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Abstract In this paper, the Laplacian on the holomorphic tangent bundle T1°M of
a complex manifold M endowed with a strongly pseudoconvex complex Finsler metric
is defined and its explicit expression is obtained by using the Chern Finsler connection
associated with (M, F). Utilizing the initiated “Bochner technique”, a vanishing theorem
for vector fields on the holomorphic tangent bundle T%°M is obtained.
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1 Introduction

It is well-known that the Laplacian plays an important role in the theory of harmonic integral
and Bochner technique in both Riemannian and K&hler manifolds (see [1-6]). The Laplacian
also makes sense in Finsler cases (see [7-14]). Let M be a complex manifold endowed with
a strongly pseudoconvex Finsler metric in the sense of [15]. In [16-17], by using the complex
Rund connection, Zhong defined the horizontal and vertical Laplacians in an invariant way on a
strongly pseudoconvex Finsler manifold and used the horizontal Laplacian to obtain a vanishing
theorem of p-forms on the base manifold M under the assumption that F' is a Kéhelr Finsler
metric on M.

As an application of the horizontal Laplacian associated with a complex Finsler manifold
(M, F), the Bochner technique (see [1-3]) or Bochner Kodaira technique (see [18-20]) has
also been studied (see [21-22]). In this paper, the authors derive the Laplacian on the holo-
morphic tangent bundle T1°M for a strongly pseudoconvex Finsler manifold in terms of the
Chern-Finsler connection associated with (M, F'). Furthermore, by using the Chern-Finsler
connection, the authors obtain the so-called Weitzenbock formula for the Laplacian. Finally,
as an application, the authors obtain a Bochner type vanishing theorem for vector fields on the
holomorphic tangent bundle TH°M .

2 Preliminaries

Let M be a complex manifold of complex dimension m. Denote 7w : TH"9M — M the

holomorphic tangent bundle of M. Note that T1°M is a non-compact complex manifold, even

if M is compact. For a local complex coordinate system z = (z!,---,2™) on M, a holomorphic
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tangent vector v of M is written as

0 . 0
vzv“@u, @L:@, 5‘(1:%,
and we take (z,v) = (z!,--+, 2™, v, .-+ ;™) as local holomorphic coordinate neighborhood of

TYOM. Let M = T“°M\{0} denote T*°M without the zero section. {8,,d.} gives a local

holomorphic frame field of the holomorphic tangent bundle TYOM of M. A complex Finsler
metric on a complex manifold M is a continuous function F : T%"9M — R* with the following
properties (see [15]):

(i) G = F? is smooth on M;
(ii) F(v) > 0for allv € M and F(v) =0 for all v = 0;
(iii) F(Cv) = |[¢|F(v) for all v € TY°M and ¢ € C.

The pair (M, F) is called a complex Finsler manifold. A complex Finsler metric F is
said to be strongly pseudoconvex if the Levi matrix (Gaﬁ) is positive definite on M, where
G,5= 3a5§G, and the pair (M, F) is called a strongly pseudoconvex Finsler manifold.

Let 7 : TYOM — M denote the natural projection. The differential drr : T°M — TCM
of m: M — M defines the vertical bundle V over M by

V = Kerdr N T"°M, (2.1)

which is the holomorphic vector bundle of rank m over M, and {9a} gives a local frame for V.
As is defined in [15], there is a horizontal bundle H over M such that T1°M =V & H, and the
local frame for H is given by

0y =0y —T%0s, TI'Y=G""Gry, (2.2)

where (G7) = (Guz) ™Y, Gy = 070,G. Thus {5,,0,} gives a local frame for T*OM. Let
{dz",6v*} be the dual frame for T"0*M, where dv® = dv® + T'¢dz". The frames {,,, ds} and

{dz*, 6v*} are called the adapted frames for TYOM and TH0* M respectively, and the following
Lie brackets hold (see [15]):

[5ua 5u] =0, [5/u 8&] = Fg;uaﬂ [80w 8[3] =0, (2 3)
[5ua 57] - 57(F3)804 - 5# (F_;)&_’? [5u7 aﬁ] - F%;pam [80(7 aE] =0.

For a strongly pseudoconvex Finsler metric, there is a unique Chern-Finsler connection D on
T1OM. Tts connection form wgj is given by

w§ = GT0Ggr = T3, d2" + 3,807,

where 9, = G7%0,Ggz, T, =G™0,Ggr.

