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Abstract There is a variety of nice results about strongly Gorenstein flat modules over
coherent rings. These results are done by Ding, Lie and Mao. The aim of this paper is
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1 Introduction

Throughout the paper, all rings are associative with identity, and an R-module will mean a
right R-module unless explicitly stated otherwise.

Let R be a ring, and M be an R-module. As usual, we use pd R(M), id R(M) and fd R(M)
to denote the classical projective dimension, injective dimension and flat dimension of M ,
respectively.

For a two-sided Noetherian ring R, Auslander and Bridger [1] introduced the G-dimension,
Gdim R(M) for every finitely generated R-module M . They showed that Gdim R(M)≤pd R(M)
for all finitely generated R-modules M , and the equality holds if pd R(M) is finite.

Several decades later, Enochs and Jenda [11, 12] introduced the notion of Gorenstein pro-
jective dimension (G-projective dimension for short) as an extension of G-dimension to modules
that are not necessarily finitely generated, and the Gorenstein injective dimension (G-injective
dimension for short) as a dual notion of Gorenstein projective dimension. To complete the anal-
ogy with the classical homological dimension, Enochs, Jenda and Torrecillas [10] introduced the
Gorenstein flat dimension. Some references concerning the Gorenstein projective, injective and
flat dimensions are [3, 5 6, 10–12, 15].

Recall that an R-module M is called Gorenstein projective, if there exists an exact sequence
of projective R-modules: P : · · · → P1 → P0 → P 0 → P 1 → · · · , such that M ∼= Im (P0 → P 0)
holds, and the functor Hom R(−, Q) leaves P exact whenever Q is projective. The complex P
is called a complete projective resolution.

A Gorenstein injective R-module is defined dually.
An R-module M is called Gorenstein flat, if there exists an exact sequence of flat R-modules:

F : · · · → F1 → F0 → F 0 → F 1 → · · · , such that M ∼= Im (F0 → F 0) holds, and the functor
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− ⊗R I leaves F exact whenever I is a left injective R-module. The complex F is called a
complete flat resolution.

The Gorenstein projective, injective and flat dimensions are defined in terms of Gorenstein
projective, injective and flat resolutions, respectively, and denoted by Gpd (−), Gid (−) and
Gfd (−), respectively (see [5, 12, 15]).

In [3], the authors proved the equality

sup{Gpd R(M) | M is a (left) R-module} = sup{Gid R(M) | M is a (left) R-module}.

They called the common value of the above quantities the left Gorenstein global dimension of
R, and denoted it by l.Ggldim (R). Similarly, they set

l.wGgldim (R) = sup{Gfd R(M) | M is a (left) R-module},

which they called the left Gorenstein weak dimension of R. Similarly, one can define the
right (resp. weak) Gorenstein global dimension, and by analogy it shall be denoted by (resp.
r.wGgldim (R)) r.Ggldim (R).

An R-module M is called strongly Gorenstein flat1 (see [9]), if there exists an exact sequence
of projective R-modules: P : · · · → P1 → P0 → P 0 → P 1 → · · · , such that M ∼= Im (P0 → P 0)
holds, and the functor Hom R(−, F ) leaves P exact whenever F is flat. The strongly Gorenstein
flat dimension is defined in term of strongly Gorenstein flat resolution, and denoted by SGfd (−).
The strongly Gorenstein flat dimension of a ring R, SGFD (R), is defined to be the supremum
of the set SGfd R(M), such that M is an R-module (see [9]).

In [9], the authors gave examples of the strongly Gorenstein flat module which is not pro-
jective (flat), and (Gorenstein) flat module which is not strongly Gorenstein flat. In addition,
they proved that, if R is (left) coherent, strongly Gorenstein flat modules lie between projective
modules and Gorenstein flat modules, and these inclusions can be strict (see [9, Proposition 2.3,
Examples 2.18–2.20]). By definition, every strongly Gorenstein flat module is Gorenstein pro-
jective. Unfortunately, as in [9], in this paper, we are not able to find examples of the Gorenstein
projective module which is not strongly Gorenstein flat. If one can find a Gorenstein projective
module M over a coherent ring which is not Gorenstein flat, then M is not strongly Gorenstein
flat (by [9, Proposition 2.3]). However, whether Gorenstein projective modules and strongly
Gorenstein flat modules coincide or not, we think that this paper gives new things. If the class
of strongly Gorenstein flat modules happens to be the class of Gorenstein projective modules,
then Theorem 2.4 and Propositions 2.5 and 3.1 give new results about Gorenstein projective
modules.

