R −→ T0 −→ T1 −→ · · · ,

where Ti ∈ Add T and Ext1(Cokerfi, T ) = 0 for every i ≥ 0. A Wakamatsu cotilting module is
defined dually.

Let n be a positive integer. A module T is said to be n-quasi-projective if for any exact
sequence 0 −→ L −→ T0 −→ N −→ 0 with T0 ∈ Add T and L ∈ PresnT , the induced sequence
0 −→ Hom(T, L) −→ Hom(T, T0) −→ Hom(T, N) −→ 0 is also exact (see [9, Definition 2.1]).
Also, T is called an n-star module if T is (n + 1)-quasi-projective and PresnT = Presn+1T (see
[9, Definition 3.1]).

Proposition 2.1 If M is a generated (resp. cogenerated) module by a Wakamatsu tilting
module T , then M has a left Add T -resolution (resp. right ProdT -resolution).

Proof Since T is tilting, [2, Theorem 3.11] implies that it is 1-star and GenT = Pres∞T .
So M ∈ Pres∞T . This shows that M has a left Add T -resolution. Similarly, one can show that
any module M ∈ CogenT has a right ProdT -resolution.

Remark 2.1 (1) If T is a tilting module, then it is a 1-star module by [9, Theorem 4.3],
and hence it is 1-quasi-projective by [9, Definition 3.1]. So, if M ∈ Gen T and 0 −→ K1 −→
T1 −→ M −→ 0 and 0 −→ K2 −→ T2 −→ M −→ 0 are two short exact sequences such that
T1, T2 ∈ Add T , then by [9, Lemma 2.3], we deduce that K1 ⊕ T2

∼= K2 ⊕ T1.
(2) Consider the following exact sequences:

0 −→ K −→ Tn−1 −→ · · · −→ T1 −→ T0 −→ M −→ 0,

0 −→ K ′ −→ T ′
n−1 −→ · · · −→ T ′

1 −→ T ′
0 −→ M −→ 0,

in which Ti, T
′
i ∈ Add T for every i (0 ≤ i ≤ n − 1). Then we have

K ⊕ T ′
n−1 ⊕ · · · ∼= K ′ ⊕ Tn−1 ⊕ · · · .

The dual of Remark 2.1 is also true. The next definition is a generalization of the derived
functors Ext and Tor.

Definition 2.1 Let T be a (Wakamatsu) tilting module.
(1) For any M ∈ Gen T , we define ΓT

n (M, B) := Ker(δn⊗1B)
Im(δn+1⊗1B) , where

δ2 δ1 δ0· · · −→ T1 −→ T0 −→ M −→ 0

is a left Add T -resolution of M .
(2) For any M ∈ CogenT , we define En

T (C, M) := Ker δn
∗

Im δn−1
∗

, where

δ0 δ1 δ2

0 −→ M −→ T 0 −→ T 1 −→ · · ·
is a right ProdT -resolution of M and δn∗ = Hom(δn, T ).

A similar proof to that of [6, Proposition 2.3] shows that the definition of ΓT
n (M, B)

(resp. En
T (C, M)) is independent from the choice of left Add T -resolutions (resp. right ProdT -

resolutions).
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Definition 2.2 Let T be a Wakamatsu tilting module.
(1) If M ∈ Gen T , then we say that M is of T -projective dimension n (briefly, T.p.dim(M) =

n) if n is the least non-negative integer such that there exists a long exact sequence

0 −→ Tn −→ Tn−1 −→ · · · −→ T1 −→ T0 −→ M −→ 0

with Ti ∈ Add T for each i ≥ 0.
(2) If M ∈ CogenT , then we say that M is of T -injective dimension n if n is the least

non-negative integer such that there exists a long exact sequence

0 −→ M −→ T 0 −→ T 1 −→ · · · −→ T n −→ 0

with T i ∈ ProdT for each i ≥ 0.
(3) A module M is called (n, T )-projective (resp. (n, T )-injective) if T.p.dim(M) ≤ n (resp.