By defining D(X) = DX and complex linearity, the Chern-Finsler connection D can
be extended to the whole complex vector bundle TCM and its dual ‘complex vector bundle
T M by requiring Dp(X) + ¢(DX) = dp(X) for every ¢ € x(T®*M) and X € x(T°M).
Thus the Chern-Finsler connection can also be extended to the complex linear connection
D x(TE°M) — x(TE°M @ T M) in the usual way. All the extended connections are still
called the Chern-Finsler connection with the conjugation preserving the type. Let 57 be the co-
variant differentiation defined by D. Then, according to the adapted local frame {0, ey O, 85}
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of TC(]T/f) and the local dual frame {dz®, jv®, dz*, 6v°} for TC* M, we have
Vaadzﬁ = —Fff;ad;ﬂ, Vaadfﬁ =0, Vaa&)ﬁ = —Fﬁj;a&ﬂ, Vaaéiﬁ =0,

Vo de? = —Th 27, v, 28 =0, 4 007 = —T0607, 4 69° =0. 24)
Locally, the (2,0)-torsion 6 of the connection is given by
0=0°®J,, (2.5)
where 67 = [, — I'0. |dz# Adz” + 9,607 A dz”. The (1,1)-torsion 7 for the connection is
given by
T=7%Q da, (2.6)

where 7% = —d5(T')dz" A dz” — F%_udz“ A 6T°. The curvature operator Q = Q5 ® [d2° @ 64 +
P ® 5‘a], where QF = gwg. Then for any X,Y € X(Tl’oﬂ), we have

VxVy —VyVx = V[Xy], (2.7)
VxVy - VyVy = V[X,V] + Q(X,?)

3 Decomposition of the Exterior Derivative on M

A= @ AP@Ts

p,q,7,8

Now we consider the space

of C"*° complex-valued forms with compact support on M , which is defined by [17, 23, 24],
where AP%75 is the non-zero set of (p,q;r, s)-forms only when they act on p vector fields of
h-type, on g-vector fields of h-type, on r vector fields of v-type, and on s vector fields of v-type.
Let {dz?, 6v®,dz®, 6v*} be the adapted local frame of TC*M. For any ¢ € AP%™% it can be
represented by

1

v pq'r's|¢ABCDdz v A dzBa A v A 6TP

where Ay = (p1,--+,p4p), By = (v1,-++,1q), Cr = (a1, -+, ), Ds = (B1,---,5s), and
dzA = dzit A - Adete, dZBe = A3 A - A dEVe, SvCr = vt A --- A Sur, 6T =
STOUN - A STPs .

For the adapted local frame {§v®, §7*}, we have

d(ov™) = TI'g,,00° A dzt,
A(6v™) = b5(T'5)dz" Azt + 05(T'5)0v" A dz”, 51)
d(67%) = 05(T%)d=" A dz* + 95(T5)60° A dz, '
d(ov%) = TG, 60" A dz*
where in the first equation we have used the identities (see [15])
55(11,% - 5H(Fg) = 07 8[3(1—‘?:) = F%;u'
Consequently for ¢ € APT™% we get
dyp € APTLams o gp.er+ls gy pptlatlins—1 o gp.gthirtls—1
’ (3.2)

Dp € APITLTS gy AP@iTstl gy pptlatlir=l,s g gp+lair—1,s+1
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In the following, we shall rewrite the exterior derivative operators on M by using the Chern
Finsler connection 57. For simplicity, we need to introduce some notations: denote i(X) the
usual interior product induced by X € X(T®(T"OM)); and denote e(y) the exterior product
induced by ¢, for ¢ € APE™5 e(p)h = o A4, Then for any X,Y € X(TC(THOM)), and
p € APE™5 we have

i(X)i(Y)p = —i(Y)i(X)p, i(X)p=i(X), (33)
and for any @, v, ¢ € APT"5 we have
e(ple(¥)d = (1P e (h)e(p)p,

HX)e()6 = [I(X)Y] A &+ (—LPH+5e()i(X)s. B
Under the adapted local frame,
i(60)d2? =68, i(6,)dZ° =0, i(64)00° =0, i(64)07° =0,
i(0a)dzP = 0,  i(Da)dZP =0, §(Du)0P =58, i(da)0T" =0 (3:5)
and
i(85)e(677) = —e(607)i(dy), i(0)e(v™) = 6% — e(5v™)i(Dy), (36)

i(6,)e(dz") = 6, — e(d2")i(dy).
It is easy to check the following lemma.