Section 2 deals with the establishment of the fundamentals Theorem 2.1. This result gener-
alizes [9, Proposition 2.10(1)–(2)] to any associative ring. The result is also the main ingredient
in the functorial description of the strongly Gorenstein flat dimension (see Theorem 2.4). Next,

1This definition has not any relation with the notion of strongly Gorenstein flat modules defined in [2]. In our
viewpoint, it was better to call the notion of strongly Gorenstein flat modules defined in [9], strongly (or ultra)
Gorenstein projective modules. Indeed, there is not yet a guarantee that a strongly Gorenstein flat module in [9]
is Gorenstein flat (except under some conditions like coherence (see [9, Proposition 2.3])), while it is clear that
every strongly Gorenstein flat module (in [9]) is Gorenstein projective. However, in spite of our disagreement
with this name, we will support it. It is left to the reader to see the difference between the notions of strongly
Gorenstein flat modules in [2] and [9].
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we get Proposition 2.3. In Section 2, we also investigate strongly Gorenstein flat precovers.
Recall that a strongly Gorenstein flat precover of a module M is a homomorphism of modules,
G → M , where G is strongly Gorenstein flat, such that the sequence

Hom R(G′, G) → Hom R(G′, M) → 0

is exact for every strongly Gorenstein flat module G′. We show that every module M with
a finite and strongly Gorenstein flat dimension admits a Gorenstein projective precover (see
Theorem 2.2). Note that this result generalizes [9, Theorem 4.1], which is only proved for
coherent rings with a finite SGFD(−).

In Section 3, it is proved that for any ring, a (right) strongly Gorenstein flat dimension is
equal to a (right) Gorenstein global dimension (see Theorem 3.1). Several characterizations of
these dimensions are also given in this section.

In this paper, by P (R) and F (R) we denote the classes of all projective and flat R-modules,
respectively, and by SGF (R) and GP (R) we denote the classes of all strongly Gorenstein flat
and Gorenstein projective R-modules, respectively.

Given a class X of R-modules, we set

X⊥ = KerExt 1
R(X,−) = {M | Ext 1

R(X, M) = 0 for all X ∈ X},
⊥X = KerExt 1

R(−, X) = {M | Ext 1
R(M, X) = 0 for all X ∈ X}.

The class X⊥ (resp., ⊥X) is usually called the right (resp., left) orthogonal complement relative
to the functor Ext 1

R(−,−) of the class X.
Moreover, we set ⊥∞X = {M | Ext i

R(M, X) = 0 for all X ∈ X and all i > 0}.

2 Strongly Gorenstein Flat Modules

In this section, we give a detailed treatment of strongly Gorenstein flat modules. The
main purpose is to give functorial descriptions of the strongly Gorenstein flat dimension. We
start with the following result which is an immediate consequence of the definition of strongly
Gorenstein flat modules.

Proposition 2.1 An R-module M is strongly Gorenstein flat if and only if
(1) Ext i

R(M, F ) = 0 for all flat R-modules F and all i > 0 (i.e., M ∈⊥∞F (R)),
(2) there exists an exact sequence 0 → M → P 0 → P 1 → · · · where all P i are projectives

and Hom R(−, F ) leaves this sequence exact whenever F is flat.

Let X be a class of R-modules. Recall that X is projectively resolving (see [15]), if P (R) ⊆ X

and for any short exact sequence 0 → M → M ′ → M ′′ → 0 where M ′′ ∈ X, M ∈ X if and only
if M ′ ∈ X.

Theorem 2.1 The class of all strongly Gorenstein flat R-modules is resolved, in the sense
that if 0 → M → M ′ → M ′′ → 0 is a short exact sequence of R-modules, where M ′′ is strongly
Gorenstein flat, then M is strongly Gorenstein flat if and only if M ′ is strongly Gorenstein flat.

Furthermore, the class of all strongly Gorenstein flat R-modules is closed under arbitrary
direct sums and under direct summands.
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Proof It is clear that P (R) ⊆ SGF (R) (by [9, Remark 2.2(1)]). So, we consider any short
exact sequence of R-modules 0 → M ′ → M → M ′′ → 0 where M ′′ is strongly Gorenstein flat.

First, suppose that M ′ is strongly Gorenstein flat. We claim that M is also strongly Goren-
stein flat. Since ⊥∞F(R) is projectively resolving (by [14, Lemma 2.2.9]), by Proposition 2.1,
we get that M belongs to ⊥∞F(R). Thus, to show that M is strongly Gorenstein flat, we only
have to prove the existence of an exact sequence 0 → M → P 0 → P 1 → · · · where all P i are
projectives and Hom R(−, F ) leaves this sequence exact whenever F is flat (by Proposition 2.1).
By assumption, there exist exact projective resolutions

M′ = 0 → M ′ → P ′
0 → P ′

1 → · · · and M′′ = 0 → M ′′ → P ′′
0 → P ′′

1 → · · · ,

where Hom (−, F ) keeps the exactness of these sequences whenever F is flat, and all the cokernels
of M′ and M′′ are strongly Gorenstein flats (such sequences exist by the definition of strongly
Gorenstein flat modules). Consider the following diagram:

0

��

0

��
0 �� M ′

f ′

��

α �� M
β �� M ′′

f ′′

��

�� 0

0 �� P ′
0

�� P ′
0 ⊕ P ′′

0
�� P ′′

0
�� 0

Since M ′′ is strongly Gorenstein flat, we have Ext 1
R(M ′′, P ′

0) = 0. Hence, the following sequence
is exact:

0−−−−→ Hom R(M ′′, P ′
0)

Hom R(β,P ′
0)−−−−−−−−−→ Hom R(M, P ′

0)
Hom R(α,P ′

0)−−−−−−−−−→ Hom R(M ′, P ′
0)−−−−→ 0.

