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Relative T-Injective Modules and
Relative T-Flat Modules
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Abstract Let 7" be a Wakamatsu tilting module. A module M is called (n,T")-copure
injective (resp. (n,T)-copure flat) if EL(N, M) =0 (resp. I'T (N, M) = 0) for any module
N with T-injective dimension at most n (see Definition 2.2). In this paper, it is shown that
M is (n,T)-copure injective if and only if M is the kernel of an Z,, (T')-precover f : A — B
with A € ProdT. Also, some results on Prod T-syzygies are presented. For instance, it
is shown that every nth Prod T-syzygy of every module, generated by T, is (n,T)-copure
injective.
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1 Introduction

The study of tilting theory has become an exciting subject in homological algebra. Many
subjects in homological algebra are based on the properties of tilting and cotilting modules
(see [1, 2, 4, 8, 9] for instance). Throughout this paper, R is an associative ring with non-zero
identity, all modules are unitary R-modules and T is a fixed R-module. We denote by AddT
(ProdT) the class of modules isomorphic to direct summands of direct sum (direct product) of
copies of T, by Pres"T and Pres®™T the set of all modules M such that there exist the exact
sequences

T, — T, 11— -—T — M —0 and

T, — T — e — Ty — Ty — M — 0,

respectively, where T; € AddT for every ¢ > 1. A module M is said to be generated by T,
denoted by M € GenT (resp. cogenerated by T, denoted by M € CogenT) if there exists an
exact sequence 7" — M — 0 (resp. M — T™ — 0), for some positive integer n. Let
C be a class of modules and M be a module. A left (resp. right) C-resolution of M is a long
exact sequence -+ — Cy — Cyp — M — 0 (resp. 0 — M — Cy — Cy — -+ -), where
C; € C for every ¢ > 0. A module T is called Wakamatsu tilting if Exti(T, T) = 0 for every
1 > 1, and there exists a long exact sequence
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where T; € Add T and Ext'(Cokerf;, T) = 0 for every i > 0. We refer the reader to [4, 8] for
more details. In fact, the concept of a Wakamatsu tilting module generalizes both tilting and
cotilting modules (see [8, Proposition 2.1]). Let T' be a Wakamatsu tilting module.

In Section 2, some relative homological dimensions and derived functors are introduced.
The existence of Add T-resolutions and Prod T-resolutions and some properties of their syzy-
gies will be studied, too. For every M € GenT (resp. M € CogenT), we define T-projective
(resp. T-injective) dimension of M to be the length of a left Add T-resolution (resp. right
Prod T-resolution) of M. We denote by P, (T) and Z,,(T') the class of modules with T-projective
dimension at most n and the class of modules with T-injective dimension at most n, respec-
tively. If T' is a 1-quasi-projective module (see [9, Definition 2.1]), then T-projective dimension
of a module equals its T-dimension which has been studied by the authors in [6]. For any
homomorphism f of R-modules, we denote by Ker f and Im f, the kernel and the image of f,
respectively. Let B and M be modules. If M € Gen T, then we define I'Z (M, B) = Ker(0,01p)

Im(6,+1®1B)°
where

—)TQ%TZ{ATD&M—)O

is a left Add T-resolution of M. Also, if M € CogenT, then we define EX(C, M) = Ker o,

Im 5”_ 1
f
where

50 5t

2
0 — M — T° 5_>

Tt 7 —

is a right Prod T-resolution of M and 67 = Hom(d,,T).

A module M is said to be (n,T)-copure injective (resp. (n,T')-copure flat) if EL(N, M) =0
(resp. TT(N,M) = 0) for every N € Z,(T). Let C be a class of R-modules. Recall that
an epimorphism ¢ : C' — M with C' € C is a C-precover of M if for every homomorphism
f:C" — M with C' € C, there exists a homomorphism ¢g : ¢’ — C such that f = ¢g.
Moreover, if ¢/ = C implies that ¢ is an automorphism, then ¢ : C' — M is called a C-cover
of M. Preenvelopes and envelopes are defined dually (see [3] for more details).