T.i.dim(M) ≤ n). We denote the class of all (n, T )-projective (resp. (n, T )-injective) modules
by Pn(T ) (resp. In(T )).

In particular, if T = R, then M is called n-projective (resp. n-injective). The class of
n-projective modules was studied in [5].

Remark 2.2 Let T be a tilting module. Then for every M ∈ Gen T , the following state-
ments are equivalent:

(1) T.p.dim(M) ≤ n;
(2) For every AddT -resolution

Tn−1 −→ Tn−2 −→ · · · −→ T1 −→ T0 −→ M −→ 0,

Ker(Tn−1 −→ Tn−2) belongs to AddT ;
(3) E i

T (M, B) = 0 for every i > n and every module B.

Replacing T by R as an R-module, we see that T -projective dimension and T -dimension are
the same as projective dimension and injective dimension, respectively.

Let M and N be two modules. From [6, Lemma 2.11], we know that E0
T (M, N)∼=Hom(M, N).

Similarly, it is seen that ΓT
0 (M, N) ∼= M ⊗ N . If E1

T (M,−) = 0, then M ∈ Add T . If
E1

T (−, N) = 0, then N ∈ ProdT . Let 0 −→ A −→ B −→ C −→ 0 be a short exact se-
quence. Then for every module M and every non-negative integer n, the following long exact
sequences exist:

· · · −→ En
T (M, A) −→ En

T (M, B) −→ En
T (M, C) −→ En+1

T (M, A) −→ · · · ,

· · · −→ En
T (C, M) −→ En

T (B, M) −→ En
T (A, M) −→ En+1

T (C, M) −→ · · · ,

· · · −→ ΓT
n+1(M, A) −→ ΓT

n+1(M, B) −→ ΓT
n+1(M, C) −→ ΓT

n (M, A) −→ · · · .

It is natural to define T.f.dim (M) (T -flat dimension of M) to be the least nonnegative integer
n such that for every module B, ΓT

n (M, B) = 0.
We denote by Fn(T ) the class of all modules with T -flat dimension at most n.
Let C be a class of modules and M be an arbitrary module. If

· · · −→ C2 −→ C1 −→ C0 −→ M −→ 0

and
0 −→ M −→ C0 −→ C1 −→ C2 −→ · · ·
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are left and right C-resolutions of M , respectively, then the module Kn = Ker(Cn −→ Cn−1) is
called nth C-syzygy of M and Ln = Coker(Cn −→ Cn+1) is called nth C-cosyzygy of M . We
refer the reader to [3] for more information.

Proposition 2.2 Consider the following Add T -resolution:

δ2 δ1 δ0· · · −→ T2 −→ T1 −→ T0 −→ M −→ 0.

If Ki is an ith Add T -syzygy of M , for i ≥ 0, then the following statements hold:
(1) ΓT

n+1(M, B) ∼= ΓT
n (K0, B) ∼= · · · ∼= ΓT

1 (Kn−1, B);
(2) En+1

T (M, B) ∼= En
T (K0, B) ∼= · · · ∼= E1

T (Kn−1, B).

Proof It is clear that · · · −→ T2 −→ T1 −→ K0 −→ 0 is an AddT -resolution of K0. Define
Sn−1 = Tn and Δn−1 = δn for each n ≥ 1. The Add T -resolution now reads

· · · −→ S2 −→ S1 −→ S0 −→ K0 −→ 0.

By definition, we get

ΓT
n (K0, B) ∼= Ker(Δn ⊗ 1B)

Im(Δn−1 ⊗ 1B)
=

Ker(δn+1 ⊗ 1B)
Im(δn ⊗ 1B)

= ΓT
n+1(M, B).

This proves (1), and the proof of (2) is similar to that of (1).