Thus, there exists an R-morphism γ : M → P ′
0, such that f ′ = γ ◦ α. It is easy to check that

the morphism f : M → P ′
0 ⊕ P ′′

0 defined by setting f(m) = (γ(m), f ′′ ◦ β(m)) for each m ∈ M

completes the above diagram and makes it commutative. Then, using the Snake Lemma, we
get the following commutative diagram:

0

��

0

��

0

��
0 �� M ′

f ′

��

α �� M

f

��

β �� M ′′

f ′′

��

�� 0

0 �� P ′
0

��

�� P ′
0 ⊕ P ′′

0

��

�� P ′′
0

��

�� 0

0 �� coker (f ′)

��

�� coker (f)

��

�� coker (f ′′)

��

�� 0

0 0 0

Since coker (f ′) and coker (f ′′) are strongly Gorenstein flat, they belong to ⊥∞F(R) which is
projectively resolving. Then, coker (f) belongs also to ⊥∞F(R). Accordingly, Hom R(−, F )
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keeps the exactness of the short exact sequence 0 → M → P ′
0 ⊕ P ′′

0 → coker (f) → 0 whenever
F is flat. By induction, we can construct a commutative diagram with the form

0 �� M′ �� M �� M′′ �� 0

0

��

0

��

0

��
0 �� M ′

��

�� M

��

��

��

M ′′

��

�� 0

0 �� P ′
0

��

�� P ′
0 ⊕ P ′′

0

��

��

��

P ′′
0

��

�� 0

0 �� P ′
1

��

�� P ′
1 ⊕ P ′′

1

��

��

��

P ′′
1

��

�� 0

...
...

...

such that Hom R(,F ) leaves M exact whenever F is flat. Consequently, M is strongly Gorenstein
flat.

Now suppose that M is strongly Gorenstein flat. We claim that M ′ is strongly Gorenstein
flat. As above, M belongs to ⊥∞F(R). Hence, we have to prove that M satisfies the condition
(2) of Proposition 2.1. To do it, we pick a short exact sequence 0 → M → P → X → 0 where
P is projective and X is strongly Gorenstein flat (such a sequence exists by [9, Remark 2.2(3)]),
and consider the following push-out diagram:

0

��

0

��
M ′

��

M ′

��
0 �� M

��

�� P

��

�� X �� 0

0 �� M ′′

��

�� Y

��

�� X �� 0

0 0

From the first part of this proof, Y is strongly Gorenstein flat. Hence, it admits a right projective
resolution Y : 0 → Y → F 0 → F 1 → · · · which is still exact by Hom R(−, F ) whenever F is
flat. In addition, the short exact sequence 0 → M ′ → P → Y → 0 is still exact by Hom R(−, F )
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whenever F is flat since Y is strongly Gorenstein flat. Finally, it is easy to check that

M′ : 0 �� M ′ �� P ��
������ F 0 �� F 1 �� · · ·
Y

������

�����

0
������ 0

is also exact by Hom R(−, F ) whenever F is flat.
The closing of SGF (R) under direct sums is due to [9, Remark 2.2(2)], while its closing

under direct summands is deduced from [15, Proposition 1.4].

Remark 2.1 Note that Theorem 2.1 generalizes [9, Proposition 2.10], except the third
statement of this theorem which we will generalize later to not necessarily coherent rings.

Lemma 2.1 Let M be any R-module. Consider two exact sequences

0 → Kn → Gn−1 → · · · → G0 → M → 0,
0 → K ′

n → G′
n−1 → · · · → G′

0 → M → 0,

where all Gi and G′
i are strongly Gorenstein flat modules. Then, Kn is strongly Gorenstein flat

if and only if K ′
n is strongly Gorenstein flat.

Proof Since the class of strongly Gorenstein flat modules is projectively resolving and
closed under arbitrary sums and under direct summands, by Theorem 2.1, the stated result is
a direct consequence of [1, Lemma 3.12].

Hereafter, we immediately deal with strongly Gorenstein flat precovers. We begin with a
definition of precovers.

Definition 2.1 (Precovers) Let X be any class of R-modules, and M be an R-module. An
X-precover of M is an R-homomorphism ϕ : X → M where X ∈ X, such that the sequence

Hom R(X ′, X)
Hom R(X′,ϕ)−−−−−−−−−→ Hom R(X ′, M) −−−−→ 0

is exact for every X ′ ∈ X.