Section 3 is devoted to some characterization of (n, T)-copure injective modules and (n, T')-
copure flat modules. For instance, it is shown that a module is an (n, T')-copure injective if and
only if it is the Kernel of an Z,,(T')-precover f : A — B with A € ProdT'. Also it is proved
that a module M is (n, T)-copure injective (resp. (n,T)-copure flat) if and only if Hom(T°, M)
(resp. T°@M ) is (n, T)-copure injective (resp. (n,T)-copure flat), for any 79 € Prod 7. Among
other results, we study Wakamatsu tilting modules with finite T-injective dimension.

2 Relative Homological Dimensions and Derived Functors

In this section, we give basic notions and results and we recall some relevant background
in tilting theory from [2, 4, 8, 9]. First let us recall the following definition of (not necessarily
finitely generated) tilting modules (see [2]).

A module M is called tilting (1-tilting) if it satisfies the following conditions:

(1) pd(T) <1, where pd(T) denotes the projective dimension of T

(2) Ext!(T,T™N) = 0 for every i > 0 and for every cardinal \;

(3) There exists an exact sequence 0 — R — Ty — Ty — 0, where T, 77 € Add T.

The 1-cotilting module is defined dually (see [2] for more details). Wakamatsu generalized
the concept of the tilting module in [8]. An R-module T is said to be a Wakamatsu tilting
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module if Exti(T, T) =0 for every i > 1, and there exists a long exact sequence

0 — g do g Suop Lo

where T; € Add T and Ext'(Cokerf;, T) =0 for every ¢ > 0. A Wakamatsu cotilting module is
defined dually.

Let n be a positive integer. A module T is said to be n-quasi-projective if for any exact
sequence 0 — L — Ty — N — 0 with Ty € Add T and L € Pres"T, the induced sequence
0 — Hom(7T, L) — Hom(7T,Ty) — Hom(7T, N) — 0 is also exact (see [9, Definition 2.1]).
Also, T is called an n-star module if T is (n + 1)-quasi-projective and Pres™T = Pres" ™' T (see
[9, Definition 3.1]).

Proposition 2.1 If M is a generated (resp. cogenerated) module by a Wakamatsu tilting
module T, then M has a left Add T -resolution (resp. right Prod T -resolution).

Proof Since T is tilting, [2, Theorem 3.11] implies that it is 1-star and GenT = Pres™T.
So M € Pres®™T. This shows that M has a left Add T-resolution. Similarly, one can show that
any module M € CogenT has a right Prod T-resolution.

Remark 2.1 (1) If T is a tilting module, then it is a 1-star module by [9, Theorem 4.3],
and hence it is 1-quasi-projective by [9, Definition 3.1]. So, if M € GenT and 0 — K; —
T, — M — 0and 0 — Ky — T35 — M — 0 are two short exact sequences such that
Ty,T5 € Add T, then by [9, Lemma 2.3], we deduce that K1 @& Ts = Ky & T1.

(2) Consider the following exact sequences:

0O —K—1T, 11— —T) — Ty — M —0,
0—K —T | — - —T —T)— M — 0,
in which 73,7} € Add T for every ¢ (0 <i <mn —1). Then we have
K@Trll71@"'gK/@Tnfl@"' .
The dual of Remark 2.1 is also true. The next definition is a generalization of the derived
functors Ext and Tor.
Definition 2.1 Let T be a (Wakamatsu) tilting module.
(1) For any M € GenT, we define 'L (M, B) := Ker@n®lp). - yppere

T Im(0p4+1®1B)°7

Bog S oy g

is a left Add T-resolution of M. ’
(2) For any M € CogenT', we define EX(C, M) := Kerd. | where

Tm 7?1’
0 1 2
0 — M 5—> 70 6—> Tt 5—>

is a right Prod T-resolution of M and 62 = Hom(d,,T).