3 (n, T )-Copure Injective Modules and (n, T )-Copure Flat Modules

Unless otherwise stated, throughout this section, T will be a Wakamatsu tilting module. We
give a generalization of copure injective modules and copure flat modules, and then we study
some of their properties.

Definition 3.1 Let n be a fixed nonnegative integer. Then M ∈ Gen T is called (n, T )-
copure injective (resp. (n, T )-copure flat) if E1

T (N, M) = 0 (resp. ΓT
1 (M, N) = 0), for any

N ∈ In(T ).

In the first theorem of this section, we give some characterizations of (n, T )-copure injective
modules. Before embarking this characterization, we need the following proposition.

Proposition 3.1 The following statements are true:
(1) If E i

T (N, M) = 0 for any i (1 ≤ i ≤ n + 1) and any N ∈ ProdT , then every k th
ProdT -cosyzygy of M is (n−k, T )-copure injective. In particular, M is (n, T )-copure injective;

(2) If ΓT
1 (M, N) = 0 for any i (1 ≤ i ≤ n + 1) and any N ∈ ProdT , then every k th

Add T -syzygy of M is (n − k, T )-copure flat with 0 ≤ k ≤ n. In particular, M is (n, T )-copure
flat.

Proof Let k be an integer with 0 ≤ k ≤ n, Lk be the k th ProdT -cosyzygy of M and
N ∈ In−k(T ). Then E1

T (N, Lk) ∼= Ek+1
T (N, M). On the other hand, there is an exact sequence

0 −→ N −→ T 0 −→ T 1 −→ · · · −→ T n−k −→ 0,

where T i ∈ ProdT for every i (0 ≤ i ≤ n − k), and so Ek+1
T (N, M) ∼= En+1

T (T n−k, M) = 0 by
assumption. Thus E1

T (N, Lk) = 0 and hence Lk is (n − k, T )-copure injective. This proves (1).
The proof of (2) is similar to that of (1).
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Theorem 3.1 If M ∈ Gen T , then the following statements are equivalent:
(1) M is an (n, T )-copure injective module;
(2) For every exact sequence 0 −→ M −→ I −→ L −→ 0 with I ∈ In(T ), I −→ L is an

In(T )-precover of L;
(3) M is the Kernel of an In(T )-precover f : A −→ B with A ∈ ProdT .

Proof (1) ⇒ (2) Let I ′ ∈ In(T ). Since E1
T (I ′, M) = 0, we obtain the exact sequence

Hom(I ′, I) −→ Hom(I ′, L) −→ 0. Thus I −→ L is an In(T )-precovere of L.
(2) ⇒ (3) Consider the short exact sequence 0 −→ M −→ I −→ I

M −→ 0, where I is an
In(T )-preenvelope of M . Then (3) follows from (2).

(3) ⇒ (1) Let M be the kernel of an In(T )-precover f : A −→ B with A ∈ ProdT . Then
we naturally have an exact sequence 0 −→ M −→ A −→ A

M −→ 0. Therefore, by (3), the
sequence Hom(N, A) −→ Hom(N, A

M ) −→ 0 is exact for every N ∈ In(T ). Thus E1
T (N, M) = 0

and so (1) follows.

Now, let us give some sufficient conditions under which ProdT -syzygies are (n, T )-copure
injective.

Proposition 3.2 Every nth ProdT -syzygy of every generated module by T is (n, T )-copure
injective.

Proof Let M ∈ Gen T . Then by Proposition 2.1, M has a ProdT -resolution, say

· · · −→ U1 −→ U0 −→ M = U−1 −→ 0.

