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Abstract The authors take all isomorphism classes of indecomposable representations as
new generators, and obtain all skew-commutators between these generators by using the
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Grobner-Shirshov basis for quantum group of type Dy.
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1 Introduction

The Grobner basis theory for commutative algebras was introduced by Buchberger [4], and
provided a solution to the reduction problem for commutative algebras. It gives an algorithm
of computing a set of generators for a given ideal of a commutative ring which can be used to
determine the reduced elements with respect to the relations given by the ideal. In [1], Bergman
generalized the Grobner basis theory to associative algebras by providing the Diamond Lemma.

The Grobner basis theory for Lie algebras was developed by Shirshov [12]. The key ingre-
dient of the theory is the so-called Composition Lemma which characterizes the leading terms
of elements in the given ideal. In [2], Bokut noticed that Shirshov’s method works for asso-
ciative algebras as well. For this reason, Shirshov’s theory for Lie algebras and their universal
enveloping algebras is called the Grobner-Shirshov basis theory.

In [3], Bokut and Malcolmson developed the theory of Grébner-Shirshov basis for the quan-
tum enveloping algebras, or the so-called quantum groups, and by using the Jimbo relations
given by Yamane [13], they explicitly constructed the basis for the quantum group of type A,
for ¢® # 1. The Grobner-Shirshov basis for quantum groups of other types is not known. The
main reason for this, from our point of view, may be that the construction of the so-called
Jimbo relations for other types by the method of Yamane is very difficult.

In [10], for constructing a PBW type basis for quantum groups, Ringel constructed a generat-
ing sequence for Ringel-Hall algebras and some skew commutator relations for these generators
by using the Auslander-Reiten theory. In this paper, by using the Ringel’s method, we compute
all skew-commutator relations for the quantum group of type D4. Then using the canonical
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isomorphism between the positive parts of quantum groups and the Ringel-Hall algebras, we
give a Grobner-Shirshov basis for quantum group of type D4. This may give a new idea to get
a Grobner-Shirshov basis for the quantum group of type D,,.

2 Some Preliminaries

In this section, we recall some notions about Grébner-Shirshov basis theory of quantum
groups and the Ringel-Hall algebras, respectively.

First, we recall some basic notions about Grébner-Shirshov basis theory from [3]. Let k be
a field and X a non-empty set of alphabets. Let (X) and k(X) be the free semigroup with 1
and the free algebra generated by X, respectively. We choose a monomial ordering < on (X)
in order to determine the leading term f for each element f € k(X). An element f € k(X) is
called monic if the coefficient of the leading term f is 1 € k. If f and g are monic elements in
k(X) with leading terms f and g, there is a so-called composition of intersection if there are
a and b in (X) such that fa = b7 = w with the total length of f being larger than that of
b. We write (f,9)w = fa — bg in that case and note that the leading term m < w. There
is a composition of inclusion if there are a and b in (X) such that f = agb = w. We write
(f,9)w = f — agb in that case and again note that the leading term is less than w.

Let us take some sets of relations S C k(X)) (which, we assume, consists of monic elements).
Let us denote by () the ideal generated by S in k(X). Let p,q € k(X) and w € (X). We define
an equivalence relation on k(X) as follows: p = ¢ mod(S;w) if and only if p — g = > a;a;s:b;,
where o; € k, a;,b; € (X), s; € S, a;s;b; < w. We say that S is closed under composition if for
any f,g € S we have (f,g), = 0 mod (S;w), whenever the composition (f,g), is defined. In
this case, we say that the composition (f, g),, is trivial with respect to S. If S is not closed under
composition, then we need to expand S by including all nontrivial compositions (inductively) to
obtain a completion S€. If S is complete (i.e., closed under composition) in this sense (5S¢ = 5),
then Shirshov’s Lemma (see [12]) tells us that any monic element f € (S) has a reducible
leading term f = a3b, where s € S and a,b € (X). That lemma also tells us that a linear basis
for the factor algebra k(X)/(S) (i.e., as a vector space over k) may be obtained by taking the
set of irreducible monomials in (X).

