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Abstract For any given coprime integers p and q greater than 1, in 1959, B. J. Birch
proved that all sufficiently large integers can be expressed as a sum of pairwise distinct
terms of the form paqb. As Davenport observed, Birch’s proof can be modified to show
that the exponent b can be bounded in terms of p and q. In 2000, N. Hegyvari gave an
effective version of this bound. The author improves this bound.
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1 Introduction

A positive integer set A is called complete if all sufficiently large integers can be expressed
as the sum of distinct terms taken from A. Denote by N0 the set of non-negative integers. In
1959, B. J. Birch [1] proved that for given integers p and q greater than 1, the set Y = {paqb :
a, b ∈ N0} is complete if and only if (p, q) = 1, which verifies the conjecture of P. Erdős.

Theorem 1.1 (see [1]) Given any positive coprime integers p, q greater than 1, there exists
a number N(p, q) such that every n > N(p, q) is expressible as a sum of the form n = pa1qb1 +
pa2qb2 + · · · , where (ai, bi) are distinct pairs of positive integers.

As Davenport observed, Birch’s proof can be modified to show that for every coprime
integers p and q greater than 1, there exists an integer K = K(p, q) such that the sequence
YK = {paqb : a, b ∈ N0, 0 ≤ b ≤ K} is complete.

For such K, Erdős mentioned that, “of course the exact value of K(p, q) is not known and
no doubt will be very difficult to determine”. In 2000, Hegyvari [2] obtained an effective upper
bound for K(p, q).

Theorem 1.2 (see [2]) For every coprime integers p and q greater than 1, there exists an
integer K = K(p, q) such that the set

YK = {paqb : a, b ∈ N0, 0 ≤ b ≤ K}

is complete. Furthermore, we have

K(p, q) ≤ 2p2c22q4p+3

,
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where c = 1152 log2 p log2 q.

In this paper, we improve this upper bound. The basic idea is similar to that in [2]. What
is more, we add in proof a nice result of V. H. Vu on subset sums, which greatly reduces the
upper bound obtained by Hegyvari. For more details, see Lemma 2.6 in Section 2.

Theorem 1.3

K(p, q) ≤ pc2q2p+3

,

where c = 1152 log2 p log2 q.

2 Lemmas

Before the proof of the lemmas, we introduce the following notation and definitions. Let N

be the set of positive integers, and A = {a1 < a2 < · · · < an < · · · } be a sequence of positive
integers. Denote P (A) as

P (A) =
{∑

εiai : εi = 0 or 1,
∑

εi < ∞
}
.

We call (x, y) disjoint if there exist X, Y ⊆ N, X ∩ Y = ∅, such that x =
∑
i∈X

ai, y =
∑

j∈Y

aj .

The sets X , Y are disjoint if for every x ∈ X , y ∈ Y , x and y are disjoint. Denote Z ⊆ P (A)
as a d-set if all elements of Z are pairwise disjoint.

Lemma 2.1 Let A = {a1 < a2 < · · · < an < · · · } be a sequence of positive integers.
Assume that there exists an integer n0 such that for every n > n0, an < a1 + a2 + · · · + an−1.
Then P (A) has bounded gaps, i.e., if P (A) = {x1 < x2 < · · · }, then for every k we have
xk+1 − xk ≤ an0 .

Proof Assume that Ak = {a1 < a2 < · · · < ak} and P (Ak) = {xk1 < xk2 < · · · }. We will
take induction on k to prove that for any l, xkl+1 − xkl

≤ an0 .
If k ≤ n0, then for any l, there exists an integer i < n0, such that a1 + a2 + · · ·+ ai ≤ xkl

≤
a1 + a2 + · · · + ai + ai+1 and a1 + a2 + · · · + ai ≤ xkl+1 ≤ a1 + a2 + · · · + ai + ai+1. Hence
xkl+1 − xkl

≤ ai+1 ≤ an0 .
Now assume that the proposition holds for k(≥ n0). Namely, for any l, xkl+1 − xkl

≤ an0 .
Assume P (Ak+1) = {y1 < y2 < · · · } for convenience. Since k ≥ n0, by the precondition of
Lemma 2.1, we have ak+1 < a1 + a2 + · · · + ak. Let n1 be the largest number no larger than
a1 + a2 + · · · + ak with the form ak+1 +

∑
1≤i≤k

εiai, and n2 be the least number larger than

a1 + a2 + · · · + ak with the same form as above.
Then for any m, we have the following three possibilities:
Case 1 ym < ym+1 ≤ a1 + a2 + · · · + ak. Then by the induction hypothesis, we have

ym+1 − ym ≤ an0 .
Case 2 ym = a1 + · · · + ak, ym+1 = n2. Then

ym+1 − ym ≤ ym+1 − n1 = n2 − n1.