For more details about precovers, the reader may consult [13, Chapters 5 and 6]. Instead of
saying SGF (R)-precover, we shall use the term “strongly Gorenstein flat precover”.

Theorem 2.2 Let M be an R-module with a finite and strongly Gorenstein flat dimension
n. Then, M admits a surjective and strongly Gorenstein flat precover ϕ : G � M , where
K = ker(ϕ) satisfies pd R(K) = n−1 (if n = 0, this should be interpreted as K = 0). Moreover,
if pd R(M) < ∞, then G is projective.

Proof Pick an exact sequence 0 → G′ → Pn−1 → · · · → P0 → M → 0 where P0, · · · , Pn−1

are projectives. By Proposition 2.1, G′ is clearly strongly Gorenstein flat. Hence, by the
definition of “strongly Gorenstein flat”, there is an exact sequence (∗) 0 → G′ → Q0 →
· · · → Qn−1 → G → 0 where G is strongly Gorenstein flat and all Qi are projectives, such
that Hom R(−, F ) leaves this sequence exact whenever F is flat, in particular, whenever F is
projective. Then, (∗) is the beginning of a co-proper right P (R)-resolution of G′ (see [15,
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Defintion 1.5]). Thus, using [15, Proposition 1.8], there exists homomorphisms Qi → Pn−1−i

for i = 0, · · · , n − 1, and G → M , such that the following diagram is commutative:

0 �� G′ �� Q0
��

��

· · · �� Qn−1
��

��

G ��

��

0

0 �� G′ �� Pn−1
�� · · · �� P0

�� M �� 0

This diagram gives a chain map between complexes

0 �� Q0
��

��

· · · �� Qn−1
��

��

G ��

��

0

0 �� Pn−1
�� · · · �� P0

�� M �� 0

which induces an isomorphism in homology. Its mapping cone is exact, and all the modules in
it, except for P0⊕G (which is strongly Gorenstein flat), are projectives. Hence, the kernel K of
ϕ : P0⊕G � M satisfies pd R(K) ≤ n−1 (and then equal to n, otherwise SGfd R(M) ≤ n−1).

Since K has a finite projective dimension, we have Ext 1
R(A, K) = 0 for any strongly Goren-

stein flat module A (by [9, Lemma 2.4 (1)]). Thus the homomorphism

Hom R(A, ϕ) : Hom R(A, P0 ⊕ G) → Hom R(A, M)

is surjective. Hence, ϕ is the desired precover.
If pd R(M) < ∞, then pd R(G) < ∞. Hence, it is projective (by [9, Lemma 2.4(2)]).

Remark 2.2 Note that Theorem 2.2 generalizes [9, Theorem 4.1] in two senses. Firstly, the
condition r.SGFD(R) < ∞ (in [9, Theorem 4.1]) is large, which suffices to assume SGfd R(M) <

∞. Secondly, the coherence condition is not necessary.

As mentioned in Remark 2.1, the next result generalizes the third statement of [9, Proposi-
tion 2.10].

Corollary 2.1 Let 0 → G′ → G → M → 0 be a short exact sequence, where G and G′ are
strongly Gorenstein flat modules, and Ext 1

R(M, F ) = 0 holds for every flat module F . Then,
M is strongly Gorenstein flat.

Proof Since SGfd R(M) ≤ 1, by Theorem 2.2, there is an exact sequence 0 → P →
G → M → 0 where P is projective and G is strongly Gorenstein flat. By our assumption
Ext 1

R(M, P ) = 0, this sequence splits, and hence M is strongly Gorenstein flat (by Theorem
2.1).

Corollary 2.2 Let M be an R-module with a finite and strongly Gorenstein flat dimension
n. Then, there exists an exact sequence 0 → M → H → G → 0, where pd R(H) = n and G is
strongly Gorenstein flat.

Proof If n = 0, the result is obvious by the definition of strongly Gorenstein flat modules.
So, we may assume n > 0.

From Proposition 2.2, there exists a short exact sequence 0 → K → G′ → M → where G′

is strongly Gorenstein flat, such that pd R(K) = n − 1. Pick a short exact sequence 0 → G′ →
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P → G → 0, where P is projective and G is strongly Gorenstein flat. Consider the following
push-out diagram:

0

��

0

��
K

��

K

��
0 �� G′

��

�� P

��

�� G �� 0

0 �� M

��

�� H

��

�� G �� 0

0 0

Clearly, pd R(H) ≤ n. If n = 1, then we must have pd R(H) = 1, otherwise M becomes strongly
Gorenstein flat (by Theorem 2.1 and from the short exact sequence 0 → M → H → G → 0).
If n > 1, from the short exact sequence 0 → K → P → H → 0, we get

pd R(H) = pd R(K) + 1 = n

since pd R(K) �= pd R(P ). Then, in all cases, we have pd R(H) = n as desired.

From [9, Lemma 2.4 (1)] and by using a standard argument, we get the following lemma.

