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Abstract The authors consider the complex Monge-Ampère equation det(uij) = ψ(z, u,
∇u) in bounded strictly pseudoconvex domains Ω, subject to the singular boundary con-
dition u = ∞ on ∂Ω. Under suitable conditions on ψ, the existence, uniqueness and the
exact asymptotic behavior of solutions to boundary blow-up problems for the complex
Monge-Ampère equations are established.
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1 Introduction and Main Results

Let Ω be a domain in Cn and ψ, which is defined in Ω × R × R
2n, be a positive function.

We study the boundary blow-up problem for the complex Monge-Ampere equation⎧⎨⎩det
∂2u

∂zi∂zj
= ψ(z, u,∇u), z ∈ Ω,

u(z) = ∞, z ∈ ∂Ω,
(1.1)

where ∇u(z0) = p0 (seen as a function of (Re z, Im z)). The boundary condition means u(z) →
∞ as d(z) = dist(z, ∂Ω) → 0.

Problems of this type was considered by Cheng and Yau [3, 4] (with ψ(u) = eKu in bounded
doamins and with ψ(u) = e2u in unbounded domains). The real Monge-Ampère equations with
the boundary blow-up was treated in [4, 7, 8].

For the complex Monge-Ampère with the boundary blow-up, Ivarsson and Matero [10]
proved the existence and regularity result when the right-hand side of the equation in (1.1) is
of the form ψ(z, u(z)). More general results are obtained in [14].

Cîrstea and Trombetti [6] considered the real Monge-Ampère equation subject to the singular
boundary condition and obtained the existence, uniqueness and asymptotics. In this article, we
deal with the complex case and obtain the existence in strictly pseudoconvex domain, uniqueness
and the exact asymptotic behavior of solutions to boundary blow-up problems.
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Theorem 1.1 (Existence) Let Ω be a bounded, strictly pseudoconvex domain in Cn. Suppose
that ψ ∈ C∞(Ω,R,R2n) satisfies ψ > 0, as well as

M(u+)p ≤ ψ(z, u,∇u), (1.2)

where (z, u,∇u) ∈ Ω × R × R
2n. There is a constant C, such that

−ψu, |ψzj |, |∇ψ| ≤ Cψ1− 1
n , (1.3)

where p > n, M > 0, C > 0, u+ = max{u, 0}. Then there is a strictly plurisubharmonic
solution u ∈ C∞(Ω) to (1.1).

For the asymptotic behavior near ∂Ω of the blow-up solutions, we consider the equations⎧⎨⎩det
∂2u

∂zi∂zj
= g(z)f(u), z ∈ Ω,

u(z) = ∞, z ∈ ∂Ω,
(1.4)

where g(z) ∈ C∞(Ω) is positive in Ω, f ∈ C[0,∞) ∩ C∞(0,∞) is positive increasing.
Let �l denote the set of all positive non-decreasing C1 functions m defined on (0, μ), for

some μ > 0, for which there exist

lim
t→0+

∫ t
0 m(s)ds
m(t)

= 0 and lim
t→0+

d
dt

(∫ t
0 m(s)ds
m(t)

)
= l. (1.5)

A complete characterization of �l is provided by [5] (according to l 	= 0 or l = 0).
One has the following examples for a special l:
(a) m(t) = (− 1

lnt )
p with l = 1;

(b) m(t) = tp with l = 1
p+1 ;

(c) m(t) = e−
1

tp with l = 0,
where p > 0 is arbitrary.

Definition 1.1 A positive measurable function f defined in [a,∞), for some a > 0, is
called regularly varying at infinity with an index q, written f ∈ RVq, if for each λ > 0 and some
q ∈ R,

lim
t→∞

f(λt)
f(t)

= λq. (1.6)

The real number q is called the index of regular variation.

When q = 0, we have the next definition.

