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A Note on the Completeness of an
Exponential Type Sequence*
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Abstract For any given coprime integers p and ¢ greater than 1, in 1959, B. J. Birch
proved that all sufficiently large integers can be expressed as a sum of pairwise distinct
terms of the form p®¢®. As Davenport observed, Birch’s proof can be modified to show
that the exponent b can be bounded in terms of p and ¢. In 2000, N. Hegyvari gave an
effective version of this bound. The author improves this bound.
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1 Introduction

A positive integer set A is called complete if all sufficiently large integers can be expressed
as the sum of distinct terms taken from A. Denote by Ny the set of non-negative integers. In
1959, B. J. Birch [1] proved that for given integers p and q greater than 1, the set Y = {p%¢" :
a,b € Ny} is complete if and only if (p,q) = 1, which verifies the conjecture of P. Erdds.

Theorem 1.1 (see [1]) Given any positive coprime integers p,q greater than 1, there exists
a number N (p,q) such that every n > N(p,q) is expressible as a sum of the form n = p® ¢ +
p2q®2 + - -+, where (a;,b;) are distinct pairs of positive integers.

As Davenport observed, Birch’s proof can be modified to show that for every coprime
integers p and ¢ greater than 1, there exists an integer K = K(p,q) such that the sequence
Yi = {p%q": a,b €Ny, 0 <b< K} is complete.

For such K, Erdés mentioned that, “of course the exact value of K (p,q) is not known and
no doubt will be very difficult to determine”. In 2000, Hegyvari [2] obtained an effective upper
bound for K (p, q).

Theorem 1.2 (see [2]) For every coprime integers p and q greater than 1, there exists an
integer K = K(p,q) such that the set

YKz{p“qb: a,be Ny, 0<b< K}

is complete. Furthermore, we have
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K(p,q) < 2p* :
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where ¢ = 1152 log, plog, q.
In this paper, we improve this upper bound. The basic idea is similar to that in [2]. What

is more, we add in proof a nice result of V. H. Vu on subset sums, which greatly reduces the

upper bound obtained by Hegyvari. For more details, see Lemma 2.6 in Section 2.

Theorem 1.3

2q2P 13

K(p,q) <p° ,

where ¢ = 1152 log, plog, q.

2 Lemmas

Before the proof of the lemmas, we introduce the following notation and definitions. Let N
be the set of positive integers, and A = {a1 < az < -+ < a, < ---} be a sequence of positive
integers. Denote P(A) as

P(A):{Zeiai:aizo or 1, Zei<oo}.

We call (z,y) disjoint if there exist X,Y C N, X NY =0, such that z = > a;, y = Y aj.
ieX jey
The sets X, Y are disjoint if for every z € X, y € Y, z and y are disjoint. Denote Z C P(A)

as a d-set if all elements of Z are pairwise disjoint.

Lemma 2.1 Let A = {a1 < a2 < -+ < a, < ---} be a sequence of positive integers.
Assume that there exists an integer ng such that for every n > ng, a, < a1 +as+ -+ ap_1.
Then P(A) has bounded gaps, i.e., if P(A) = {x1 < xo < .-}, then for every k we have

Tht1 — Th < Gy

Proof Assume that Ay = {a1 < a2 < --- < ax} and P(A;) = {z, < g, < ---}. We will
take induction on k to prove that for any [, xy,,, — ok, < an,.

If £ < ng, then for any [, there exists an integer i < ng, such that a1 +as+---+a; < xp, <
ap +ag+---+a;+air1 and ay +ag + - +a; <@g, <ay+az -+ +a; +aip1. Hence
Thypy — Thy < Qi1 < Qg

Now assume that the proposition holds for k(> ng). Namely, for any [, zx, , — 2x, < Gn,-
Assume P(Ag+1) = {y1 < y2 < ---} for convenience. Since k > ng, by the precondition of
Lemma 2.1, we have apy+1 < ay + a2 + - -- + ag. Let n; be the largest number no larger than

ay + az + -+ - + aj with the form ar11 + > €;a;, and nz be the least number larger than
1<i<k
ai + as + - - - + ag with the same form as above.