A similar proof to that of [6, Proposition 2.3] shows that the definition of I'Z (M, B)
(resp. EX(C, M)) is independent from the choice of left Add T-resolutions (resp. right Prod T-
resolutions).
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Definition 2.2 Let T be a Wakamatsu tilting module.
(1) If M € Gen T, then we say that M is of T-projective dimension n (briefly, T.p.dim(M) =
n) if n is the least non-negative integer such that there exists a long exact sequence

0—1T, —T, 41— —Ty —Tg— M —0

with T; € AddT for each i > 0.
(2) If M € CogenT, then we say that M is of T-injective dimension n if n is the least
non-negative integer such that there exists a long eract sequence

0—M—T' ——T — ... ST 0

with T* € Prod T for each i > 0.

(3) A module M is called (n, T)-projective (resp. (n,T)-injective) if T.p.dim(M) < n (resp.
T.idim(M) < n). We denote the class of all (n,T)-projective (resp. (n,T)-injective) modules
by Pn(T) (resp. L,(T)).

In particular, if T = R, then M is called n-projective (resp. n-injective). The class of
n-projective modules was studied in [5].

Remark 2.2 Let T be a tilting module. Then for every M € GenT, the following state-
ments are equivalent:

(1) T.p.dim(M) <mn;

(2) For every AddT-resolution

Tnfl_)Tn72—>"'_)T1—>T0—>M_)Oa

Ker(T,,—1 — T),,—2) belongs to Add T}
(3) EL(M,B) =0 for every i > n and every module B.

Replacing T by R as an R-module, we see that T-projective dimension and T-dimension are
the same as projective dimension and injective dimension, respectively.

Let M and N be two modules. From [6, Lemma 2.11], we know that £2(M, N)=Hom(M, N).
Similarly, it is seen that I'J(M,N) & M ® N. If EL(M,—) = 0, then M € AddT. If
EL(—,N) = 0, then N € ProdT. Let 0 — A — B — C — 0 be a short exact se-
quence. Then for every module M and every non-negative integer n, the following long exact
sequences exist:

= EP (M, A) — EF(M,B) — E}(M,C) — Ep (M, A) — -+,

- EF(C, M) — E}(B, M) — EF(A,M) — E37H(C, M) — -+,

T I‘ZH(M,A) - Fz;+1(MaB) - I‘ZH(M,C) — TR (M, A) — -
It is natural to define T.f.dim (M) (T-flat dimension of M) to be the least nonnegative integer
n such that for every module B, I'} (M, B) = 0.

We denote by F,,(T) the class of all modules with T-flat dimension at most n.
Let C be a class of modules and M be an arbitrary module. If

—Cy—C —Cy— M —0

and
0—M-—C"—C'—C*— ...
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are left and right C-resolutions of M, respectively, then the module K,, = Ker(C,, — C,,_1) is
called nth C-syzygy of M and L" = Coker(C™ — C™*1) is called nth C-cosyzygy of M. We
refer the reader to [3] for more information.

Proposition 2.2 Consider the following Add T -resolution:

%TgiTliToﬂM%O.
If K; is an tth Add T -syzygy of M, for i > 0, then the following statements hold:
(1) FZJrl(MvB) = Fz(KOvB) == F{(anlaB%
(2) EpPY(M,B) = (Ko, B) = - = EL (K1, B).

Proof It is clear that - -+ — Ty — T3 — Ko — 0 is an Add T-resolution of K. Define
Sp—1=1T, and A,,_1 = §,, for each n > 1. The Add T-resolution now reads

-—>SQ—>31—>S()—>K0—>O.

By definition, we get

Ker(A, ®1p)  Ker(d,41 ®@1p) T

I''(Ky,B) = -
n (Ko, B) Im(A,_1 ®1g)  Im(6, ® 1p) n+l

(M, B).

This proves (1), and the proof of (2) is similar to that of (1).

3 (n,T)-Copure Injective Modules and (n,T)-Copure Flat Modules

Unless otherwise stated, throughout this section, T will be a Wakamatsu tilting module. We
give a generalization of copure injective modules and copure flat modules, and then we study
some of their properties.

Definition 3.1 Let n be a fized nonnegative integer. Then M € GenT is called (n,T)-
copure injective (resp. (n,T)-copure flat) if EL(N, M) = 0 (resp. TT(M,N) = 0), for any
N € Z,(T).

In the first theorem of this section, we give some characterizations of (n,T')-copure injective
modules. Before embarking this characterization, we need the following proposition.

