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Abstract This paper is devoted to proving the sharpness on the lower bound of the
lifespan of classical solutions to general nonlinear wave equations with small initial data
in the case n = 2 and cubic nonlinearity (see the results of T. T. Li and Y. M. Chen in
1992). For this purpose, the authors consider the following Cauchy problem:{

�u = (ut)
3, n = 2,

t = 0 : u = 0, ut = εg(x), x ∈ R
2,

where � = ∂2
t −

n∑
i=1

∂2
xi

is the wave operator, g(x) �≡ 0 is a smooth non-negative function

on R
2 with compact support, and ε > 0 is a small parameter. It is shown that the

solution blows up in a finite time, and the lifespan T (ε) of solutions has an upper bound
T (ε) ≤ exp(Aε−2) with a positive constant A independent of ε, which belongs to the same
kind of the lower bound of the lifespan.
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1 Introduction and Main Results

Consider the Cauchy problem for the following n-dimensional nonlinear wave equation{
utt − Δu = F (Du, DxDu),
t = 0 : u = εf(x), ut = εg(x), (1.1)

where x = (x1, · · · , xn), Δ = ∂2

∂x2
1

+ · · · + ∂2

∂x2
n
,

Du = (ut, ux1, · · · , uxn) = (ux0 , ux1, · · · , uxn),

DxDu = (uxixj , i, j = 0, 1, · · · , n, i + j ≥ 1),

f(x), g(x) ∈ C∞
0 (Rn), and ε > 0 is a small parameter. Here, for simplicity of notations, we

write x0 = t.
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Let
λ̂ = ((λi), i = 0, 1, · · · , n; (λij), i, j = 0, 1, · · · , n, i + j ≥ 1).

Suppose that in a neighbourhood of λ̂ = 0, for |λ̂| ≤ 1, the nonlinear term F = F (λ̂) in equation
(1.1) is a sufficiently smooth function with

F (λ̂) = O(|λ̂|1+α),

where α is an integer and α ≥ 1.

The lifespan T (ε) of classical solutions to problem (1.1) is defined to be the supremum of
all τ > 0, such that there exists a classical solution to (1.1) for x ∈ R

2 on 0 ≤ t ≤ τ . Li and
Chen [5] used a unified and simple method suggested by Li and Yu [6, 7] to get a complete
result concerning the lower bound of the lifespan of classical solutions to (1.1) for all integers
α, n with α ≥ 1 and n ≥ 1 as follows:

T (ε) ≥
⎧⎨⎩

+∞, if K0 > 1,
exp{aε−α}, if K0 = 1,

bε−
α

1−K0 , if 0 ≤ K0 < 1,

(1.2)

where K0 � n−1
2 α, and a, b are positive constants depending only on α and n.

As stated in [5], all lower bounds in (1.2), except the case n = 2 and α = 2, are known to
be sharp due to Lax [4] (for n = 1 and α = 1), John [1] and Zhou [13] (for n = 2, 3 and α = 1),
Kong [3] (for n = 1 and α ≥ 1) and Zhou [13] (for n ≥ 1 and odd α ≥ 1). However, up to now
there is no sharpness result on the lower bound of the lifespan

T (ε) ≥ exp{aε−2} (1.3)

for solutions to problem (1.1) in the case n = 2 and α = 2. The aim of this paper is to show
the sharpness of (1.3) for small ε > 0 in the case n = 2 and α = 2.

For this purpose, we consider the following Cauchy problem for the nonlinear wave equation
in two space dimensions: {

�u = (ut)3, n = 2,
t = 0 : u = 0, ut = εg(x), x ∈ R

2,
(1.4)

where � = ∂2
t −

n∑
i=1

∂2
xi

is the wave operator, g(x) is a smooth non-negative and radially

symmetric function on R
2 with compact support and g(x) �≡ 0. We will prove that the lifespan

T (ε) of classical solutions to (1.4) possesses an upper bound estimate belonging to the same
kind of the lower bound of the lifespan.