By the choice of n1, n2 and the induction hypothesis, we have ym+1 − ym ≤ an0 .
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Case 3 n2 ≤ ym < ym+1 ≤ a1 + a2 + · · · + ak+1. Then we assume that ym = ak+1 + y′
m

and ym+1 = ak+1 + y′
m+1. We can find that the elements y′

m and y′
m+1 are adjacent in P (Ak).

By the induction hypothesis, we have ym+1 − ym = y′
m+1 − y′

m ≤ an0 .
Collecting the above discussion, we know that for any m, ym+1 − ym ≤ an0 . This completes

the proof of Lemma 2.1.

Lemma 2.2 Let p, q be positive integers greater than 1. Let Y2p,2 = {pkq2m : k ≥ 0, 1 ≤
m ≤ 2p} and assume P (Y2p,2) = {x1 < x2 < · · · }. Then for every n, we have xn+1 − xn < 	,
where

	 ≤ q2p+2.

Proof Assume that x is the number larger than q2p+2 with the form pkq2m. Then

∑
ptq2s<x

ptq2s =
[ 12 logq x]∑

s=1

q2s ·
∑

pt< x
q2s

pt =
[ 12 logq x]∑

s=1

q2s · pT+1 − 1
p − 1

,

where pT < x
q2s ≤ pT+1.

Since
x > q2p+2,

by direct calculation, we have

∑
ptq2s<x

ptq2s =
[ 12 logq x]∑

s=1

q2s · pT+1 − 1
p − 1

≥
[ 12 logq x]∑

s=1

x − q2s

p − 1
> x.

Hence, by Lemma 2.1, we have 	 ≤ q2p+2. This completes the proof of Lemma 2.2.

Lemma 2.3 (see [2]) Let c, d ≥ 2 with (c, d) = 1. Let x ≥ d4A and

YA = {cadb : a ∈ N, 1 ≤ b ≤ A = [5 log2 c] + 1}.

Then there exists a number n with 1 ≤ n ≤ x, which has at least two representations n =∑
y∈YA

εyy =
∑

y∈YA

ε′yy, where εy, ε′y ∈ {0, 1} and
∑

y∈YA

εyε′y = 0 (i.e., the representations are

disjoint).

Lemma 2.4 (see [2]) Let p, q be integers greater than 1, (p, q) = 1 and let g = q2. Let
a1 = b1 = 1, and for i > 0, let

ai+1 = [24aibi log2 g], bi+1 = [24aibi log2 p], pi = pai , qi = gbi ,

and Ai = [5 log2 pi] + 1. Then, for every n, there exist sets

Un = {u1 < u2 < · · · < un}, Vn = {v1 < v2 < · · · < vn}

for which

ui, vi ∈ P (YAi) = P ({pk
i qm

i : k ∈ N, 1 ≤ m ≤ Ai}),
vi − ui = pkigmi , ui, vi are disjoint, i = 1, 2, · · · , n
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and

{pkj−kigmj−miui, pkj−kigmj−mivi, uj, vj}
is a d-set for any 1 ≤ i < j ≤ n.

Corollary 2.1 (see [2]) Let

c1 = 48 log2 q, c2 = 24 log2 p, c = c1c2.

Then, for every n, there exists a d-set

D = {x1, y1, x2, y2, · · · , xn, yn}

for which

y1 − x1 = y2 − x2 = · · · = yn − xn = pknq2mn , D ⊆ P (YLn),

where Ln ≤ 2bn+1. Furthermore, for k > 1, we have

ak ≤ 1
c2

c2k−1
and bk ≤ 1

c1
c2k−1

.

Lemma 2.5 (see [2]) Let A = {a1 < a2 < · · · < an < · · · } be a sequence of positive
integers. Assume

U = {x1, x2, · · · , xk, y1, y2, · · · , yk} ⊆ P (A),

where U is a d-set and for every j with 1 ≤ j ≤ k, yj − xj = d > 0 for some fixed d. Then
P (A) contains an arithmetic progression of length k + 1.