Lemma 3.1 Let ¢ € AP%"5. Then we have

V6.1(05)p = i(0p) Vs, 9 +Th.41(0) ¢,

V. 1(05)p = i(d5) Vs ¢,

Vs.1(05) = i(93) Vs, 0 +T7.,i(0y)e,

Vs.i(05)¢p = i(35) Vs. ¢,

Vo, i(0p)p = i(0p) Vs, ¢ + T 3,i(0)e,

Vs, i(05)¢ = i(05) Vs, #,

Va,1(08)p = i(05) Vs, ¢+ T hai(d)¢,

V. 1(0s)p =1i(08) Vs, #s
Vs.e(dz?)p = —e(d2”) Vs, ¢ — T ,e(dz)p
Vsae(dz’)p = —e(dz”) s, ¢
Vs e(607)p = —e(607) 5, 0 — T2 e(607)p,
V5.€(007)p = —e(65°) Vs, @,
Vo, e(007)p = —e(6v”) vy o —T0,e(607)p,
Vo, e(007)p = —e(607) v, @,
V. e(d2")p = —e(dz") 75, ¢ = Thae(d2)g,
Ve e(d2")p = —e(d2’) vy

Combined with (2.4), the exterior derivative operator d = 9+ 0 can be represented by using
the Chern Finsler connection

9 = e(d=) Vs, +T75,,e(d=)e(d=P)i(8,) + e(0v”) V5, +T75e(00")e(d=")i(5,)



Laplacian on Complex Finsler Manifolds 511

+05(T5)e(dz")e(dz")i(0a) + O5(T)e(dv”e(dz")i(Ox), (3.7)
0 = e(dz) Vs. —l—FT;ae(dE )e(dz?)i(8) + e(6T%) V. —l—@e(éi‘l)e(dfﬁ)i(éq)
+ 5E(Fﬁ)e(d26)e(dz”)i(8 )+ 85( ne (65%)e(d2")i(Da). (3.8)

In accordance with the classification, denote the operators (see [17])

Dy = e(d2®) Vs, +T)e (dz®)e(d2?)i(8,) : APETS — APFTLGTS (3.9)
Dy = e(dz®) Vo + T}, e(dz%)e(dz B)i(05) : APETS s APaTLTS (3.10)
Dy = e(0v™) V4. —I—Fgﬁe(év(’)e(dzﬁ)z(é ) APETS o APGT LS (3.11)
Dy = e(60%) v + T2 5e(00%)e(dz 77)i(05) : APETS s APTTSTL (3.12)
D5 = 65(_ﬁ)e(dzﬁ)e(dz“)i(5a) P AP y APTLaTLTs=L (3.13)
D3 = B(I‘,‘j)e(dfﬁ)e(dz“)i(f}‘a) APETs oy APFLatLr—ls (3.14)
Dy = 35(_,‘1)6(51)6)@@2“)2‘(35) APETS _, Apatlirtls—1 (3.15)
Dy = 05(T'%)e(60%)e(dz")i(Dn) : AP — APFLOT=LotL (3.16)

Then the exterior derivative operator d = 0 + 0 can be rewritten as

d=Dy+Dy+Ds+Dy+ Dy + Dy+ D3+ Dy. (3.17)

4 The Hodge-Laplace Operator and Weitzenbo6ck Formulas on M

Let (M, F') be an m-dimensional strongly pseudoconvex complex Finsler manifold, where F’
is the strongly pseudoconvex complex Finsler metric. Then, F' induces a Hermitian metric

G =G 5d2" ® A7’ + G 500" @ 60°, (4.1)

on TCM, denoted by (, ). Associated to this metric, we have the Kaehler form w = iGaEdza A
dz° +iG 56v™> A 67 and W™ = (=1)™(2m)!G*dz" A~ Adz™ AdZ A ADZT A GO A A
Jv™ A 6T A -+ A 6T™, where G = det(GaB). It is easy to check that dV3; = (2 ';, defines a

global invariant volume form of M. Associated with the decomposition TWOM =H® V, and
according to the adapted local frame {0u,da, 0a, dx} of TC(M) and {dz®,5v®, dz*, 50} for
T M , we have