Definition 1.2 A positive measurable function L defined in [a,∞), for some a > 0, is
called regularly varying at infinity, if for λ > 0 and some q ∈ R,

lim
t→∞

L(λt)
L(t)

= 1. (1.7)

By Definitions 1.1 and 1.2, if f ∈ RVq, it can be represented in the form

f(t) = tqL(t). (1.8)
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Definition 1.3 If H is a non-decreasing function on R, then we denote by H← the (left-
continuous) inverse of H (see [13]), that is,

H←(y) = inf{s : H(s) ≥ y}. (1.9)

If a > 0 is sufficiently large, we define

℘(u) = sup
{f(y)
yk

: a ≤ y ≤ u
}

for u ≥ a. (1.10)

Theorem 1.2 (Asymptotic Behaviors) Let Ω be a bounded, strictly pseudoconvex domain
in Cn with a smooth boundary. Assume that f ∈ RVq with q > n and there exists an m ∈ �l,
such that

0 < β− = lim inf
d(z)→0

g(z)
mn+1(d(z))

and lim sup
d(z)→0

g(z)
mn+1(d(z))

= β+ <∞. (1.11)

Then every strictly plurisubharmonic blow-up solution u∞ to (1.4) satisfies

ξ− ≤ lim inf
d(z)→0

u∞(z)
ϕ(d(z))

and lim sup
d(z)→0

u∞(z)
ϕ(d(z))

≤ ξ+, (1.12)

where ϕ is defined by

ϕ(t) = ℘←
((∫ t

0

m(s)ds
)−n−1)

for t > 0 small, (1.13)

and ξ± are positive constants given by

(ξ+)n−q

λ1β−
=

(ξ−)n−q

λnβ+
=

[ q−nn+1 ]n+1

1 + l(q−n)
n+1

, (1.14)

where λ1, λn are positive constants which only depend on the strictly pseudonconvex domain Ω.

Corollary 1.1 Let Ω be a ball of radius R > 0 in Cn and f ∈ RVq with q > n. If
g(z) ∼ mn+1(d(z)) as d(z) → 0 for m ∈ �l, then every strictly plurisubharmonic blow-up
solution to (1.4) satisfies

u(z) ∼
{ [ q−nn+1 ]n+1Rn−1

1 + l(q−n)
n+1

} 1
n−q

ϕ(d(z)). (1.15)

Under slightly more restrictive conditions than those in Theorem 1.2, there is at most one
strictly plurisubharmonic blow-up solution to (1.4).

Theorem 1.3 (Uniqueness) Let Ω be a bounded, strictly pseudoconvex domain in Cn with
a smooth boundary. Assume f ∈ RVq with q > n, and f(u)

un is increasing in (0,∞). Then (1.4)
has at most one strictly plurisubharmonic blow-up solution, provided that either

( i) g(z) is positive on Ω, or
(ii) g(z) = 0 on ∂Ω, Ω is a ball of radius R > 0 and g(z) ∼ (m(d(z)))n+1 as d(z) → 0 for

some m ∈ �l.
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2 Preliminaries

As the first step, let us start with some notations that we shall use later. Let z =
(z1, · · · , zn) ∈ Cn. For the complex variables, ∂iju = ∂2u

∂zi∂zj
, uij = ∂iju. A domain Ω ⊂ Cn

with a smooth boundary ∂Ω is called strongly pseudoconvex, if there exists a C∞ function ρ

defined on a neighborhood of ∂Ω, such that dρ 	= 0, and ρ < 0 in Ω; ρ = 0 on ∂Ω; ρ > 0 outside
of Ω. ρ is strictly plurisubharmonic.

Lemma 2.1 Let Ω be an open subset of Cn. If b ∈ C2(Ω) and h ∈ C2(R), then the following
holds:

det ∂ijh(b(z)) = [h′(b(z))]n−1h′′(b(z))〈Co(∂ijb(z))∇b(z),∇b(z) 〉
+ [h′(b(z))]n det ∂ijb(z), ∀ z ∈ Ω, (2.1)

where Co(∂ijb(z)) denotes the cofactor matrix of ∂ijb(z).

We need the following lemma in [11].

Lemma 2.2 Let Ω ⊂ Cn be a domain with a C2 boundary. Let z0 ∈ ∂Ω be a point of strong
pseudoconvexity. Then there exists a neighborhood Z ⊂ Cn of z0 and a biholomorphic mapping
Φ on Z, such that W = Φ(Z ∩ U) is strongly convex.

Lemma 2.3 Let Ω ⊂ Cn be a strictly pseudoconvex domain with a smooth boundary. d(z)
is the distant function for the boundary. Then −d(z) is a smooth defining function for Ω.