Lemma 2.2 Consider an exact sequence 0 → Kn → Gn−1 → · · · → G0 → M → 0, where
all Gi are strongly Gorenstein flat modules. Then,

Ext i
R(Kn, F ) = Ext n+i

R (M, F )

for all integers i > 0 and all modules F with fd R(F ) < ∞.

Using Theorem 2.1, Proposition 2.1 and Lemma 2.2 together with standard arguments, we
immediately obtain the next result.

Proposition 2.2 Let 0 → K → G → M → 0 be an exact sequence of R-modules, where G

is strongly Gorenstein flat. If M is strongly Gorenstein flat, so is K. Otherwise, we get

SGfd R(K) = SGfd R(M) − 1.

Theorem 2.3 For any R-modules M and M ′, we have

SGfd R(M ⊕ M ′) = max{SGfd R(M), SGfd R(M ′)}.

Proof The inequality SGfd R(M ⊕ M ′) ≤ max{SGfd R(M), SGfd R(M ′)} follows from the
fact that SGF (R) is closed under direct sums. For the converse inequality, we may assume
that SGfd R(M ⊕ M ′) = n is finite, and then proceed by induction on n.

The induction start is clear, because the class SGF (R) is closed under direct summands. If
n > 0, pick exact sequences 0 → K → P → M → 0 and 0 → K ′ → P ′ → M ′ → 0 where P and
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P ′ are projectives. We get a commutative diagram with split-exact rows

0 0 0

0 �� M

��

�� M ⊕ M ′

��

�� M ′

��

�� 0

0 �� P

��

�� P ⊕ P ′

��

�� P ′

��

�� 0

0 �� K

��

�� K ⊕ K ′

��

�� K ′

��

�� 0

0

��

0

��

0

��

Applying Proposition 2.2 to the middle column in this diagram, we get SGfd R(K ⊕ K ′) =
n − 1. Hence, the induction hypothesis yields that

max{SGfd R(K), SGfd R(K)} ≤ SGfd R(K ⊕ K ′).

Thus,

max{SGfd R(M), SGfd R(M)} ≤ max{SGfd R(K) + 1, SGfd R(K) + 1}
≤ SGfd R(K ⊕ K ′) + 1

= SGfd R(M ⊕ M ′).

The next result gives a functorial description of the strongly Gorenstein flat dimension of
modules.

Theorem 2.4 Let M be an R-module with a finite and strongly Gorenstein flat dimension,
and let n be an integer. Then, the following conditions are equivalent:

(1) SGfd R(M) ≤ n;
(2) Ext i

R(M, L) = 0 for all i > n and all R-modules L with fd R(L) < ∞;
(3) Ext i

R(M, F ) = 0 for all i > n and all flat R-modules F ;
(4) For every exact sequence 0 → Kn → Gn−1 → · · · → G0 → M → 0 where G0, · · · , Gn−1

are strongly Gorenstein flats, Kn is also strongly Gorenstein flat.

Proof Obviously, we have (2) ⇒ (3) and (4) ⇒ (1). So we only have to prove the last two
implications to complete a cycle.

(1) ⇒ (2) Assume that SGfd R(M) = m ≤ n. By definition, there exists an exact se-
quence 0 → Gm → Gm−1 → · · · → G0 → M → 0, where all Gi are strongly Gorenstein
flats. By Lemma 2.2 and [9, Lemma 2.4(1)], we conclude that the equalities Ext i

R(M, L) ∼=
Ext i−m

R (Gn, L) whenever L has a finite flat dimension and i > m (in particular when i > n).
(3) ⇒ (4) Set SGfd R(M) = m < ∞ and suppose n < m. Consider an exact sequence

0 → Gm → · · · → G0 → M → 0, where all Gi are strongly Gorenstein flats. Set Km−1 =
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coker (Gm → Gm−1). Thus, by the hypothesis conditions and Lemma 2.2, from the exact
sequence

0 → Km−1 → Gm−2 → · · · → G0 → M → 0,

we get Ext 1
R(Km−1, F ) = Ext m

R (M, F ) = 0 for all flat modules F . Hence, applying Corollary
2.1 to the short exact sequence 0 → Gm → Gm−1 → Km−1 → 0, we conclude that Km−1 is
strongly Gorenstein flat. Then, SGfd R(M) ≤ m − 1, which is impossible. This contradiction
completes the proof.

Recall that a right (resp., left) R-module M is called FP -injective (or absolutely pure), if
Ext 1

R(N, M) = 0 (or equivalently Ext i
R(N, M) = 0 for all i > 0) for every finitely presented

right (resp., left) R-module N . The FP -injective dimension of the right (resp., left) R-module
M , denoted by FP-id R(M), is defined to be the smallest non-negative integer n, such that
Ext n+1

R (N, M) = 0 for every finitely presented right (resp., left) R-module (see [7, 19]).