Lemma 2.6 Let p, q, a, b be positive integers with (p, q) = 1 and let T = pa. Let

RT = {pr, qs, r ∈ N, 1 ≤ s ≤ T }.

Then for every r with 1 ≤ r ≤ paqb, there exists an xr ∈ P (RT ) such that r ≡ xr (mod paqb).

The conclusion of Lemma 2.6 is an application of Lemma 2.1 in [3].

Lemma 2.7 (see [3, Lemma 2.1]) Let n be a positive integer and A be a multi-set of n

integers coprime to n. Then P (A) contains every residue modulo n.

Proof of Lemma 2.6 Assume that n = pa and A = {q, q2, · · · , qpa}. Then, by Lemma
2.7, P (A) contains every residue modulo pa. Hence, for any integer r with 1 ≤ r ≤ paqb, we
have

r ≡
∑

i

qi (mod pa),

where i ≤ pa. Then, we assume that r =
∑
i

qi + Mpa.

Since

M ≡
∑

j

pjφ(qb) (mod qb),
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where φ is the Euler’s totient function, we can assume that M =
∑
j

pjφ(qb) + qbN . Combining

the above equalities, we have

r ≡
∑

i

qi +
∑

j

pa+jφ(qb) (mod paqb).

By the definition of RT and the fact that i ≤ pa, we know that
∑
i

qi +
∑
j

pa+jφ(qb) ∈ P (RT ).

This completes the proof of Lemma 2.6.

3 Proof of Theorem 1.3

Let n = q2p+3. By Corollary 2.1 and Lemma 2.5, there is an arithmetic progression of length
n and difference d = pknq2mn . Furthermore, H = {h0 + kd : k = 0, 1, · · · , n − 1} ⊆ P (YLn),
where Ln ≤ c2n

. If pkqs is a term of any element of H , then s is even and kn ≤ an+1, and
mn ≤ bn+1.

Let Y ∗ = dqY2q,2. Assume that P (Y ∗) = {x1 < x2 < · · · < xn · · · }. Then, by Lemma 2.2,
we know that the biggest gap in P (Y ∗) is at most dq · q2p+2. If pkqs is a term of any element
of Y ∗, then s is odd. Hence, P (Y ∗) and H are disjoint.

Now we will prove that P (Y ∗)+H contains an infinite arithmetic progression with difference
d, i.e., {x1 + h0 + kd : k ∈ N0} ⊆ P (Y ∗) + H . For any t, there exists an integer s, such that
xs ≤ x1 + td < xs+1. Hence

dq · q2p+2 > xs+1 − xs > x1 + td − xs =
(
t − xs − x1

d

)
· d.

Since
0 ≤ t − xs − x1

d
< q2p+3 = n,

there exists an integer z = t − xs−x1
d such that h0 + zd ∈ H . Hence

x1 + h0 + td = h0 +
(
t − xs − x1

d

)
· d + xs = h0 + zd + xs ∈ H + P (Y ∗).

Let a = kn, b = 2mn. By Lemma 2.6, there exists a set P (RT ), such that for any r with
1 ≤ r ≤ pknq2mn , there exists an xr ∈ P (RT ) such that r ≡ xr (mod paqb).

By the definition of RT , we know that P (RT ), P (Y ∗) and H are disjoint. It is easy to
see that P (RT ) + P (Y ∗) + H contains every sufficiently large number. So RT ∪ Y ∗ ∪ YLn is
complete.

Now we only need to give an upper bound for K(p, q). Denote by K1 = K1(p, q), K2 =
K2(p, q) and K3 = K3(p, q) the greatest s for which pkqs is a term of an element of P (Y ∗), H

and P (RT ) respectively. Following the same discussion as in [2], we have
(1) An upper bound for K1 = K1(p, q). Since Y ∗ = dqY2q,2, we have that if pkqs ∈ Y ∗ then

K1 ≤ 2mn + 1 + 2p ≤ 2bn+1 + 2p + 1 < 3c2n

.

(2) An upper bound for K2 = K2(p, q). By Corollary 2.1, K2 ≤ 2bn+1 ≤ 2c2n

.
(3) An upper bound for K3 = K3(p, q). By Lemma 2.6 and the definition of RT , we have

K3 ≤ pkn < pc2n

.
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It is easy to find that the last upper bound is the biggest one. Hence, we have

K(p, q) ≤ pc2n

= pc2q2p+3

,

where c = 1152 log2 p log2 q. This completes the proof of Theorem 1.3.
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