Lemma 2.4 There exist λ1 > 0 and λn > 0, such that

λ1|z|2 ≤
∑ ∂2ρ

∂zj∂zk
(z0)zjzk ≤ λn|z|2, z0 ∈ ∂Ω. (2.2)

For μ > 0, we set Γμ = {z ∈ Ω : d(z) < μ}.
Corollary 2.1 Let Ω be a bounded, strictly pseudoconvex domain in Cn with a smooth

boundary. Assume that μ > 0 is small such that d ∈ C2(Γμ) and h ∈ C2(0, μ). Let ẑ0 ∈ Γμ \∂Ω
and z0 ∈ ∂Ω, such that |ẑ0 − z0| = d(z0). Then we have

det ∂ijh(d(ẑ0)) = [−h′(d(ẑ0))]n−1h′′(d(ẑ0))〈Co(∂ijρ(ẑ0))∇ρ(ẑ0),∇ρ(ẑ0) 〉
+ [−h′(d(ẑ0))]n det ∂ijρ(ẑ0), (2.3)

where ρ(z) = −d(z).
We now give a brief account of the definitions and properties of regularity varying functions;

see also [6, 13].

Proposition 2.1 If L is slowly varying, then L(λu)
L(u) tends to 1 as u → ∞, uniformly on

each compact set in (0,∞).

Proposition 2.2 We have
( i ) if R ∈ RVq, then lim

u→∞
R(u)
log u = q.

( ii ) if R1 ∈ RVq1 and R2 ∈ RVq2 with lim
u→∞R2(u) = ∞, then R1 ◦R2 ∈ RVq1q2 .

(iii) suppose that R is non-decreasing and R ∈ RVq, 0 < q <∞. Then R← ∈ RVq−1 .
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(iv) suppose that R1, R2 are non-decreasing and q-varying with q ∈ (0,∞). Then for
c ∈ (0,∞),

lim
u→∞

R1(u)
R2(u)

= c⇐⇒ lim
u→∞

R←1 (u)
R←2 (u)

= c−
1
q . (2.4)

Proposition 2.3 Let R ∈ RVq and choose B ≥ 0, such that R is locally bounded on [B,∞).
If q > 0, then

( i ) sup{R(y) : B ≤ y ≤ u} ∼ R(u) as u→ ∞;
( ii ) inf{R(y) : y ≥ u} ∼ R(u) as u→ ∞.

If q < 0, then
(iii) sup{R(y) : y ≥ u} ∼ R(u) as u→ ∞;
(iv) inf{R(y) : B ≤ y ≤ u} ∼ R(u) as u→ ∞.

The following comparison principle is sometimes useful. For the proof, see for example [9].

Proposition 2.4 (Comparison Principle) Let Ω be a bounded, pseudoconvex domain in
Cn. Assume that f : Ω × R → R is a non-negative function which is increasing in the second
variable. Let u, u ∈ C∞(Ω ∩ PSH(Ω)) and u ∈ C∞(Ω) ∩ PSH(Ω), such that u(z) = ∞ for all
z ∈ ∂Ω. Then

( i) det ∂2u
∂zi∂zj

≤ f(z, u(z)), f(z, u(z)) ≤ det ∂2u
∂zi∂zj

and u ≤ u on ∂Ω imply that u ≤ u in
Ω;

(ii) det ∂2u
∂zi∂zj

≤ f(z, u(z)) and f(z, u(z)) ≤ det ∂2u
∂zi∂zj

imply that u ≤ u in Ω.

Lemma 2.5 Let m ∈ �l and f ∈ RVq with q > n. If ϕ is defined by (1.13), then there
exists a function ψ ∈ C0,τ with τ > 0 which satisfies lim

t→0

ψ(t)
ϕ(t) = 1 and the following:

( i) lim
t→0

ψ(t)ψ′′(t)
[ψ′(t)]2 = 1 + (q−n)l

n+1 ;

(ii) lim
t→0

[−ψ′(t)]n−1ψ′′(t)
mn+1(t)f(ψ(t)) = [n+1

q−n ]n+1[1 + (q−n)l
n+1 ].

The proof of Lemma 2.5 is in [6, Lemma 5.1].