For every nonnegative integer n, set Kn = Ker(Un−1 −→ Un−2). We use induction to prove that
T.i.dim(M) ≤ n if and only if Hom(M, Un) −→ Hom(M, Kn) −→ 0 is exact. By Proposition
2.1, there is a short exact sequence 0 −→ M −→ U −→ M ′ −→ 0 with U ∈ ProdT . The
following two commutative diagrams with exact rows are obtained:

Hom(U, Un) −−−−→ Hom(U, Kn) −−−−→ 0⏐⏐�
⏐⏐�

Hom(M, Un) −−−−→ Hom(M, Kn)⏐⏐�
0

0 0 0⏐⏐�
⏐⏐�

⏐⏐�
0 −−−−→ Hom(M ′, Kn) −−−−→ Hom(M ′, Un−1) −−−−→ Hom(M ′, Kn−1)⏐⏐�

⏐⏐�
⏐⏐�

0 −−−−→ Hom(U, Kn) −−−−→ Hom(U, Un−1) −−−−→ Hom(U, Kn−1) −−−−→ 0⏐⏐�
⏐⏐�

⏐⏐�
0 −−−−→ Hom(M, Kn) −−−−→ Hom(M, Un−1) −−−−→ Hom(M, Kn−1) −−−−→ 0⏐⏐�

0
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If n = 0, then K0 = M and so from the first diagram, we deduce that Hom(M, U0) −→
Hom(M, M) is surjective. This means that Hom(U, M) −→ Hom(M, M) is surjective. Thus
M ∈ ProdT and so T.i.dim(M) = 0. The converse is trivial. Thus we can suppose that
n ≥ 1. It is seen that T.i.dim(M) ≤ n if and only if T.i.dim(M ′) ≤ n − 1, by dimension
shifting, if and only if Hom(M ′, Un−1) −→ Hom(M ′, Kn−1) is surjective, by induction, if and
only if Hom(U, Kn) −→ Hom(M, Kn) is surjective, by the second diagram, if and only if
Hom(M, Un) −→ Hom(M, Kn) is surjective, by the first diagram. Now, we return to the main
proof. The above inductive proof shows that Un −→ Kn is an In(T )-precover, where Kn is the
nth ProdT -syzygy of M . Thus by Proposition 3.1, nth ProdT -syzygy of M is (n, T )-copure
injective and so we are done.

Recall that the character module of a non-zero R-module M is defined to be HomZ(M, Q
Z
)

and it is denoted by M+ (see also [3, Definition 3.2.7]).

Proposition 3.3 If T is a Wakamatsu tilting module and M ∈ Gen T , then the following
statements are equivalent:

(1) M is (n, T )-copure flat;
(2) M+ is (n, T )-copure injective;
(3) E1

T (M, B+) = 0 for every B ∈ In(T );
(4) The tensor functor, M⊗−, preserves the exactness of every exact sequence 0 −→ A −→

B −→ C −→ 0 with C ∈ In(T ).

Proof A similar proof to that of [7, p. 360] shows that for every N ∈ Gen T , E1
T (N, M+) ∼=

ΓT
1 (M, N)+ ∼= E1

T (M, N+). Thus the implications (1) ⇔ (2) ⇔ (3) follows. (1) ⇔ (4) is easy
to prove.

Proposition 3.4 Let n be a positive integer.
(1) If M ∈ Gen T , then T.i.dim(M) ≤ n if and only if M is (n, T )-copure injective and

T.i.dim(M) ≤ n + 1.
(2) If N ∈ CogenT , then T.f.dim(N) ≤ n if and only if N is (n, T )-copure flat and

T.f.dim(N) ≤ n + 1.

Proof (1) Consider the exact sequence

0 −→ M −→ ET (M) −→ ET (M)
M

−→ 0,

where ET (M) is a ProdT -envelope of M . Then for every module N , we obtain the induced
exact sequence

0 −→ En+1
T (N, M) −→ En+1

T (N, ET (M)) −→ En+1
T

(
N,

ET (M)
M

)
−→ · · · .

Since T.i.dim(M) ≤ n + 1, dimension shifting implies that T.i.dim(ET (M)
M ) ≤ n and so we

have En+1
T (N, ET (M)

M ) = 0. Also, from ET (M) ∈ ProdT we deduce that En+1
T (N, ET (M)) = 0.