The set S is then referred to as a Grobner-Shirshov basis for the ideal (S). By abusing the
definition, we may also refer to S as a Grobner-Shirshov basis for the factor algebra k(X)/(S).
The set S is called a minimal Grébner-Shirshov basis if there is no inclusion composition in S.

Next, we recall the definition of quantum groups from [6] and [8].

Let A = (ai;) be an integral symmetrizable N x N Cartan matrix, so that a;; = 2, a;; <
0 (i # j), and there exists a diagonal matrix D with nonzero integer diagonal entries d; such
that the product DA is symmetric. Let ¢ be a nonzero element of k so that ¢*? # 1 for each i.
Then the quantum group U, (A) is the k-algebra generated by 4N elements E;, K iﬂ, F;, subject
to the following set of relations (for 1 <4,j < N):

K ={KK; - K;K;, K;K; ' =1, K;'K; — 1, E;K — g% KEE,
K Py — = Fy K,

K} - K * }
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Let UJ(A) be the subalgebra of U,(A) generated by K*' Let US(A) (resp. U; (A)) be
the subalgebra of U,(A) generated by E; (resp. F;). Then we have the following triangular
decomposition of Uy (A) (see [11]):

Uqy(A) = U (A) @ UN(A) @ U, (A).

The main result in [3] is as follows.

Theorem 2.1 If the set ST¢ (resp. S™¢) is a Griobner-Shirshov basis of U; (A) (resp.
U; (A)), then the set STCUK UT US™¢ is a Grobner-Shirshov basis of Uy(A).

q

Finally, we recall some basic notions about the twisted generic Ringel-Hall algebras. Because
we only consider the quantum group of type D, in this paper, we recall the relevant notions
directly for the finite dimensional hereditary algebra of Dynkin type from [5].

Let F be a finite field, Zj a (connected) quiver with the underlying graph @ of Dynkin type,
that is, @ € {A,,Dy,,E¢,E7,Eg}. Then it is well-known that the path algebra A(F, Cj) = IF@
is a finite dimensional hereditaty F-algebra of ﬁnite_fepresentation type. By A(F, (jj)—mod, we

denote the category of finite dimensional right A(F, @ )-modules. For M, Ny,--- , N, € A(F, 6)—
mod, let FJJ\\/{,...,N,, be the number of filtrations

M=My2M; 2 -2 M;_1 2 M =0,

such that M;_1/M; =2 N; for all 1 <i <.

For each M € A(F, 5)—mod, we denote by [M] the isomorphism class of M and by dim M
the dimension vector of the A(F, 5)—module M. We have the well-known Euler form (—, —)
defined by

(dim M, dim N) = dim Homy (M, N) — dim Ext} (M, N).

Note that (—,—) is the symmetrization of (—, —).

Let v be an indeterminate and Q(v) be the rational function field of v over the field Q of
rational numbers and set v? = ¢. In order to define the twisted generic Ringel-Hall algebra, we
recall the notion of Hall polynomials.

For a Dynkin diagram @, there is the corresponding semisimple Lie algebra g. Let ®T be the
set of positive roots of g. According to [7], dim is a bijection between the set of the isomorphism
classes of the indecomposable modules and the set of positive roots ®T of g. For each o € ®T, let
My () denote the corresponding indecomposable A(F, 5)—module; thus dim Mp(«) = «. By the
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Krull-Schmidt theorem, every A(F, 5)—modu1e My is isomorphic to Mp(A) = @ A(a)Mr(a)
acdt

for some function A : ®T — N. Thus, isoclasses of A(F, 5)—modules are indexed by the set
B=B(Q)={\\: &+ — N},

which is independent of the finite field F. To be consistent, we view each o € ®T as the function

dt — N, 3+ J,,p5. For later use, we denote by «; the ith simple root in ®* and \; the
—

function @+ — N, §+— §,, g. For any finite field F and A\, u € B(Q), we define

(1) = (dim Mg(\), dim Mz (1)).
Then we have the result below.