For the Cauchy problem{
�u = |ut|p,
t = 0 : u = εf(x), ut = εg(x), x ∈ R

n,
(1.5)

Zhou [13] and Takamura [12] obtained the blow-up result, and gave the estimate on the lifespan.
In particular, when p = 3 and n = 2, (1.5) becomes{

�u = |ut|3,
t = 0 : u = εf(x), ut = εg(x), x ∈ R

2.
(1.6)
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However, from that result, we cannot get the desired sharpness of the lifespan.
The main result of this paper is as follows.

Theorem 1.1 Suppose that g(x) is a smooth non-negative and radially symmetric function
on R

2 with compact support

supp g ⊆ {x : |x| ≤ 1} (1.7)

and g(x) �≡ 0. If u = u(t, x) is a non-trivial C2-solution to the Cauchy problem (1.4), then
u = u(t, x) blows up in a finite time, and there exists a positive constant A independent of ε,
such that the lifespan T (ε) satisfies

T (ε) ≤ exp(Aε−2). (1.8)

The related studies on the blow-up of solutions to nonlinear wave equations can be found
in [1–13].

We will give the proof of Theorem 1.1 in Section 2.

2 Proof of Theorem 1.1

Consider the following Cauchy problem:{
�u = (ut)3, n = 2,
t = 0 : u = 0, ut = εg(x), x ∈ R

2.
(2.1)

We first prove that in the domain r > t, for the solution u = u(t, x) to Cauchy problem
(2.1), we have u ≥ 0 and ut ≥ 0.

By the local existence of classical solutions, the solution to Cauchy problem (2.1) can be
approximated by Picard iteration. Let

u(0) = 0

and {
�u(m) = (u(m−1)

t )3, n = 2,

t = 0 : u(m) = 0, u
(m)
t = εg(x), x ∈ R

2.
(2.2)

Then {u(m)(t, x)} is a series of approximate solutions to (2.1).
Since u(0) = 0, we have u

(0)
t = 0. As an induction hypothesis, we may suppose that

u(m−1) ≥ 0, u
(m−1)
t ≥ 0 in the domain r > t.

By the Duhamel principle, the solution to the Cauchy problem (2.2) of the above two-space-
dimensional inhomogeneous wave equation can be expressed as

u(m)(t, x) =
1
2π

[ ∫
{y:|y−x|≤t}

εg(y)√
t2 − |y − x|2 dy

+
∫ t

0

∫
{y:|y−x|≤t−τ}

(u(m−1)
t (τ, y))3√

(t − τ)2 − |y − x|2 dydτ
]
. (2.3)

Since
u

(m−1)
t ≥ 0, r > t,
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and g(x) is non-negative, it is easy to see that

u(m) ≥ 0, r > t. (2.4)

Let
r = |x|, x ∈ R

2.

The radially symmetric form of problem (1.4) can be written as{
utt − urr − ur

r
= (ut)3,

t = 0 : u = 0, ut = εg(r).

In order to estimate u
(m)
t , we transform (2.2) into the following form:⎧⎨⎩u

(m)
tt − u(m)

rr − u
(m)
r

r
= (u(m−1)

t )3,

t = 0 : u = 0, ut = εg(r),
(2.5)

where r = |x| and x ∈ R
2. It follows from (2.5) that{
(∂2

t − ∂2
r )(r

1
2 u(m)) = 1

4r−
3
2 u(m) + r

1
2 (u(m−1)

t )3,
t = 0 : r

1
2 u(m) = 0, r

1
2 u

(m)
t = εr

1
2 g(r).