Hence En+1
T (N, M) = 0 and so T.i.dim(M) ≤ n. The converse is trivial.

(2) Let N be an (n, T )-copure flat module with T.f.dim(N) ≤ n + 1. Then N+ is (n, T )-
copure injective by Proposition 3.3. Since T.i.dim(N+) ≤ n+1, (1) implies that T.i.dim(N+) ≤
n. Hence T.f.dim(N) ≤ n. The converse is trivial.
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Theorem 3.2 Let T be a Wakamatsu tilting R-module such that R ∈ ProdT and In(T ) ⊆
Gen T . Then the following statements hold:

(1) M is (n, T )-copure injective if and only if Hom(T 0, M) is (n, T )-copure injective, for
every T 0 ∈ ProdT ;

(2) M is (n, T )-copure flat if and only if T 0⊗M is (n, T )-copure flat, for every T 0 ∈ ProdT .

Proof (1) Let T 0 ∈ ProdT and U ∈ In(T ). Then U has T -injective dimension at most n

and so U ∈ Gen T . Since T is a tilting module, by using [9, Definition 3.1 and Theorem 4.3], we
have U ∈ Pres∞T . Therefore, we can consider the exact sequence 0 −→ K −→ T0 −→ U −→ 0
with T0 ∈ Add T , which gives rise to the exactness of

0 −→ K ⊗ T 0 −→ T0 ⊗ T 0 −→ U ⊗ T 0 −→ 0.

Since T 0 ∈ ProdT , we deduce that U ⊗ T 0 ∈ In(T ). Thus we have the exact sequence

Hom(T0 ⊗ T 0, M) −→ Hom(K ⊗ T 0, M) −→ E1
T (U ⊗ T 0, M) = 0.

Therefore, by [7, Theorem 2.75], we obtain the exact sequence

Hom(T0, Hom(T 0, M)) −→ Hom(K, Hom(T 0, M)) −→ 0.

On the other hand, the sequence

Hom(K, Hom(T 0, M)) −→ E1
T (U, Hom(T 0, M)) −→ E1

T (T0, Hom(T 0, M)) = 0

is exact. Thus E1
T (U, Hom(T 0, M)) = 0, that is, Hom(T 0, M) is (n, T )-copure injective. The

converse holds by letting T 0 = R.
(2) Since T 0 ∈ ProdT , we only need to show that (T 0 ⊗ M)+ is (n, T )-copure injective by

Proposition 3.3. But we have (T 0 ⊗ M)+ ∼= Hom(T 0, M+) and it is (n, T )-copure injective by
(1). The converse holds by letting T 0 = R.

Proposition 3.5 Let T be a Wakamatsu tilting module such that Pres1T = Pres2T . Then
every infinite module in Gen T has an Fn(T )-preenvelope.

Proof Let M ∈ Gen T with Card(M) = ℵβ . It is not hard to prove that there exists an
infinite cardinal number ℵα such that if F ∈ Fn(T ) and S is a submodule of F with Card(S) ≤
ℵβ, then there exists a submodule G of F with S ⊆ G and Card(G) ≤ ℵα. Therefore, M has
an Fn(T )-preenvelope, by [3, Corollary 6.2.2]. This fact that Pres1T = Pres2T guarantees that
Fn(T ) is closed under direct products.

The following proposition gives a method to construct many examples of (n, T )-copure flat
modules.

Proposition 3.6 Let M be the cokernel of an Fn(T )-preenvelope K −→ F of K. Then
M is (n, T )-copure flat.