Theorem 2.2 (see [9]) Assume that Zj is a Dynkin quiver. For any \,pu,p € B = %(6),
there exists a polynomial o), ,(T) € Z[T], such that

N _ Mr(N)
@H,p(HFD - FM;(/L)7MF(p)

holds for each finite field FF.

Now, we are ready to define the twisted generic Ringel-Hall algebra.

Definition 2.1 The twisted generic Ringel-Hall algebra H(a) of Dynkin quiver 6 is the

—
free Q(v)-module having basis {ux | A € B(Q)} with multiplication defined by
u,u, = viP) Z (p/);’p(UQ)’U,)\.
AeB(Q)

Then H(A) is an associative algebra with identity 1 = ug, where O denotes the zero function in

—
B(Q).

From now on, we fix k = Q(v). Let (3 be a Dynkin quiver with an underlying graph @ and
g the corresponding semisimple Lie algebra. Then the main result in [9] is as follows.

Theorem 2.3 The map 1 : U (g) — H(a) given by n(E;) = upy,) is a Q(v)-algebra
isomorphism.

3 Grobner-Shirshov Basis of Quantum Group of Type D4

Throughout this section, quantum group U,(g) means the quantum group Uy, of type Dy:

The corresponding Cartan matrix A is

-1 2 0 0
A= -1 0 2 0
-1 0 0 2
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and the Auslander-Reiten quiver of the algebra given by Dy is the following:

1 0
0 11
0 1

0 0 1 1 1 0

e1 =10 1 21 10 11 01
0 1 1 1
O/ \ 1/’ \
0 11
1 0

1
1 0o
0

0
00
1

= eg
=e3
= ey

1
0\
1
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where eq, es, e3, e4 are the dimension vectors of simple representations. By abuse of notations,

we also denote by eq, es, e3, €4 the simple representations.

In the Ringel-Hall algebra H(TD)>4), we consider the following elements:

M3s
M33

M3y

_ . i(dime;,dime;)—dimpe; _
=v3 7 Uley] = Ulen]s

1od; : .
_ ,,5(dim(ei14e2),dim(ei+e2))—dimy (e1+e2) ) |
=v? Uler+es] =V Ulertes)

_ . 3 (dim(e;+e3),dim(e1+es))—dimg(e1+es) ) |
=v? Uley+es] = U Uleg+es]s

_ o A(di +eq),di + —dimp, (e1+ _ -1
— pa(dim(eites),dim(eites)) k(e1 64)u[61+e4] = 0 My ten)s

_ o A(dim(2e1+extez+eq),dim(2e; +ea+es+es))—dimy (2e1 +eate3+e
— 3l (2e1+e2+es+eq) (2e1+eztestes)) k(2e1+extes 4)u[261+62+63+64]

—4
U U2e;+esr+es+tea]s

1(qs . )
_ ,,5(dim(e;+ez+es),dim(er1+ez+eq))—dimg(e1+esz+eq) _ =2
=v? Uley+es+ea] = U " Uley+estea]

_ . 2 (dim(e;+exteq),dim(er+ezteq))—dimy(e1+eateq) _ =2
=v? Uleyteztes) =V Uleytertes]

__ . 2 (dim(e;+ez+es),dim(er+eztes))—dimy(e1+eates) =2
=v? Uley+eztes] =V Uleyteztes)

— ,,5(di +ez2testes),di +eatestes))—dimg(e1+eatest
—’U2( im(eitextes+es),dim(er+eatesteq)) k(e1tez+es e4)u[61+62+e3+64]

.3
=V Uleytertesztea]s

— v % (dim ez, dim es)—dimges "

[e2] = Ulea]s
_ ,U%(dime‘v,,dime‘v,)fdimke?,u S
- les] = Yles]»
_ . 3(dimey,dimey)—dimpes _
= V2 Uley] = Uley]-

For convenience, we use the following notations:

Cy = {((m,n)(i,5)) | m=ie{l,2,3}, n€{3,4}, j €{2,3} and n > j},

Ch = {((m.n)(i.4) | m =i € {1,2,3}, ne {2.3.4), j =1},

Cs = {((man)(laj)) | m=3,i=1,n=j¢ {2’374}}5

Cy={((m,n)(%,5)) |me{2,3}, i=m—1, ne{1,2,3,4}, j € {2,3,4} and n # j},

C5 = {((m,n)(z,j)) | m = 37 n e {2,3,4}7 Z:] = ]_},
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Cs = {((m,n)(i,5)) | m =3, i =1, n,j€{2,3,4} and n # j},
Cr = {((m,n)(i,7)) | m e€{2,3}, i=m—1, n=je{23,4}},
Cs = {((m,n)(i,5)) |m =3, n=i=1, j€{2,3,4}},

Co = {((m,n)(i, 7)) [ m €{2,3}, i=m—1, n€{2,3,4}, j =1},
Cio = {((m,n)(i, 7)) | m €{2,3}, i=m—1, n=j=1}

Ci = {((m,n)(i, 7)) |m =3, i=n=j=1}.

Then by using the Auslander-Reiten quiver, we get the following relations:

anMij = Miijm ((m7n)(17])) € Cl’
anMij = UMiijn, ((m,n)(z,j)) € CoUC3U Cy,
anMij = U_lMiijn + My, ((m,n)(z,])) € Cs,
anMij = UﬁlMiijn + M2r7 ((m,n)(z,j)) € CG;
where r € {2,3,4} and r # n, r # j,
anMij = UﬁlMiijn + Mmlv ((m,n)(z,j)) € C7a

My Mi; = Mij My + (v — v )My, Mag,  ((m,n)(i,5)) € Cs,
where r,s € {2,3,4}, and j # 71, j# s, r<s,

MynM;; = Mij My + (v — v )M Mg,  ((m,n)(i,5)) € Oy,
wherer,s € {2,3,4} and n#r, n#£s, r < s,

M Mij = OM;i My + (V2 — 2+ v 2)MjaMis Mg,  ((m,n)(i,5)) € Cho,
MynMi; = v M Moy, + (v — 207 Moy + (1 — v™2) M2 Moo
+(1 = v 2)MygMas + (1 — v™2)M14May, ((m,n)(i,5)) € Ci1.

Since e1, eg, e and ey4 are the simple modules corresponding to vertices 1, 2, 3 and 4, respec-
tively, it follows that M1 = ufe,], M2 = Uje,), M33 = U[e,), Mz4 = u[e,). Let

Ei1=Ei =n"Y(Mu1), Eis=FE3=n"Y(Mss), E1x=n"1(M), FEoz=mn""1(Mag),
Ey = E3p =Y (Msz), Eio=n"1(Mya), Eor =07 (Ma1), Eau =1 (Mas),
E5 = Es3 =0 Y(Mss), FEiz=n""(Mis), By = n Y (M), FEs1=n""(Ms1),

where 7 is the isomorphism in Theorem 2.3, and let

X ={E\1, B2, E13, Ev4, Eo1, Eag, Eg3, Eou, E31, Es2, E33, E34}.
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Then we have the following relations (under the isomorphism ~! in Theorem 2.3):

EpnEij = EijEmp + (v — v 1) Ea, o,

EpnEij = EijEpmn + (v — v By By,

EpnEij =vE;; Epy + (V2 -2+ v )E;Ei3Ey,

EnnEi; = ’U_lEijEmn + (v =20"YEy + (1 — v 2)E12F2
+(1 —v72)E13F23 + (1 — v~ 2)E14 Eay, ((m,n)(i, 7)) € Cr1.

3

3
\.® .

EnnEij = EijEmn, ((m,n)(3,7)) € Ch,
EmnEij = VEijEpny, ((m,n)(i,7)) € Co,
EmnEij = vE;;Epy, ((m,n)(3,7)) € Cs,
EmnEij = VEijEpn, ((m,n)(i,7)) € Cq,
EpnEij = v EijEppn + E1p, ((m,n)(i,5)) € Cs,
EmnEij = v ' EijEpn + Ear, ((m,n)(i, 7)) € Ce, (3.1)
EmnEij =0 'EijEppn + Ema, ((m,n)(i,7)) € Cr,
((m, n)(i, 7))
((m,n) (@ 7))
((m, n)(i, 7))

~

S ClOa

3
\.N .