Proposition 3.1 The following statements are true:

(1) If E(N,M) =0 for any i (1 <i <n+1) and any N € ProdT, then every kth
Prod T-cosyzygy of M is (n—k,T)-copure injective. In particular, M is (n,T)-copure injective;

(2) IfTT(M,N) =0 for anyi (1 <i < n+1) and any N € ProdT, then every kth
Add T-syzygy of M is (n — k,T)-copure flat with 0 < k < n. In particular, M is (n,T)-copure
flat.

Proof Let k be an integer with 0 < k < n, L* be the kth Prod T-cosyzygy of M and
N € Z,_1(T). Then EL(N, L¥) = EXFY(N, M). On the other hand, there is an exact sequence

0—N—T" T — ... T F 0,

where T% € Prod T for every i (0 < i <n — k), and so ELTH(N, M) = 2P (T™~F M) = 0 by
assumption. Thus EL(N, L¥) = 0 and hence L* is (n — k, T)-copure injective. This proves (1).
The proof of (2) is similar to that of (1).
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Theorem 3.1 If M € GenT, then the following statements are equivalent:

(1) M is an (n,T)-copure injective module;

(2) For every exact sequence 0 — M — [ — L — 0 with [ € Z,(T), I — L is an
Z,(T)-precover of L;

(3) M is the Kernel of an Z,,(T')-precover f: A — B with A € ProdT.

Proof (1) = (2) Let I’ € Z,,(T). Since EL(I', M) = 0, we obtain the exact sequence

Hom(I’,I) — Hom(!’,L) — 0. Thus I — L is an Z, (T)-precovere of L.

(2) = (3) Consider the short exact sequence 0 — M — [ — L — 0, where [ is an

M
Z,(T)-preenvelope of M. Then (3) follows from (2).

(3) = (1) Let M be the kernel of an I,,(T)-precover f : A — B with A € ProdT. Then
we naturally have an exact sequence 0 — M — A — % — 0. Therefore, by (3), the
sequence Hom(N, A) — Hom(N, £7) — 0 is exact for every N € Z,,(T). Thus EL(N, M) =0
and so (1) follows.

Now, let us give some sufficient conditions under which ProdT-syzygies are (n,T')-copure
injective.

Proposition 3.2  Fvery nth Prod T-syzygy of every generated module by T is (n,T')-copure
injective.

Proof Let M € GenT. Then by Proposition 2.1, M has a Prod T-resolution, say

..—>U1—)U0—>M:U71—>O.
For every nonnegative integer n, set K,, = Ker(U,,_1 — U,,_3). We use induction to prove that
T.idim(M) < n if and only if Hom (M, U,,) — Hom(M, K,,) — 0 is exact. By Proposition
2.1, there is a short exact sequence 0 — M — U — M’ — 0 with U € ProdT. The
following two commutative diagrams with exact rows are obtained:
Hom(U,U,) —— Hom(U,K,) —— 0

I l

Hom(M,U,) —— Hom(M, K,,)

l

0
0 0 0

l ! !

0 —— Hom(M'",K,,) —— Hom(M',U,—1;) —— Hom(M', K,,_1)

| ! l

0 —— Hom(U,K,) —— Hom(U,U,-1) —— Hom(U,K,—1) —— 0

l ! l

0 —— Hom(M,K,) —— Hom(M,U,_;) —— Hom(M,K,_;) —— 0

|

0
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If n = 0, then Ky = M and so from the first diagram, we deduce that Hom(M,Uy) —
Hom(M, M) is surjective. This means that Hom(U, M) — Hom(M, M) is surjective. Thus
M € ProdT and so T.i.dim(M) = 0. The converse is trivial. Thus we can suppose that
n > 1. It is seen that T.i.dim(M) < n if and only if T.i.dim(M’) < n — 1, by dimension
shifting, if and only if Hom(M’,U,,—1) — Hom(M', K,,_1) is surjective, by induction, if and
only if Hom(U, K,) — Hom(M, K,,) is surjective, by the second diagram, if and only if
Hom(M,U,,) — Hom(M, K,,) is surjective, by the first diagram. Now, we return to the main
proof. The above inductive proof shows that U,, — K, is an Z,,(T')-precover, where K, is the
nth Prod T-syzygy of M. Thus by Proposition 3.1, nth Prod T-syzygy of M is (n,T)-copure
injective and so we are done.