Then for any m, we have the following three possibilities:

Case 1 Ym < Ymt1 < a1 +ag + --- + ar. Then by the induction hypothesis, we have
Ymt1l — Ym < Qng-

Case 2 y,, = a1+ -+ ak, Ym+1 = na. Then

Yma1l — Ym < Ymt1 — N1 = N2 — 0.

By the choice of n1, ne and the induction hypothesis, we have ymt1 — Ym < Gn,-
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Case 3 n2 < Ym < Ym+1 < a1 + a2 + -+ + agy1. Then we assume that y,,, = ar11 + yl,
and Ym 1 = apy1 + Y, 1. We can find that the elements y;, and y,,,, are adjacent in P(Ay).
By the induction hypothesis, we have ¥mi1 — Ym = Yrns1 — Y < Gng-

Collecting the above discussion, we know that for any m, ym+1 — yYm < @n,. This completes

the proof of Lemma 2.1.

Lemma 2.2 Let p, q be positive integers greater than 1. Let Yapo = {p*¢®™ : k > 0,1 <
m < 2p} and assume P(Yap o) = {x1 <22 < ---}. Then for every n, we have xpi11 — xp < A,
where
A < g2,

Proof Assume that x is the number larger than ¢??+2 with the form pF¢®>™. Then

[% log, ] [2 log, z] 71 1
S S N
plg2s <z s=1 pt<qa205
where p” < = - <plt
Since
x> ¢?Pt2,
by direct calculation, we have
[3 log, =] Tl (3 log, =] 5
1 T — q°°
t 2s __
= > > .
S S S Yl =
ptq2s <z s=1

Hence, by Lemma 2.1, we have A < ¢?’*2. This completes the proof of Lemma, 2.2.

Lemma 2.3 (see [2]) Let c,d > 2 with (c,d) = 1. Let x > d** and
Ya={c"d":a € N,1<b<A=[5logyc]+1}.

Then there exists a number n with 1 < n < x, which has at least two representations n =
Y. oeyy = >, ey, where gy,¢;, € {0,1} and Y eye;, = 0 (i.e., the representations are
YyEYA YEYA YEYA
disjoint).

Lemma 2.4 (see [2]) Let p, q be integers greater than 1, (p,q) = 1 and let g = ¢*. Let
a1 =by =1, and for i > 0, let

ait1 = [24a;b;logy gl,  bis1 = [24asbilog,pl,  pi =p™, ¢ =g",
and A; = [5logy pi] + 1. Then, for every n, there exist sets
Up={u1 <us < - <upt, Vpo={vi<wve<--<uv,}

for which

’U,i,’UiEP(YA,) ({pzqz kEN,lSmSAi}),

v —u; = prig™i.  w,v; are disjoint, i=1,2,---,n
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and

—ki  m—

k“—ki M —1M; k; mg
{p g™ Ty, piT g Vi, Uj, Vj}

is a d-set for any 1 <i<j<n.
Corollary 2.1 (see [2]) Let
c1 =48logy q, c2 =24logyp, c=cico.
Then, for every n, there exists a d-set

D= {xla Y1,72,Y2, " , Tn, yn}
for which
Y1— T =Y — Ty ==Y —xy =p¢*"", D C P(Y,),
where L, < 2b,41. Furthermore, for k > 1, we have

1 ox—1 1 k-1
ar < —? and by < — .
Co C1

Lemma 2.5 (see [2]) Let A = {a1 < az < -+ < an < ---} be a sequence of positive

integers. Assume

U= {$1,$2,~ Tk, Y1, Y2, ayk} < P(A)v
where U is a d-set and for every j with 1 < j <k, y; —x; =d > 0 for some fized d. Then
P(A) contains an arithmetic progression of length k + 1.