Note that the relations (3.1) include the Serre relations ST. So U,f(A) can be viewed as a
factor algebra Q(v)(X)/I, where I is the ideal generated by the relations (3.1).
We define an ordering

Ei < By < Ei3 < By < Foy < By < Eog < Foy < B3 < E3p < F33 < B3y

for the elements E11, E12, E13, F14, Eo1, Eoo, Fos3, Foy, F31, E32, F33, F34, and then this ordering
induces a degree-lexicographical ordering on the monomials of these elements. For convenience,
we denote by r1,---,711, respectively, the polynomials obtained from the relations in (3.1) by
subtracting the right-hand side from the left-hand side, and let ST¢ = {ry,ra, -+ ,r11}. Then,
of course, ST C $7¢, and we have the following theorem.

Theorem 3.1 The set ST¢ is a Grobner-Shirshov basis of the algebra Ut (A).

Proof The possible compositions between the elements of ST¢ can be divided into 32 cases.
We only prove the triviality of three cases, and the proofs of other cases are similar.

Case 1 Let f =T4 = EmnEij — UEijEmn, g =T4 = EijEkl — ’UEklEij, w = EmnEijEkh
where ((m,n)(¢,7)), ((¢,5)(k,1)) € Cy4 and ((m,n)(k,1)) € Cs5,Cq or Cs. We consider the fol-
lowing different cases:

(1.1) If ((m,n)(i,5)), ((4,5)(k, 1)) € C4q and ((m,n)(k,1)) € Cs, then

(f,9)w = —VEijEpnEx + VEpnEEij mod(S™C, By Eij Ery)

~02Eij By Eyn + V2 By B By mod(S1e, B By Ery)

= 0 EuEijEmn + V¥ EyEij By mod(S™6, By Eij Exy)
=0 mOd(SJrC, EmnEijEkl)~
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(1.2) If ((m,n)(i,7)),((i,7)(k, 1)) € Cq and ((m,n)(k,1)) € Cg, then
(f,9)w = —VEjjEnn By + VEpn By E;j mod(ST¢, EnnEijEw)
= —vE;j[v ' EEmn + Eay]l + 00 By B, + By |Eij mod(S™6, EpnEij Exy)
= —vEwE;jEmn — VEi; By + VEEij Evpn + 0o, Eij  mod(S1, By Eij Exy)
=0 mod(S*, EpnEijEr),

where i =2, j = 1.

(1.3) It ((m,n)(i, 7)), ((i,5)(k, 1)) € Ca, ((4,5)(2,7)), ((i,5)(2,5)) € Cr and ((m,n)(k,1)) €
Cs, then

(f,9)w = —VEijEpnEx + VEmn B E;j  mod(S1, By Eij Ery)
= —vE;[ExEmn + (v — v 1) Eoy By
+ VB Epn + (v — 0" ) Ea Egg)|E;j - mod(S™¢, Epun Eij Eri)
= —0?EpEijEmn — (V2 — 1)E;j By, Faq
+ VB Eij Eyn + (V2 — 1) Eo, Eog By mod (ST, B Bij Exy)
=—(v? - 1)EsEssEij + (v? - 1)EarEzsEij  mod(S™, Enp EijEyr)
=0 mod(S*, EnmnEijEw).

Case 2 Let f =79 = EppnEij— EijEpn— (V—v"Y)EyEis, g =14 = Eij By —vE Eij, w =
EpnEij By, where ((m,n)(7,7)) € Co, ((¢,7)(k,1)) € Cs and ((m,n)(k,l)) € C5 or Cs. We
consider the following different cases:

(2.1) If ((m,n)(k,1)) € Cs, ((2,r)(k,1)),((2,5)(k,1)) € Cy, then

(f9)w = —EijEmnFr — (0 — v )EyEisEx + VEmn Eg Eij mod(S™¢, B Eij Exy)
= —vEjEuEmnn — (v —v NEyEisEy + v Eg EpnEij mod(S1E, B Eij Ex)
= —V’EnEijEmy — (0 — v E; EisEy + v Ey Eij By,