3 The Proof of Existence

We obtained the existence in strictly convex in [14]. Now we can extend the existence to
the strictly pseudoconvex domain.

Moreover, we will construct some radially symmetric and strictly plurisubharmonic functions
that will be used as barriers. The proofs here will be omitted because they bear an analogy to
the real case in [8].

Lemma 3.1 Let η ∈ C1(R) satisfy η(φ) > 0, η′(φ) ≥ 0 for all φ ∈ R. Then for any a > 0,
there is a strictly plurisubharmonic and radially symmetric function v ∈ C2(Ba(0)) satisfying{

det(vij) ≥ evη(v)(1 + |∇v|n), z ∈ Ba(0),
v = +∞, z ∈ ∂Ba(0).

(3.1)

In the sequel, we will denote the function v ∈ C2(Ba(0)) in Lemma 3.1 by va,η. We will
also write va,η(z) = va,η(|z|), since it is radially symmetric.
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A straightforward calculation shows that when p > n the function

w(z) := (1 − |z|2) n+1
n−p (3.2)

is strictly plurisubharmonic and satisfies the inequality

det(wij) ≤ C(n, p)wp, in B1(0), (3.3)

where C is a constant only depending on n and p. By rescaling, we have the following lemma.

Lemma 3.2 Let a,M > 0 and p > n. Define wa,M ∈ C∞(Ba(0)) by

wa,M (z) := λw
(z
a

)
, z ∈ Ba(0), (3.4)

where

λ =
(C(n, p)
a2nM

) 1
p−n

. (3.5)

Then

det(wa,M
ij

) ≤M(wa,M )p, z ∈ Ba(0). (3.6)

In the sequel, we will denote the function wa,M in Lemma 3.2 by h(a). Then we only give
the outline of the proof for the existence Theorem 1.1, because the process is similar to those
in [14].

Proof of Lemma 3.2 Step 1 We first assume Ω to be smooth. For each integer k ≥ 1,
consider the Dirichlet problem{

det(uij) = ψ(z, u,∇u), z ∈ Ω,
u = k, z ∈ ∂Ω.

(3.7)

We can obtain a strictly plurisubharmonic solution uk ∈ C∞(Ω) to (3.7), which satisfies

‖uk‖c2,α(Ω) ≤ C(k), k ≥ 1, (3.8)

where C(k) is a constant depending on k. Moreover, there is an a > 0 depending only on Ω
and a decreasing sequence ak → a (k → ∞), such that

vak,η(a− d(z)) ≤ uk(z) ≤ h(d(z)), ∀ z ∈ Ω, k ≥ 1. (3.9)

The definitions of vak,η and h can be found in Lemmas 3.1 and 3.2.
Step 2 We need to prove an a priori interior estimate which is independent of k. Firstly,

let h, vk denote the functions defined in Ω by

h(z) := h(d(z)), vk(z) := vak,η(a− d(z)), z ∈ Ω. (3.10)

For l > 0 and k ≥ 1, denote

Hl := {z ∈ Ω : h(z) < l}, Uk,l := {z ∈ Ω : uk(z) < l}, Vk,l := {z ∈ Ω : vk(z) < l}. (3.11)
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Now we have Hl ⊂ Uk,l ⊂ Vk,l for each k ≥ 1.
Let K be a compact subset of Ω. We may choose l > 0 and k0 large enough, such that

K ⊂ H l
2

and V k0,4l ⊂ Ω. From (3.8) and (3.9), we see that

|uk| ≤ C0, in Uk,2l, ∀ k ≥ k0, (3.12)

where C0 depends on l, k0 but is independent of k.
Secondly, by the interior estimates in [1, 2, 7], we have

max
Uk,2l

|∇uk| = max
∂Uk,2l

|∇uk| ≤ max
V k0,2l

|∇uk| ≤ C̃

inf
z∈Vk0,2l

dΩz
≡ C1, (3.13)

where C̃ depends only on the Lipschitz constant of ψ
1
n and the diameter of Ω, while C1 depends

on k0, l, C̃ but is independent of k.
Thirdly, applying the result of Blocki in [1, 2] or that of Guan and Spruck in [7], we obtain

‖uij‖(Cα(Hl))
≤ Ĉ

inf
z∈Vk0,2l

d2
Ωz

≤ C3, ∀ k ≥ k0, (3.14)

where C3 depends on C0, C1, k0, l and the Lipschitz constant of ψ
1
n , but is independent of k.