<6(y56[3>: Ggﬁa <60478[3>: 07 <8Ouaﬂ>: GQE’ (42)
(dz®,d2P) =GB, (dz,6vP) =0, (§v®,6vP) = GPe.
Now, if we denote GA»Br = G181 ... GA2P2 ... G&rBy on M, then for any ¢, € APE™S at
each point v € T1OM, the inner product can be defined by
(o) =

2 A,B,C,D,
pq'?“'s'SDAPBqC"'DSw pa ) (4.3)

where wA,,BqC,,.DS _ wE FoHL. GA EpGF BqGC -H . GL D
r-aq

Definition 4.1  Let (M, F') be an m-dimensional strongly pseudoconvex compact complex
Finsler manifold. The global inner product of two forms v, € APT™ 45 defined by

2m

ot (4.4)
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It is easy to check that (, ) satisfies the following properties:
(1) (p,) 20 and (¢, ) =0 if and only if ¢ = 0;
(2) (ap+0b¢,¢) = alp,¥) +b(d,v) for any ¢, 0,7 € AP and a,b € C;
3) (p,9) = (¥, 9).

We define ||| = /(¢, ¢) as usual.
As in Hermitian geometry (see [6]), we define the Hodge star operator

% ApylZ%TvS R Aqu,mfp;mfs,mfr’

such that for any ¢ € AP435

_ (_1\m(p+r+1)+(r+s)(p+q) — —
*p = (1) Gyt BB, GC.Cr D D,

. ,ll)EpAqB'V'CS dZAm—q A dEBm—p A 6,007”—5 A 5ED77L71'. (45)

Then we have the result as follows.

Theorem 4.1 Let (M, F) be an m-dimensional strongly pseudoconver compact complex
Finsler manifold. Then the complex linear map x : APT™S — AMTOMTPM=SMTT gqtisfies

m

(1) (0,8 oy = 9 A 505
(ii) % ==#¢ (i.e., * is a real operator);
(i) k1) = (—1)Pratr+sy,

Now we define the adjoint operators of the operators (3.9)—(3.16) as follows.
Definition 4.2 D3 = — % Dy, Dy, = — % Dy*, D = — % D3*, Dj = —x Dyx. By
conjugation, we have
E;:_*DH*7 ﬁ;:—*DV*, Dy = —%Dgx, Dy =—%Dyx.
Then we can define the adjoint of d as d* = — x d*. It follows from (3.17) that
d* = D}, + D5, + D} + Dj + Dy, + Dy, + D3 + D,. (4.6)
It is easy to see that
D, : APETS Anq—l;r,s,
ﬁ;‘ P APTTS Ly AP—L TS
DTJ C APTTS Ap,q;nsfl,
Dy« APars —, gpar—is,
D} : APains _, gp=la—lir+ls
D, : Apaits _, gp—la—Lirstl
D s APGTS _, gplair+ls—1

D, : APGTS y APa—Lir—1,s+1

Taking ¢ € AP~1%75 ) € APE™S then by type reason we have

(Drp. ) = (dep, ) = /N dp AT

M

= (cpypratrst /de*% / d(o A D)

M
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— (_1)p+q+r+s+1/ 90/\ d *E

=- /~ O A *(xds)tp = — /~ © A x(x D)
M M
= (¢, Dy)).
Similarly,
(Dvi, ) = (¢, Dytb), (D, w) = (¢, D51b),  (Dag,¥)) = (0, D).

By conjugation, we have

(E_’vaw) = (SavD;iﬂ/))v (ﬁ_v%i/)) = (%Dikﬂ/))a
(Dsg,¥) = (¢, D3v),  (Dap,v) = (¢, Div).

According to (3.9)—(3.16), we get the explicit expressions of the adjoint operators by solving
the above formulas.