(2.6)

By d’Alembert’s formula, in the domain r > t, we have

r
1
2 u(m)(t, r) =

1
2

∫ r+t

r−t

ελ
1
2 g(λ)dλ +

1
8

∫ t

0

∫ r+t−τ

r−(t−τ)

u(m)(τ, λ)
λ

3
2

dλdτ

+
1
2

∫ t

0

∫ r+t−τ

r−(t−τ)

λ
1
2 (u(m−1)

t )3(τ, λ)dλdτ. (2.7)

Let G(r) = 1
2r

1
2 g(r). Then, in the domain r > t, we get

r
1
2 u

(m)
t (t, r) = εG(t + r) + εG(r − t) +

1
8

∫ t

0

[u(m)(τ, λ)
λ

3
2

∣∣∣
λ=r+t−τ

+
u(m)(τ, λ)

λ
3
2

∣∣∣
λ=r−(t−τ)

]
dτ

+
1
2

∫ t

0

[(λ
1
2 (u(m−1)

t (τ, λ))3)|λ=r+t−τ + (λ
1
2 (u(m−1)

t (τ, λ))3)|λ=r−(t−τ)]dτ. (2.8)

Noting

u(m) ≥ 0, u
(m−1)
t ≥ 0, g(r) = g(|x|) ≥ 0, in the domain r > t,

we see that
r

1
2 u

(m)
t ≥ 0, in the domain r > t.

Then

u
(m)
t ≥ 0, in the domain r > t. (2.9)

By means of the estimates on higher-order derivatives (see [11, Chapter 1, p. 23]), it follows
from the Sobolev imbedding theorem that u(m) and u

(m)
t pointwisely converge to u and ut,

respectively. Taking the limit of (2.4) and (2.9) as m → ∞, we get

u = lim
m→∞u(m) ≥ 0, when r > t
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and
ut = lim

m→∞u
(m)
t ≥ 0, when r > t.

Similarly, taking the limit of (2.8) as m → ∞, in the domain r > t, we get

r
1
2 ut(t, r) = εG(t + r) + εG(r − t) +

1
8

∫ t

0

[(u(τ, λ)
λ

3
2

)∣∣∣
λ=r+t−τ

+
(u(τ, λ)

λ
3
2

)∣∣∣
λ=r−(t−τ)

]
dτ

+
1
2

∫ t

0

[(λ
1
2 (ut(τ, λ))3)|λ=r+t−τ + (λ

1
2 (ut(τ, λ))3)|λ=r−(t−τ)]dτ. (2.10)

Thus, in the domain r > t, we have

r
1
2 ut(t, r) ≥ εG(r − t) +

1
2

∫ t

0

(λ
1
2 (ut(τ, λ))3)|λ=r−(t−τ)dτ. (2.11)

Noting (1.7) and that g(r) is a nontrivial smooth function, we have that there exists a
σ0 ∈ (0, 1), such that G(σ0) > 0. Along the line r = t + σ0, we let

v(t) = (t + σ0)
1
2 ut(t, t + σ0). (2.12)

Obviously, v(t) ≥ 0 for t ≥ 0.

By (2.11), we have

v(t) ≥ εG(σ0) +
1
2

∫ t

0

(τ + σ0)−1 · v3(τ)dτ, t ≥ 0. (2.13)

Now, let w(t) satisfy the following integral equation:

w(t) = εG(σ0) +
1
2

∫ t

0

(τ + σ0)−1 · w3(τ)dτ, t ≥ 0. (2.14)

It follows that
v(t) ≥ w(t), t ≥ 0.

w = w(t) is a solution to the following Cauchy problem:⎧⎨⎩w′(t) =
w3(t)

2(t + σ0)
, t > 0,

w(0) = G(σ0)ε.
(2.15)

We have

w(t) =
[
(G(σ0)ε)−2 − ln

( t + σ0

σ0

)]− 1
2
. (2.16)

Hence, the lifespan T (ε) of w and then of v satisfies

T (ε) ≤ exp(Aε−2),

where A is a positive constant independent of ε. This completes the proof of Theorem 1.1.
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