Recall that the character module of a non-zero R-module M is defined to be Homz (M, %)
and it is denoted by M (see also [3, Definition 3.2.7]).

Proposition 3.3  IfT is a Wakamatsu tilting module and M € GenT', then the following
statements are equivalent:

(1) M is (n,T)-copure flat;

(2) M is (n,T)-copure injective;

(3) EL(M,BT) =0 for every B € Z,,(T);

(4) The tensor functor, M ® —, preserves the exactness of every exact sequence 0 — A —
B — C — 0 with C € Z,,(T).

Proof A similar proof to that of 7, p. 360] shows that for every N € Gen T, EL(N, M) =
I'T(M,N)* = EL(M,N"*). Thus the implications (1) < (2) < (3) follows. (1) < (4) is easy
to prove.

Proposition 3.4 Let n be a positive integer.

(1) If M € GenT, then T.i.dim(M) < n if and only if M is (n,T)-copure injective and
Tidim(M) <n+1.

(2) If N € CogenT, then T.f.dim(N) < n if and only if N is (n,T)-copure flat and
Tfdim(N) <n+1.

Proof (1) Consider the exact sequence

Ep(M)

0— M — Epr(M) — — 0,

where Er(M) is a Prod T-envelope of M. Then for every module N, we obtain the induced
exact sequence

Er(M
0 — EFTHN, M) — EFFLN, Br(M)) — &5+ (N, T]\; >) o

Since T.i.dim(M) < n + 1, dimension shifting implies that T.i.dim(%) < n and so we

have E7H(N, W) = 0. Also, from Er(M) € Prod T we deduce that ExH(N, Ep(M)) = 0.
Hence EF7H(N, M) = 0 and so T.i.dim(M) < n. The converse is trivial.

(2) Let N be an (n,T)-copure flat module with T.f.dim(N) < n+ 1. Then N* is (n,T)-
copure injective by Proposition 3.3. Since T.i.dim(N*) < n+1, (1) implies that T.i.dim(NT) <
n. Hence T.f.dim(/N) < n. The converse is trivial.
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Theorem 3.2  Let T be a Wakamatsu tilting R-module such that R € ProdT and Z,,(T) C
GenT. Then the following statements hold:

(1) M s (n,T)-copure injective if and only if Hom(T°, M) is (n,T)-copure injective, for
every T® € Prod T

(2) M is (n,T)-copure flat if and only if T°@M is (n, T)-copure flat, for every T® € ProdT.

Proof (1) Let T° € ProdT and U € Z,,(T). Then U has T-injective dimension at most n
and so U € GenT. Since T is a tilting module, by using [9, Definition 3.1 and Theorem 4.3], we
have U € Pres®™T. Therefore, we can consider the exact sequence 0 — K — Top — U — 0
with Ty € Add T, which gives rise to the exactness of

0 — KT’ —ThoT’ —U®T’ — 0.
Since T° € Prod T, we deduce that U ® T° € Z,,(T). Thus we have the exact sequence
Hom(Tp ® T° M) — Hom(K @ T°, M) — ER(U @ T°, M) = 0.
Therefore, by [7, Theorem 2.75], we obtain the exact sequence
Hom(Tp, Hom(T°, M)) — Hom(K, Hom(T°, M)) — 0.
On the other hand, the sequence
Hom(K,Hom(T°, M)) — EL(U, Hom(T°, M)) — EL(To, Hom(T°, M)) = 0

is exact. Thus EL(U,Hom(T°, M)) = 0, that is, Hom(7°, M) is (n,T)-copure injective. The
converse holds by letting 70 = R.

(2) Since TY € Prod T, we only need to show that (T° ® M) is (n,T)-copure injective by
Proposition 3.3. But we have (T° ® M) = Hom(7T° M ™) and it is (n,T)-copure injective by
(1). The converse holds by letting 7° = R.