By the theorem of Evans and Krylov, we obtain

‖uk‖C2,α(K) ≤ C,

where C is independent of k.
Step 3 By the above steps, there are a subsequence {ukj} and u ∈ C2,α(Ω), such that

lim
j→∞

‖ukj − u‖C2,α(K) = 0 (3.15)

for any compact subset K ⊂ Ω. We see that u is strictly plurisubharmonic and satisfies (1.1).
This completes the proof of Theorem 1.1 when Ω is smooth.

Step 4 Suppose that Ω is not smooth. We choose a sequence of smooth, strictly pseudo-
convex domains

Ω1 ⊂ · · · ⊂ Ωk ⊂ · · · ⊂ Ω, (3.16)

such that

Ω =
∞⋃
k=1

Ωk. (3.17)

We can obtain u ∈ C2,α(Ω). That u ∈ C∞(Ω) follows from the elliptic regularity theory.

4 The Proof of Asymptotic Behavior

Fix ε ∈ (0, 1
2 ). We choose δ > 0 small enough, such that

(a) m is non-decreasing on (0, 2δ);
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(b) β−mn+1(d(z)) ≤ g(z) ≤ β+mn+1(d(z)) for z ∈ Ω2δ, where for λ > 0, we set Ωλ = {z ∈
Ω : d(z) < λ};

(c) d(z) is a C2 function on Γ2δ = {z ∈ Ω : d(z) < 2δ};
(d) ψ′ < 0 and ψ, ψ′′ > 0 on (0, 2δ), where ψ is as in Lemma 2.5.
Fix τ ∈ (0, δ). With ξ± given by (1.14), we set

η± = [(1 ∓ 2ε)]
1

n−q ξ±. (4.1)

Let us define {
v+
τ (z) = η+ψ(d(z) − τ), ∀ z ∈ Ω2δ \ Ωτ ,
v−τ (z) = η−ψ(d(z) + τ), ∀ z ∈ Ω2δ−τ .

(4.2)

Step 1 We prove that near the boundary, v+
τ (resp. v−τ ) is an upper (resp. lower) solution

to (1.4), that is, {
det ∂ijv

+
τ (z) ≤ g(z)f(v+

τ (z)), ∀ z ∈ Ω2δ \ Ωτ ,
det ∂ijv

−
τ (z) ≥ g(z)f(v−τ (z)), ∀ z ∈ Ω2δ−τ .

(4.3)

By (a) and (b), it suffices to show that{
det ∂ijv

+
τ (z) ≤ β−mn+1(d(z))f(v+

τ (z)), ∀ z ∈ Ω2δ \ Ωτ ,
det ∂ijv

−
τ (z) ≥ β+mn+1(d(z))f(v−τ (z)), ∀ z ∈ Ω2δ−τ .

(4.4)

Using Corollary 2.1, we obtain

det ∂ijv
−
τ = (η−)n[−ψ′(d(z) + τ)]n−1ψ′′(d(z) + τ)〈Co(∂ijρ(z))∇ρ(z)),∇ρ(z)〉

+ (η−)n[−ψ′(d(z) + τ)]n det ∂ijρ(z)

≥ (η−)n[−ψ′(d(z) + τ)]n−1ψ′′(d(z) + τ)〈Co(∂ijρ(z))∇ρ(z)),∇ρ(z)〉

≥ (η−)n

λn
[−ψ′(d(z) + τ)]n−1ψ′′(d(z) + τ), ∀ z ∈ Ω2δ−τ , (4.5)

det ∂ijv
+
τ = (η+)n[−ψ′(d(z) − τ)]n−1ψ′′(d(z) − τ)〈Co(∂ijρ(z))∇ρ(z)),∇ρ(z)〉

+ (η+)n[−ψ′(d(z) − τ)]n det ∂ijρ(z)