Remark 2.3 Note that in Theorem 2.4, only the implication (3) ⇒ (4) needs the condition
SGfd (−) < ∞. However, in [9, Lemma 3.4], the authors proved this implication without
assuming SGfd (−) < ∞, but they forced the ring R to be left coherent and they assumed
FP-id R(R) < ∞.

Proposition 2.3 Let 0 → A → B → C → 0 be an exact sequence of R-modules. If two of
SGfd R(A), SGfd R(B) and SGfd R(C) are finite, so is the third. Moreover,

(1) SGfd R(B) ≤ max{SGfd R(A), SGfd R(C)} with equality, if SGfd R(A)+1 �= SGfd R(C),
(2) SGfd R(A) ≤ max{SGfd R(B), SGfd R(C)−1} with equality, if SGfd R(B) �= SGfd R(C),
(3) SGfd R(C) ≤ max{SGfd R(B), SGfd R(A)+1} with equality, if SGfd R(B) �= SGfd R(A).

Proof It suffices to prove that if two of SGfd R(A), SGfd R(B) and SGfd R(C) are finite,
so is the third. While, by using Theorem 2.4, the proof of the other assertions is standard
homological algebra.

Suppose SGfd R(A) and SGfd R(C) are finite, and set n = max{SGfd R(A), SGfd R(C)}.
Pick exact sequences

0 → G → Pn−1 → · · · → P0 → A → 0 and 0 → G′ → Qn−1 → · · · → Q0 → A → 0,

where all Pi and Qi are projective modules. From Proposition 2.1 and Theorem 2.1, G and G′

are strongly Gorenstein flat modules. Consider the following commutative diagram:

0

��

0

��

0

��

0

��
0 �� G

��

�� Pn−1

��

�� · · · �� P0

��

�� A

��

�� 0

0 �� X

��

�� Pn−1 ⊕ Qn−1

��

�� · · · �� P0 ⊕ Q0

��

�� B

��

�� 0

0 �� G′

��

�� Qn−1

��

�� · · · �� Q0

��

�� C

��

�� 0

0 0 0 0
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From Theorem 2.1, X is strongly Gorenstein flat, and so SGfd R(B) is finite.
Now, suppose that SGfd R(A) and SGfd R(B) are finite and pick a short exact sequence

0 → X → P → B → 0 where P is projective. From Proposition 2.2, SGfd R(X) is also finite.
Consider the following push-out diagram:

0

��

0

��
0 �� X �� Z

��

�� A

��

�� 0

0 �� X �� P

��

�� B

��

�� 0

C

��

C

��
0 0

From the first part of this proof, SGfd R(Z) is finite, and so, by Proposition 2.2, SGfd R(C) is
finite.

Now, suppose that SGfd R(B) and SGfd R(C) are finite and pick a short exact sequence
0 → X → P → C → 0 where P is projective. It is clear that SGfd R(X) is finite (by
Proposition 2.2). Consider the following push-out diagram:

0

��

0

��
A

��

A

��
0 �� X �� Z

��

�� B

��

�� 0

0 �� X �� P

��

�� C

��

�� 0

0 0

From the first part of this proof, we have that SGfd R(Z) is finite, since SGfd R(X) and
SGfd R(B) are finite. On the other hand, since P is projective, the middle vertical sequence
splits, and then Z ∼= A ⊕ P . Hence, by Theorem 2.3, SGfd R(A) is finite. This completes our
proof.

Proposition 2.4 Every finitely presented Gorenstein projective module is strongly Goren-
stein flat.

Proof Let M be a finitely presented Gorenstein projective module. From Proposition 2.1
and by induction, to prove that M is strongly Gorenstein projective, it suffices to construct a
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short exact sequence of modules 0 → M → P → M ′ → 0 where P is finitely generated projective
such that M is (finitely presented) Gorenstein projective, and to show that Ext i(M, F ) = 0 for
every flat module F and all i > 0.

We start with the desired short exact sequence. From [15, Proposition 2.4], M embeds in a
free module L such that L/M is Gorenstein projective. Since M is finitely generated, we can
find a finitely generated free module L0 containing in L as a direct summand, which contains M

(i.e., M ⊆ L0 ⊆ L, L0 finitely generated free, and L/L0 is free). Hence, consider the following
diagram with the exact square:

0

��
0 �� M

� � �� L0� �

��

�� L0/M �� 0

0 �� M
� � �� L

��

�� L/M �� 0

L/L0

��
0

From [18, Exercise 2.7, p. 29] and the Snake Lemma, the above diagram can be completed as

0

��

0

��
0 �� M

� � �� L0� �

��

�� L0/M ��

��

0

0 �� M
� � �� L

��

�� L/M ��

��

0

L/L0

��

L/L0

��
0 0

From the right vertical exact sequence, we conclude that L/M ∼= L0/M ⊕ L/L0 (since L/L0

is free). Hence, by [15, Theorem 2.5], L0/M is Gorenstein projective which is clearly finitely
presented.