Theorem 4.2 Let (M, F) be an m-dimensional strongly pseudoconvex compact complex
Finsler manifold. Then we have

Di, = —GP* 75, i(6 3) + +GPrY, — 217, Ji(05)
+17.,G7 G Grze(dz°)i(67)i(57), (4.7)

Dy = —G" s i(0a) + G U] — 217 li(da)
+T5,.GP7 G Gre(d29)i(8,)i(6,), (4.8)

D} = =G 7, i(d5) = G7°T3,i(05)
+T7,G7GTPGze(dZ°)i(57)i(05), (4.9)
Dy, = -G 74 5, 1(0a) - GPoT7 Ji(da)
+ 17, GG Gage(d2)i(0,)i(s ), (4.10)
D3 = 5ﬁ(ra)m5awam@(5v )i(8,)i(5+), (4.11)
Dy = —85(%) GV G7 G e (677)i(05)i(57), (4.12)
Dj = 03(T) GG G rze(507)i(6, )i(D5) (4.13)
D, = —&(FQ)GMG&Gwe(av“)z(ae)z’ 5)- (4.14)

Proof We only need to prove (4.7), and the others are similar to obtain. For any ¢, €
AP-@75 Caccording to (3.10), we have

(6. D) = (Dreips ) = (e(d7%) T, 0+ Tl dz)e(dz?)i(55)ep, )
- /N (e(dZ) Vs o)AV + /N (T e(d22)e(dz7)i(85) 0, ¥V,
M M
while
/N (e(dz) V. i, )V
M

- /N GV 5api(8)0)V
M
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/ G6x((,i(65)1))G*(=1)™dz A dZ A dv A 65U — /M G p,s.1(05)P)dV
/ [8alG7 (0, i(55))0) - 52(G7P) 0, i(35)0)G% — G (0, i(35)0)5(G))
(=1)™dz AdZ A Sv A 0T — /]\7 G p,s,1(05))dV
= [ {40, G T0i65)0) — (0267 T,0i(3)0) — (. G s, (5500 }av
= [ eGP, ~ 20lJi(0) = G s, i(65) o)V
and
| T eta@z)etazile)z. vjav
= | TR G e(@2)i5) 5V
= | TG G ) iGr)i(E)av
_ /M 7. G G% Gr (i, e(dZ°)i(55)i (57))dV
= [ 0T G i) )V,
Then
(0. D3eb) = [ oA =GP s, i(53) + G [0, = 23, 165)
+ T, GTG7 G ze(dz°)i(07)i(67) })dV,
that is
Dj; = —GP 75, i(05) + GPTY,, — 212, Ji(d5) + T, GTG7P G yze(dz°)i(07)i (7).

Furthermore, we have

Theorem 4.3 Let (M, F) be an m-dimensional strongly pseudoconver compact complex
Finsler manifold. Then for any ¢ € AP435 we have

1 _
——— — \GPYi(2)(de A A dEBe A 50O A §TD
pq|r|s|5<¥(9"ABCD)G i(05)(der A dz7T A GuET A GTT)
— GPOTE L e(d27)i(35)i(8,)p — GPOTH, ,e(607)i(35)i(D)

+GPry,, — 212, Ji(05)p + T, GT*G7PGze(d7°)i(67)i(07)

D3 o =—

1 N B )
p! q'r's'%(%‘ B,C,D. )GPi(54)(dz A dZPe A 5vC A GTD)

- Gﬁ“FZ;ge(dE”)i(éa)i(én)so - Gﬁafﬁ;ge(éﬁ”)i(éa)i(é‘n)@
+ G, — 200 Jli(0a) e + T, G GO Gye(dz®)i(6,)i(07 )¢,
1

x = - ; - 5a AP _Bq Cr =D
Dyy = p!q!r!s!aa(goAB p.)Gi(05)(dz A dzPe A sv9r A ST

Dy =
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— GPT e(d27)i(D5)i(0,) ¢ — GPTY ,e(577)i(D5)i(D, )
— GP°T7,i(05)p + T ,G7 G Gyze(dz°)i(67)i (D7),

1 o _ -
— m@g(wAPECTE)Gﬁ(’z(ﬁa)(dzAP A dzPa A s A 6TPe)

— GPTY e(dZ7)il0a)il6)p — G TY e(67°)i(Da)i(Dr) o
— G712 4i(0a)p + T ;G GPT G me(dz°)i(0 )i(0s ) p-

Definition 4.3 We define the following differential operators:

Ly = EHD?;_{ + D;‘_{ﬁ'){, [y = 51}D; + Dgﬁv,

O3 = 33D§ + Dgﬁg, O, = E4DZ —+ DZE4
Associated to the Hermitian metric , ) of holomorphic tangent bundle M induced by the strongly
pseudoconvex Finsler metric on M, Oy and Oly are called the horizontal and vertical complex

Laplacians respectively, while (3 and Oy are called the mized complex Laplacians, and they are
all type preserving operators from AP to APTTS,

Theorem 4.4 Let M be a strongly pseudoconvex compact complex Finsler manifold. Then
for any f € C(M), by using the Chern Finsler connection, we have

Af=d*df = (On +Ox + 0y +0Oy)f.
Proof Since for any f € C*® (M), we have Af = d*df. Thus by (4.7)-(4.14), we get
Djdf = {~G™i(55) Vs, + G [T, — 217, Ji(05) + T, GTG7P G e (d7°)i(07)i(07) Hd )
= —GP5a85f + GPY,, — 21,105 = D3 D f = Onf,
Dy df = =G50, f + GP[T] — 217 160 f = Dy D f = Onf,
Dydf = {=G™i(85) V5, ~GPTLai(B5)df) = ~G7* 03] ~ GPT7, 05
= DyDyf =0y,
Dydf = G750 f — GP°T7 ;00 f = Dy, Dy f = Oy,
Didf = DiDsf =0, Dadf = DyDsf =0,
Djdf = D;Dsf =0, D,df =D,Dsf =0.
Then, by (4.6) we have

Af=d%df = (DH + EH + Oy + Ev)f

Remark 4.1 [17, Theorem 5.7] also gives the same formula for a strongly pseudoconvex
compact complex Finsler manifold with the associated complex Rund connection D.
Obviously, the type preserving component of Hodge-Laplace operator A = d*d + dd* is

DH+EH+Dv+ﬁv+D3+ﬁg+D4+E4. (4.15)

Then, for any ¢, € AP%"™° we have

(vaw) = (DHSOa 7/1) + (EHSOa 7/1) + (DVSOa 7/1) + (Evsﬁﬂ/))
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Thus, a form ¢ € AP%"% is A-harmonic if and only if

DHQD = 0, EHQO = 0, Dv(p = 0, Evgﬁ = 0,

= = 4.1
Dgg& = 07 Dg(p = 0, D4§0 = 0, D4QO =0. ( 7)

Theorem 4.5 Let M be a strongly pseudoconvex compact complex Finsler manifold. Then
by using the Chern Finsler connection, we obtain

n= =GP s, sy + GPe(dZ)i(05)(Vs, Vor — Veor Vo)

+ G (DY, = 207,,) Vs, +GP(TF,, = T 5)e(dz")i(85) Vs,

+ ([ = T05) GO G7P Goze(dz°)i(05) Vs,

+ G, — 207, ) (T9 = T%. e(dz")i(d5)

+ 17, (T2, —T9,)GT*G7PGze(dz7)i(05) + G705(T7,, — 27, )e(dz")i(d5)

+ (T, =TT, —T%,) GG G ze(dz® )e(dz")i(07)i(67)

+ 61}, ) GTOG7PGze(dz")e(dZ°)i(07)i(07)

+ 17, al“g IS, GTG7PGze(dz")e(dz")i(d7)i(07), (4.18)
Oy = —G™ 75, Vg, — GPT0 vy +G*e(d0)i(05)(V, Vo, — Vs, V5,)

— GP9, (T, )e(dz")i(0z) — GP0(1'7,)e(07°)i(35) — GPoT%, e(dz")i(dz)v 5,

— G700 (T3, )e(67")e(dZ" )i(D5)i(0z) + 0a(T],5)G7O G0 Glyze (07" )e(dZ°)i(6)i(Jx)

— Gﬂargargue(dz”)i(é—) + T ,G7 G Gze(dz)i(07)V 5.