Proof Let K −→ F be an Fn(T )-preenvelope of K and M = Coker(K −→ F ). Then we
obtain the exact sequence 0 −→ K −→ F −→ M −→ 0. Choose E ∈ Fn(T ). Then it is not
hard to show that E+ ∈ In(T ). So we have the exact sequence

0 −→ Hom(M, E+) −→ Hom(F, E+) −→ Hom(K, E+) −→ 0.
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Thus by [7, Theorem 2.75],

0 −→ (M ⊗ E)+ −→ (F ⊗ E)+ −→ (K ⊗ E)+ −→ 0

is an exact sequence which induces the exact sequence

0 −→ K ⊗ E −→ F ⊗ E −→ M ⊗ E −→ 0. (3.1)

On the other hand, we have the exact sequence

ΓT
1 (M, E) −→ K ⊗ E −→ F ⊗ E −→ M ⊗ E −→ 0. (3.2)

Therefore, by comparing the exact sequences (3.1) and (3.2), we deduce that ΓT
1 (M, E) = 0

and hence M is (n, T )-copure flat.

Finally, we close this paper with the following result about Wakamatsu tilting modules with
finite T -injective dimension.

Theorem 3.3 If T.i.dim(T ) ≤ n, then the following statements hold:
(1) If M ∈ Gen T is an (n− 1, T )-copure injective module, then there is an exact sequence

0 −→ K −→ T 0 −→ M −→ 0 such that T 0 ∈ ProdT and K is (n, T )-copure injective;
(2) If N ∈ CogenT is an (n − 1, T )-copure flat module, then there is an exact sequence

0 −→ N −→ F −→ L −→ 0 such that F ∈ F0(T ) and L is (n, T )-copure flat.

Proof (1) Since M ∈ Gen T , one can obtain the exact sequence

0 −→ N −→ T0 −→ M −→ 0,

where T0 ∈ Add T . Now, consider the following commutative diagram with exact rows:

0 0⏐⏐�
⏐⏐�

0 −−−−→ N −−−−→ T0 −−−−→ M −−−−→ 0∥∥∥
⏐⏐�

⏐⏐�
0 −−−−→ N −−−−→ ET (T0) −−−−→ Q −−−−→ 0⏐⏐�

⏐⏐�
C C⏐⏐�

⏐⏐�
0 0

where T0 −→ ET (T0) is an I0(T )-envelope and the square T0MQET (T0) is a push out diagram.
Since T.i.dim(T0) ≤ n, we deduce that T.i.dim(T ) ≤ n and so shifting dimension implies that
T.i.dim(C) ≤ n − 1. Thus E1

T (C, M) = 0. Now, consider the exact sequence

0 −→ K −→ T 0 α−→ M −→ 0

in which α is a ProdT -cover of M . To complete the proof of (1), we show that K is (n, T )-copure
injective. To see this, let X ∈ In(T ) and consider the exact sequence

0 −→ X
β−→ ET (X)

γ−→ D −→ 0,
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where β is a ProdT -envelope of X . Then D ∈ In−1(T ), by shifting dimension. Thus we get
the induced exact sequence

0 = E1
T (D, M) −→ E2

T (D, K) −→ E2
T (D, T 0) = 0.

Therefore, E2
T (D, K) = 0. On the other hand, the sequence

0 −→ X −→ ET (X) −→ D −→ 0

induces the exact sequence

0 = E1
T (ET (X), K) −→ E1

T (X, K) −→ E2
T (D, K) = 0,

and hence E1
T (X, K) = 0, as desired.

(2) Let N be an (n − 1, T )-copure flat module. Then N+ is (n − 1, T )-copure injective, by
Proposition 3.3. Thus by (1), there is an exact sequence T 0 −→ N+ −→ 0 with T 0 ∈ ProdT

and so 0 −→ N++ −→ T 0+ is an exact sequence. So N is embedded in a module which belongs
to F0(T ). Now, consider the exact sequence

0 −→ N
δ−→ F −→ L −→ 0,

where δ is an F0(T )-preenvelope of N . By Proposition 3.5, L is (1, T )-copure flat. Applying an
argument similar to that in the proof of (1), we conclude that L is (n, T )-copure flat.
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