Lemma 2.6 Let p, g, a, b be positive integers with (p,q) =1 and let T = p®. Let
Rr={p",¢°,reN,1<s<T}.

Then for every r with 1 < r < p2q®, there exists an x, € P(Rr) such that r = z, (mod p®q®).
The conclusion of Lemma 2.6 is an application of Lemma 2.1 in [3].

Lemma 2.7 (see [3, Lemma 2.1]) Let n be a positive integer and A be a multi-set of n

integers coprime to n. Then P(A) contains every residue modulo n.

Proof of Lemma 2.6 Assume that n = p® and A = {¢,¢%,--- ,¢”"}. Then, by Lemma
2.7, P(A) contains every residue modulo p®. Hence, for any integer r with 1 < r < p%q®, we

have

r=>q" (mod p").

where i < p®. Then, we assume that » = >_ ¢* + Mp®.
i

Since

M=3"p) (mod ¢¥),
J
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where ¢ is the Euler’s totient function, we can assume that M = Epj¢(qb) + ¢*N. Combining
J
the above equalities, we have

. . b
r= E q + g p“+7¢(q ) (mod p“qb).
i J

By the definition of Ry and the fact that i < p®, we know that Y q% + Zp“+j¢(qb) € P(Ry).
i J

This completes the proof of Lemma 2.6.

3 Proof of Theorem 1.3

Let n = ¢??*3. By Corollary 2.1 and Lemma 2.5, there is an arithmetic progression of length
n and difference d = p*»¢*™». Furthermore, H = {hg + kd : k = 0,1,---,n — 1} C P(Yz,),
where L, < ¢2". If p¥¢® is a term of any element of H, then s is even and k, < a,41, and
My < bpgr.

Let Y* = dqYaq,2. Assume that P(Y*) = {z1 <22 <--- <z, ---}. Then, by Lemma 2.2,
we know that the biggest gap in P(Y*) is at most dgq - ¢?P*2. If p¥¢® is a term of any element
of Y*, then s is odd. Hence, P(Y*) and H are disjoint.

Now we will prove that P(Y*)+ H contains an infinite arithmetic progression with difference
d, e, {z1 +ho+kd: ke Ny} CPY*)+ H. For any t, there exists an integer s, such that
Ty <1 +td < x541. Hence

Ty — T
dq~q2p+2>x5+1—x5>x1+td—x8:(t— Sd 1)'d.

Since
Ty — T
OSt—STl<q2p+3=n,

there exists an integer z =t — #==*1 such that ho + zd € H. Hence

Ts — X1
d
Let a = ky, b = 2m,,. By Lemma 2.6, there exists a set P(Rr), such that for any r with

1 <r < pkrg?mn | there exists an z,, € P(Rr) such that r = . (mod p%q®).

By the definition of Ry, we know that P(Rr), P(Y*) and H are disjoint. It is easy to
see that P(Rr) + P(Y™*) + H contains every sufficiently large number. So Rp UY* U Yz, is

complete.

x1+h0+td:ho+<t— ).d+x5:h0+zd+xseH+P(Y*).

Now we only need to give an upper bound for K(p,q). Denote by K1 = Ki(p,q), K2 =
Ks(p,q) and K3 = K3(p,q) the greatest s for which p¥q¢® is a term of an element of P(Y*), H
and P(Ry) respectively. Following the same discussion as in [2], we have

(1) An upper bound for K1 = Ki(p,q). Since Y* = dqYa, 2, we have that if p*¢* € Y* then

Ky <2mp +142p<2bpyq +2p+1<32.

(2) An upper bound for Ks = Ks(p, q). By Corollary 2.1, Ko < 2b, 41 < 202",
(3) An upper bound for K3 = K3(p,q). By Lemma 2.6 and the definition of Ry, we have

n

K3 gpk" <pc2 .
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It is easy to find that the last upper bound is the biggest one. Hence, we have
- 20?7 +8
K(p,q) <p® =p° ,
where ¢ = 1152log, plog, ¢. This completes the proof of Theorem 1.3.
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