Proposition 3.5 Let T be a Wakamatsu tilting module such that Pres'T = Pres®T. Then
every infinite module in GenT has an F, (T)-preenvelope.

Proof Let M € GenT with Card(M) = Ng. It is not hard to prove that there exists an
infinite cardinal number R, such that if F' € F,,(T") and S is a submodule of F' with Card(S) <
Ng, then there exists a submodule G of F' with S C G and Card(G) < R,. Therefore, M has
an F,(T)-preenvelope, by [3, Corollary 6.2.2]. This fact that Pres'T = Pres®T guarantees that
Fn(T) is closed under direct products.

The following proposition gives a method to construct many examples of (n,T')-copure flat
modules.

Proposition 3.6 Let M be the cokernel of an F,(T)-preenvelope K — F of K. Then
M is (n,T)-copure flat.

Proof Let K — F be an F,(T')-preenvelope of K and M = Coker(K — F'). Then we
obtain the exact sequence 0 — K — F — M —— 0. Choose E € F,(T). Then it is not
hard to show that E* € Z,,(T'). So we have the exact sequence

0 — Hom(M, E') — Hom(F, E') — Hom(K, E") — 0.
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Thus by [7, Theorem 2.75],
0—(MeE)" — FeE"T—(K®E)T—0
is an exact sequence which induces the exact sequence
0 —K®FE-—FQF—M®FE—DO. (3.1)
On the other hand, we have the exact sequence
IMTM,E) — K®@E —F®E—M®®E —0. (3.2)

Therefore, by comparing the exact sequences (3.1) and (3.2), we deduce that 7T (M, E) = 0
and hence M is (n,T)-copure flat.

Finally, we close this paper with the following result about Wakamatsu tilting modules with
finite T-injective dimension.

Theorem 3.3 If T.i.dim(T) < n, then the following statements hold:

(1) If M € GenT is an (n — 1,T)-copure injective module, then there is an exact sequence
0— K —T%— M — 0 such that T° € ProdT and K is (n,T)-copure injective;

(2) If N € CogenT is an (n — 1,T)-copure flat module, then there is an exact sequence
0— N— F — L — 0 such that F € Fo(T) and L is (n,T)-copure flat.

Proof (1) Since M € GenT, one can obtain the exact sequence
00— N—Ty— M — 0,

where Ty € AddT. Now, consider the following commutative diagram with exact rows:

0 0
0 N To M 0
H
0 N Er(To) Q 0
C ——2C
0 0

where Ty — Ep(T)) is an Zy(T')-envelope and the square To M QEr (1)) is a push out diagram.
Since T.i.dim(Ty) < n, we deduce that T.i.dim(7) < n and so shifting dimension implies that
T.i.dim(C) < n — 1. Thus EL(C, M) = 0. Now, consider the exact sequence

0—K-—T°" % M—0

in which « is a Prod T-cover of M. To complete the proof of (1), we show that K is (n, T)-copure
injective. To see this, let X € Z,,(T) and consider the exact sequence

0— X 5 Br(X) -5 D —0,
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where [ is a Prod T-envelope of X. Then D € Z,,_1(T), by shifting dimension. Thus we get
the induced exact sequence

0=Er(D,M) — EX(D,K) — E2(D, T = 0.
Therefore, £2(D, K) = 0. On the other hand, the sequence
0—X —Er(X)—D—0
induces the exact sequence
0= EMEr(X), K) — EMX, K) — E4(D,K) =0,

and hence E4(X, K) = 0, as desired.

(2) Let N be an (n — 1,T)-copure flat module. Then NV is (n — 1, T)-copure injective, by
Proposition 3.3. Thus by (1), there is an exact sequence T — Nt — 0 with 7° € Prod T
and so 0 — Nt+ — T%% is an exact sequence. So IV is embedded in a module which belongs
to Fo(T). Now, consider the exact sequence

O—>NL>F—>L—>O,

where ¢ is an Fo(T')-preenvelope of N. By Proposition 3.5, L is (1,T')-copure flat. Applying an
argument similar to that in the proof of (1), we conclude that L is (n,T')-copure flat.
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