= A + B, ∀ z ∈ Ω2δ \ Ωτ , (4.6)

where

A = (η+)n[−ψ′(d(z) − τ)]n−1ψ′′(d(z) − τ)〈Co(∂ijρ(z))∇ρ(z)),∇ρ(z)〉,
B = (η+)n[−ψ′(d(z) − τ)]n det ∂ijρ(z)

and

B ≤ (η+)n(λn)n(−ψ′)n

≤ (η+)n(λn)n
(−ψ′)n−1ψ′′(−ψ′)

ψ′′

= (η+)n(λn)n(−ψ′)n−1ψ′′
(−ψ′)(−ψ′)

ψ′′ψ
ψ

−ψ′ . (4.7)
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In the proof of Lemma 2.5, we have (5.4) in [6]

ψ

−ψ′ ∼
(q − n)
(n+ 1)

∫ t
0
m(s)ds
m(t)

, (4.8)

where

lim
t→0+

∫ t
0 m(s)ds
m(t)

= 0. (4.9)

So by Lemma 2.5, lim
d(z)→0

B = 0. We only need to consider A.

A ≤ (η+)n

λ1
(−ψ′(d(z) − τ))n−1ψ′′(d(z) − τ), (4.10)

det ∂ijv
+
τ ≤ (η+)n

λ1
[−ψ′(d(z) − τ)]n−1ψ′′(d(z) − τ), ∀ z ∈ Ω2δ \ Ωτ . (4.11)

Therefore, to deduce (4.4), it is enough to establish

lim
t→0

(η+)n

λ1β−
[−ψ′(t)]n−1ψ′′(t)
mn+1(t)f(η+ψ(t))

= 1 − 2ε, (4.12)

lim
t→0

(η−)n

λnβ+

[−ψ′(t)]n−1ψ′′(t)
mn+1(t)f(η−ψ(t))

= 1 + 2ε. (4.13)

Since f ∈ RVq, (4.12) and (4.13) are valid thanks to Lemma 2.5 and our choice of η± in (4.1).
Step 2 Every strictly plurisubharmonic blow-up solution u∞ to (1.4) satisfies (1.12).
Let C = max

d(z)=δ
u∞(z). Notice that

{
v+
τ (z) + C = ∞ > u∞(z), ∀ z ∈ Ω with d(z) = τ,
v+
τ (z) + C ≥ u∞(z), ∀ z ∈ Ω with d(z) = δ.

(4.14)

Using (4.3), we deduce that, for every z ∈ Ωδ \ Ωτ ,

det ∂ij(v
+
τ (z) + C) = det ∂ij(v

+
τ (z)) ≤ g(z)f(v+

τ (z)) ≤ g(z)f(v+
τ (z) + C). (4.15)

Since u∞ is a solution to (1.4), by Proposition 2.4, we find

v+
τ (z) + C ≥ u∞(z), ∀ z ∈ Ωδ \ Ωτ . (4.16)

We set C′ = ξ−ψ(δ). Hence, we have C′ ≥ v−τ (z) for every z ∈ Ω with d(z) = δ − τ . It follows
that

u∞(z) + C′ ≥ v−τ (z), ∀ z ∈ ∂Ωδ−τ . (4.17)

We see that, for every z ∈ Ωδ−τ ,

det ∂ij(u∞(z) + C′) = det ∂ij(u∞(z)) = g(z)f(u∞(z)) ≤ g(z)f(u∞(z) + C′), (4.18)

while by (4.3) we have

det ∂ijv
−
τ (z) ≥ g(z)f(v−τ (z)), ∀ z ∈ Ωδ−τ . (4.19)
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Using again Proposition 2.4, we infer that

u∞(z) + C′ ≥ v−τ (z), ∀ z ∈ Ωδ−τ . (4.20)

By (4.16) and (4.20), letting τ → 0, we obtain{
(1 + 2ε)

1
n−q ξ−ψ(d(z)) − C′ ≤ u∞(z), ∀ z ∈ Ωδ,

u∞(z) ≤ (1 − 2ε)
1

n−q ξ+ψ(d(z)) + C, ∀ z ∈ Ωδ.
(4.21)

Dividing by ψ(d(z)) and letting d(z) → 0, we obtain⎧⎪⎪⎨⎪⎪⎩
lim inf
d(z)→0

u∞(z)
ψ(d(z))

≥ (1 + 2ε)
1

n−q ξ−,

lim sup
d(z)→0

u∞(z)
ψ(d(z))

≤ (1 − 2ε)
1

n−q ξ+.
(4.22)

Since ε > 0 is arbitary, we let ε→ 0 and conclude (1.12). This completes the proof of Theorem
1.2.