+ T T2, GG Grze(dz°)i(65) — T 519, G7 G G ze(dz°)e(dz")i(07)i(6z)

— T 5T G7GTP Glyze(dZ°)e(07M)i (05 )i(02)

+ T T, GO G Glze (50" )e(dz" )i(07)i( D7), (4.19)
Os = 0,(I'2)d5 r“)Gﬂffo“ 5€(607)i (g

—0,(I2)d5 Je(dz

—6,(I'Y) E(F(’)GB“GEVGme(dz“)e(évT)z( )z(é)a)

+6,(T2)05(T5) GT7 G Grge(dz”)e(dv7 )i(05)i(a), (4.20)
Oy = 0s(I'3)0x(T'5) G G G rze(6v7)i(0s)

+ 95(TE)05(T%) GTP G G rme(d2*)e (07 )i(8,, )i (D: )

+0(I5)05(I5) GV G Grae (607 )e(607)i(05)i(0:)

— 5‘5(I‘g) (I‘L)GA"BG’“’G fe(dz“’)e(év")z(él,)z(c%). (4.21)

Proof We only calculate [Jy,, and the others are similar to obtain.
From (3.12) and (4.9), by a direct computation, we have

DDy = =G vy, s, + G7e(50")i(05) v, Vs, — G70a(TF, e(dz")i(0z)
— QPTG e(d2")i(05) V5, —GP0a (T, )e(60")e(dz" )i(5)i(02)
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— GPTg,e(00")e(dz")i(B3)i(02) V5, —G** T Vs +G7T74e(d0")i(95)V 5,
— GPoT7, T2 e(dz")i(d5) — GPOT, T, e(69")e(dz")i(95)i(0)
+ T, G7 G Glze(d7°)i(67) V5, +T7 4G GTPGze(dZ°)e(00")i(07)i(05) V5.
+ 17,9, G7 G0 Gze(dz°)i(05) — T 5T, G7*GTP G ze(dz° )e(dz" )i(07)i(0z)
— I ;T G7G™PGlze(dZ°)e(07")i(05)i(65)
— 10515, G7O GO Glze(dz° )e(50" ) e(dz" )i( 05 )i(67)i(6),
DyDyy, = —G7e(50")i(05) . Vs, — G70=(17,)e(50°)i(D5)
— GPT2,e(00")i(B5) Vs, +0u(105)G7" G Gryze(55)e(dz°)i(57)i(J7)
+T75G7 G Goze (50" )e(dZ)i(67)i(O5) V. ~GPT%,e(07")e(dz")i(02)i(35) v,
— GPoT, T e(57")e(d7” )i(6z)i(D5) + I, Ts, GTG™P Glyze (87*)e(dz")i(0)i(r)
— T 5T, G7O G Glyze (07" )e(dZ")e(dZ° )i(05)i(67)i (O).

7

and [Jy, can be obtained by plusing the above two formulas.
Remark 4.2 If M is a compact Kéhler Finsler manifold, then I', , = I'}. . Therefore (see
[17))

Oy = —G7 s, Vs, + GOV, o + Q0as 0))e(dz)i(05) — GPOTY,, Vs,
— GP§L(TY, )e(dz")i(85) + 87(I, ) GTOG7P Gze(dzH)e(dz° )i(85)i(07)i(07)i(57)
+ 1%, T GTGPG ze(dz")e(dz" )i(05)i(d=).

Bia™ vip

Since the Kéhler Finsler condition shows no influence on 0Oy, s,y and their conjugations,
the expressions of [y, 3, 4 are valid for a Kéhler Finsler manifold.

Remark 4.3 By conjugations, we can also obtain the complex Laplacians Oy, Oy, O
and Oj.

5 A Vanishing Theorem

Let dV = (=1)™G2dz A dz A 6v A 8 be the volume form associated to the Hermitian metric
G of M, where G = det(G5). Denote Lx by the Lie derivative with respect to X € X(T'M).

Then the divergence of X is defined by the equation
LxdV = (div X)dV. (5.1)
Lemma 5.1 Let (M, F) be a strongly pseudoconver compact complex Finsler manifold
with dime M = m. Then for X = X*5, + X 05+ XPdj —l—}ﬁég € X(TM), we have
div(X) = 62(X*) + 0x(X") + 00 (X*) + 0x(X ) + X + X'T0,
+2X°T7, +2X T, (5.2)
Proof By (2.3), we have

[X,00] = —0a(X")0, — X 6:(0)0y + X 64(T,)0 — 6a(X )0y — X 15,0,
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. . —3 . —06 .
—0a(X")05 — X T5, 05 — 0a(X )03,
(X, 0] = X 0a(19)0y — 65(X")8, — X¥6,(T)0r — 65(X )05 — X°T5 105
o —bB—_y - —B6_ .
- 6E(XB)85 -X Fﬁ;aaﬁ - 6E(X )8[?7
(X, 0a] = X170 — 0a(X")0, + X 12505 — 0a(X )05 — 0a(X?)05