Now, let F be an arbitrary flat module. By Lazards Theorem in [4, Section 1], there is
a direct system (Li)i∈I of finitely generated free R-modules such that lim−→ Li

∼= F . From [4,
Exercise 3, p. 187], we have Ext 1(M, F ) ∼= lim−→ Ext 1(M, Li) = 0.

Remark 2.4 If R is a two-sided coherent ring, then by Proposition 2.4, SGfd R(M) =
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Gpd R(M) for every (right and left) finitely presented module M . Thus, [9, Proposition 2.17
and Theorem 3.6(1) ⇔ (2)] are direct consequences of [8, Theorems 6 and 7].

Let R be a ring, and M an R-module. The cotorsion dimension of a module M , i.e., cd R(M),
is defined to be the smallest integer n ≥ 0 such that Ext n+1

R (F, M) = 0 for all flat R-modules
F . The right global cotorsion dimension of R, i.e., r.cot.D (R), is defined as the supremum of
the cotorsion dimensions of R-modules (see [17]).

Proposition 2.5 For any R-module M , we have
(1) SGfd R(M) ≤ pd R(M) with equality, if fd R(M) < ∞,
(2) Gpd R(M) ≤ SGfd R(M) with equality, if SGfd R(M) < ∞ or r.cot.D (R) < ∞.
Consequently, if M is a Gorenstein projective module, then either M is strongly Gorenstein

flat or SGfd R(M) = ∞.

Proof (1) The first inequality follows from the fact that every projective module is strongly
Gorenstein flat, whereas if fd R(M) < ∞, the equality holds by [9, Lemma 2.4 (2)].

(2) The desired inequality follows from the fact that every strongly Gorenstein flat is
Gorenstein projective.

If SGfd R(M) = n < ∞, from [15, Theorem 2.20], to show that Gpd R(M) = n, it suffices
to find a projective module P such that Ext n

R(M, P ) �= 0. Since SGfd R(M) = n, there is some
flat module F such that Ext n

R(M, F ) �= 0. Consider any short exact sequence 0 → F ′ → P →
F → 0 where P is projective (and certainly F ′ will be flat). We get the long exact sequence of
homology

· · · → Ext m
R (M, P ) → Ext m

R (M, F ) → Ext m+1
R (M, F ′) = 0 → · · · .

It now follows that also Ext n
R(M, P ) �= 0, as desired.

If r.cot.D (R) < ∞, every flat module has a finite projective dimension (see [17, Theorem
7.2.5(1)]). Thus, clearly the notions of Gorenstein projective modules and strongly Gorenstein
flat modules coincide (by [15, Proposition 2.3]). Thus, we have the desired result.

The last statement holds by (2) above.

3 Strongly Gorenstein Flat Dimension of Rings

In this section, we investigate the strongly Gorenstein flat dimension of rings. Our first
result in this section shows that it coincides with the Gorenstein global dimension defined in
[3].

Theorem 3.1 For any ring R, we have r.SGFD (R) = r.Ggldim (R).

Proof (≥) The inequality follows from Proposition 2.5.
(≤) To prove this inequality, we may assume r.Ggldim (R) < ∞. From [3, Corollary 2.7]

and [17, Theorem 7.2.5(1)], we have r.cot.D (R) ≤ l.Ggldim (R) < ∞. Thus, the desired result
is a direct consequence of Proposition 2.5(2).

Remark 3.1 Note that Theorem 3.1 generalizes [9, Proposition 2.16] in the sense that
r.SGFD (R) = 0 (i.e., every R-module is strongly Gorenstein flat) if and only if r.Ggldim (R) =
0, which means by [3, Proposition 2.6], that R is quasi-Frobenius.
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Proposition 3.1 The following statements are equivalent for any ring R:
(1) r.cot.D (R) ≤ n;
(2) SGfd R(F ) ≤ n for every flat module F .

Proof (1) ⇒ (2) It is obvious, because for any flat module F , SGfd R(M) ≤ pd R(F ) ≤ n,
since r.cot.D (R) ≤ n.

(2) ⇒ (1) Let F be an arbitrary flat module. By hypothesis and from Proposition 2.5(1),
pd R(F ) = SGfd R(F ) ≤ n. Accordingly, r.cot.D (R) ≤ n.

Remark 3.2 By specializing the above proposition in the case n = 0, we obtain [9,
Proposition 2.15].

Recall that a pair (X, Y) of classes of R-modules is called a cotorsion theory (see [13]), if
X⊥ = Y and ⊥Y = X. By I n we denote the class of all R-modules with a injective dimension
less than or equal to n.