5 The Proof of Uniqueness

Now we divide the proof of uniqueness into two steps.
Step 1 For the strictly plurisubharmonic blow-up solutions u1, u2 to (1.4), it holds that

lim
d(z)→0

u1(z)
u2(z)

= 1. (5.1)

Since u1, u2 are arbitrary, it suffices to show that

lim inf
d(z)→0

u1(z)
u2(z)

≥ 1. (5.2)

Without loss of generality, we can assume that 0 belongs to Ω.
Case 1 Let ε ∈ (0, 1) be fixed, and let λ > 1 be close to 1.
We set

Cλ =
[(

(1 + ε)λ2n max
z∈( 1

λ )Ω

g(λz)
g(z)

)] 1
q−n

, (5.3)

where ( 1
λ )Ω = {( 1

λ )z : z ∈ Ω}. Note that Cλ → (1 + ε)
1

q−n as λ→ 1.
Hence by Proposition 2.1 and lim

d(z)→0
u1(z) = ∞, we deduce that there exists a δ = δ(ε) > 0,

independent of λ, such that

Cqλ
f(u1)
f(Cλu1)

≤ 1 + ε, ∀ z ∈ Ωδ and λ close to 1. (5.4)

We now define Uλ as

Uλ(z) = Cλu1(λz), z ∈
( 1
λ

)
Ωδ. (5.5)
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We infer that

det
∂2Uλ
∂zi∂zj

= λ2nCnλg(λz)f(u1(λz))

≤ λ2nCn−qλ g(λz)f(Cλu1(λz))

≤ g(z)f(Cλu1(λz))

= g(z)f(Uλ(z)), z ∈
( 1
λ

)
Ωδ, (5.6)

that is, Uλ(z) is a supersolution of (1.4).
Since f is increasing in (0,∞), for each constant M > 0,

det
∂2(Uλ +M)
∂zi∂zj

= det
∂2Uλ
∂zi∂zj

≤ g(z)f(Uλ(z)) ≤ g(z)f(Uλ(z) +M). (5.7)

Note that Uλ(z) = ∞ > u2(z) for z ∈ ( 1
λ )∂Ω. Moreover, if we choose M = max

d(z)=δ
u2(z), by

Proposition 2.4, we obtain

Uλ(z) +M ≥ u2(z), ∀ z ∈ Ωδ ∩
( 1
λ

)
Ωδ. (5.8)

Letting λ→ 1, we find

(1 + ε)
1

q−n u1(z) +M ≥ u2(z), ∀ z ∈ Ωδ, (5.9)

which implies that

lim inf
d(z)→0

u1

u2
≥ (1 + ε)

1
n−q . (5.10)

Then, letting ε→ 0, we obtain (5.2).
Case 2 g(z) = 0 on ∂Ω, by Corollary 1.1, every plurisubharmonic blow-up solution u to

(1.4) satisfies

lim
d(z)→0

u(z)
ϕ(d(z)

=
{ [ q−nn+1 ]n+1Rn−1

1 + l(q−n)
n+1

} 1
n−q

. (5.11)

Hence, the assertion of Step 1 is proved in both cases.
Step 2 There is at most one strictly plurisubharmonic blow-up solution to (1.4). If u1, u2

are arbitrary, strictly plurisubharmonic blow-up solutions to (1.4), it suffices to show that
u1 ≤ u2 in Ω. Fixing δ > 0, by Step 1, we infer that

lim
d(z)→0

[u1(z) − (1 + δ)u2(z)] = −∞. (5.12)

Since f(u)
un is increasing, we deduce that

det
∂2(1 + δ)u2(z)

∂zi∂zj
≤ g(z)f((1 + δ)u2(z)), ∀ z ∈ Ω. (5.13)

By (5.12)–(5.13) and Proposition 2.4, we find u1(z) ≤ (1 + δ)u2(z) in Ω. Letting δ → 0, we
obtain u1 ≤ u2 in Ω. This completes the proof of Theorem 1.3.
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