~ 80.X)85,
[X,0a] = X'T5,,05 — 0a(X*)5, + X T 05 — 0a(X )05 — 0a(X7)0
~ (X )5,
and then

le(X)(_l)mg2 = le(X)dV((Sl; o 75m;5T7" : 56W7 8.17" : 78.M78.T7" : 7871_1)

:‘CXdV(éla 75ma5T7"' 76Wa8.1)"' 78.M7a.fa"' 7am)
= X(dV (61, , O, b7, - R ,g)mvgb... ﬁm))
—ZdV(51,~-~ a1, [ X, 00, Oasts s Omyv s o)
a=1
_Zdv(... DOm0t [X, 0], 0oy Oy )
a=1
_Zdv(... v 00001, [ X, 0aly Oagts 3 Omy o)
a=1
_Zdv(... e ,3T,... 7%7[)(,3&_]7%7... , O
a=1

= (—1)"G*{0(X*) + 0x(X") + 00 (X*) + (X )
—r— . —.Oc_,y
+XMTq,, + X Ty, +2X°T7, +2X T},
that is,
div(X) = 0a(XY) + 02(X") + 0a(X) + 0(X ) + X'TS,, + X' T,

. —.Ot_,y
+2X°T7, +2X T,.

Theorem 5.1 Let (M, F) be a strongly pseudoconver compact complex Finsler manifold
with dime M = m. Then for any function f € C*° (M), we have

/N{Af + BOo5f + B*6of}dV =0, (5.3)
M
o _ BaTY
where B = GP Fv;ﬁ'
Proof Let X = GP%05f8, + GO0, fo5 + GP205f0a + G784, f05. By (5.2), we have

div(X) = 04 (G785 f) + 65(GP60 f) + 0a (G205 ) + 85(GP*D4 f)
+ G5 T + GO0 fT 5 + 2G93 T2, + 2670, fT 4
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= G000 + 0500) f + GP¥(0ady + 0500) f + GP(T, = T0.,)05f
+ GOy = T )0 + G705 + GPT
and by Theorem 4.4, we have
(On +On)f = —=G%*(0ad5 + 6500) f + G*(TY., — 2T7.,)05f + G?*(T ., — 2T 5)daf,
(Oy +0v)f = G?*(0a05 + 0300) f + G"°T],05f + G*°T ,50a f,
therefore, B B
Af +GOT, 05f + GO°T) oo f = —div(X),
that is,
/W{A f+GPOTY, 05 + GP°T 4o f}dV = 0.
M
Theorem 5.2 Let (M, F) be a strongly pseudoconvex compact complex Finsler manifold
with dime M = m. For any ¢ € AP0 if
Re({p, Myp)) > 0, (5.4)
where M = B'BV%, then there exists no non-zero o € APO™0 sych that dp = 0.

Proof For all p € AP%70 such that dp = 0, we have s = 0, Vo =0.
If there exists a non-zero ¢ € AP%"0 such that ¢ = 0, then

Oy = —GP s, Vs — G°TY,, Vez ¢ =0,

Ovp = -G v, Vo~ Grs, Ve, ¢ =0.
Let f = |¢|? = (p,p). We have

G (ady + 50a)l¢l* = 21 Dpgl” + 2 Do,
G700 = |Dyl® + [Dyel?,
where |Dyp|? = GE_‘WV&@% Vss9): [Drepl? = GP(Vsr0,Va,0) = 0, |Dyol? = GP(7;5_ 1
véﬁ@, |Dyp|? = Gﬁo‘<véﬁ<p, véﬁgo) =0, and therefore, by (5.3)
/M{A f+GPOTY b5 f + GPT oo f1dV
~ | APl + 2Dl + 2Dyl + 2Dl + GT, dylel? + G T bl Phav

— [ 20Dspl + Dyl + Re(67T7,, dslel?)}av
M

= | 2D + 1Dyl + Re(GT3, (0,75, )1V
=0.
Thus, if 3
Re(GPT, (¢, v4,¢)) > 0,
then there is no non-zero ¢ € AP*™9 such that dyp = 0.
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