Theorem 3.2 Let R be a ring, and n a positive integer. The following are equivalent:
(1) r.SGFD (R)(= r.Ggldim (R)) ≤ n;
(2) (SGF (R), I n) is a cotorsion theory;
(3) (GP (R), I n) is a cotorsion theory;
(4) id R(P ) ≤ n for every projective module P , and pd R(I) ≤ n for every injective module

I;
(5) id R(P ) ≤ n for every projective module P , and pd R(I) < ∞ for every injective module

I;
(6) id R(P ) < ∞ for every projective module P , and pd R(I) ≤ n for every injective module

I;
(7) id R(F ) ≤ n for every flat module F , and fd R(I) ≤ n for every injective I;
(8) id R(F ) ≤ n for every flat module F , and fd R(I) < ∞ for every injective I.

Proof (1) ⇒ (2) Assume that r.SGFD (R) ≤ n. First, we claim that I n = SGF (R)⊥.
Consider I ∈ I n and G ∈ SGF (R). By the definition of strongly Gorenstein flat modules, there
exists an exact sequence → G → P0 → P1 → · · · → Pn−1 → G′ → 0 where all Pi are projective.
Then, Ext 1

R(G, I) = Ext n+1
R (G′, I) = 0. Thus, I ∈ SGF (R)⊥. Accordingly, I n ⊆ SGF (R).

Now, consider J ∈ SGF (R)⊥. Since SGF (R) is projectively resolving, we get that
Ext i

R(G, J) = 0 for all G ∈ SGF (R) and all i > 0 (by [14, Corollary 2.2.11(a)]). For an
arbitrary R-module M , consider an exact sequence 0 → G → Pn−1 → · · · → P0 → M → 0
where all Pi are projective. Since SGFD (R) ≤ n, it is clear that G is strongly Gorenstein
flat. Then, for all i > n, Ext i

R(M, J) = Ext i−n
R (G, J) = 0. Thus, J ∈ I n. Consequently,

SGF (R)⊥ ⊇ I n. So, we have the desired equality.
Then, we claim that ⊥I n = SGF (R). It is clear that F (R) ⊆ I n (by [3, Corollary 2.7]),

since r.Ggldim (R) ≤ n. Consider G ∈⊥I n. We have SGfd R(G) ≤ n < ∞. In addition,
since I n is injectively resolving, by [14, Corollary 2.2.11(b)], we get Ext i

R(G, F ) = 0 for all
F ∈ In, in particular, for all flat modules F (recall that F (R) ⊆ I n). Thus, by Theorem
2.4, G is strongly Gorenstein flat. Hence, ⊥I n ⊆ SGF (R). In addition, it is clear that
SGF (R) ⊆⊥ (SGF (R)⊥) = ⊥I n. Thus, ⊥I n = SGF (R). Accordingly, (SGF (R), I n) is a
cotorsion theory.
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(2) ⇒ (1) Assume that (SGF (R), I n) is a cotorsion theory. Let M be an arbitrary R-
module. Pick an exact sequence 0 → G → Pn−1 → · · · → P0 → M → 0 where all Pi are
projectives. For each I ∈ I n, we have Ext 1

R(G, I) = Ext n+1
R (M, I) = 0. Thus, G ∈⊥I n =

SGF (R). Then, SGfd R(M) ≤ n. Consequently, SGFD (R) ≤ n.
(1) ⇔ (3) Replacing Theorem 2.4 by [15, Theorem 2.20] in the proof of (1) ⇒ (2) and

remembering that the class of Gorenstein projective modules is projectively resolving (by [15,
Theorem 2.5]), this equivalence is proved in an analogous fashion to (1) ⇔ (2).

(1) ⇔ (4) This is the right version of [16, Theorem 2.1].
The implications (4) ⇒ (5) and (4) ⇒ (6) are obvious, while if (5) or (6) is satisfied, then

by the left version of [16, Theorem 2.1], r.Ggldim (R) < ∞. Hence, by [16, Proposition 2.3],
the statements (5) and (6) are equivalent, and mean that r.Ggldim (R) ≤ n. So, (5) ⇒ (1) and
(6) ⇒ (1) are clear.

(1) ⇒ (7) This is a direct consequence of [3, Corollary 2.7].
(7) ⇒ (8) It is obvious.
(8) ⇒ (5) We have only to prove that pd R(I) < ∞ for every injective module I. By [17,

Theorem 7.2.5(2)], we have

r.cot.D (R) ≤ sup{id R(P ) | P projective} ≤ sup{id R(F ) | F flat} ≤ n.

Thus, for any flat module F , we have pd R(F ) ≤ n < ∞. Then, given any injective module I,
since fd R(I) < ∞, we get pd R(I) < ∞. This completes the proof.

Remark 3.3 If R is left coherent, by [7, Theorem 3.8], FP-idR(R) = sup{fd R(I) |
I is injective}. Thus, the theorem above, especially the equivalence of (1), (2) and (7), gen-
eralizes [9, Theorem 4.2] to a not necessarily coherent ring, and note that the condition
FP-id R(R) ≤ n in [9, Theorem 4.2] can be replaced by FP-idR(R) < ∞ (by (8) of our theorem).
Moreover, we have just proved that the equivalence [9, Theorem 4.2(1)⇔(3)] does not need the
coherence condition.
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