+ (U3 — U)EklEirEis mOd(SJrC, EmnEijEkl)

—(U — Uﬁl)inrEklEis -+ (U3 - U)EklEirEis mOd(SJrC, EmnEijEkl)

—(U — ’U_l)UQEklEi,«Eis + (U3 — 'U)EklEirEis mod(S+C, EmnEijEkl)

=0 mod(S™C, EpnEijEx).
(2.2) It ((m,n)(k,1)) € Cg, then
(f,9)0 = —EijEmnErn — (v —v YEi EisEy + VEmp EqE;; mod(S™¢, EpnEijEx)

= —E;j[v ' EyEmn + Bay]l — (v — v N E; Eis By
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+ v BBy + BoEi;j mod(S™¢, EpnEij Exi)
= —FEuE;jEmn — EijEy — (v — 0" Y)E; EisEy + EEij Emy
+ (=0 NEuE;yEis + vEy%Ej mod(S1E, EpnEij Ex)

=—FijFy — (v—v YEyEisEy + (v — v Y Ey By B
+vEyE;j mod(ST¢, EpnEijEx).

If ((¢,7)(k, 1)) € C7, ((i,s)(k,1)) € C4, ((2,¢)(i,7)) € Ca, then
(f,9)w = —EijEsy — (v — 1) By EgEis + (v — v ) EEi Ejs
+v?EijFyy mod(SYC, EpnEij Exp)
=—(v—v ")EuEyEis — (vV* = 1)EnEis + (v — v ") Ex By By
+ (vV* = 1)E;jEy mod(S5"°, Eppn Eij Egt)
=0 mod(ST, EmnEijEw),

where i =2, j=1,1t=s.

If ((i,7)(k,1)) € C4, ((,8)(k,1)) € C7, ((2,£)(i,5)) € Ca, ((3,7)(i,1)) € Cy, then
(f,9)o = —EijEy — (v—v )Ey[v ' EnEis + En|
+ (v = v NEuE;Eis + v?EijEyy mod(SYe, By Eij Exp)
=-FijFy — (v—v YEwEiEis — (v—v YE; En
+ (=0 YEuEyEis + v?E;jFByy mod(S1E, Epn Eij Eg)
= —F;;Fy — (v — 1)EqEip +v?EijEy mod(S™¢, B Eij Exy)
=0 mod(S', EmnEijEw),

where i =2, j=1,t=r.
Case 3 Let

f=r10=E3Ey —vEnE3 — (V2 =2+ v ) EyEpFay

and

g =710 = Fo1E11 —vE11 B — (V2 — 2+ 0 ?)E19E13E1s, w= F31Fa Ery.

Then
(f,9)w = —VE2 E31E1y — (02 — 24 v 2)Egg Fo3 FoyFy1 + vE31 By By
+ (? =24+ v 3 E3 E19E13E1, mod(STC, By Eij Exy)
= —wEn[v ' BB + (v —2v")Ey + (1 —v 2)EaEg + (1 — v ?)Ei3E3

+ (1 = v ) E14E2) — (v — 24+ v ) By Fo3[E11Fag + (v — v ') E19Ey3)

589
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+o[vT E1iEs 4+ (v —2v" ) Ea + (1 — v ?)EroFos

+ (1 —v ) Ei3E3 + (1 — v 2)E14F4) Foy

+ (0 =24+ v ) [E19E3 + (v — v ) Ey3Eoy]F13F1y mod(SYe, B, Eij Ex)
= —Fy1F11F3 — (v = 2)Ey By — (v — v ) Ea1 E1o B2y — (v — v 1) By F13Fa3

— (V= v Y By F14Fay — (v — 2+ v %) Egg[E11 oz + (v — v 1) E12E14]Foy

— (0¥ = 3v+ 30 — v EpEyE19F13 + E11 E3y1 oy + (02 — 2)Eg Egy

+ (v — v " )E12EpnFy + (v — v ) E13EsEn + (v— v ") BBy Eyn

+ (v =24+ v ) E[E13Es + (v — v 1) EygEsy)Fuy

+ (0¥ = 3v+ 30 — v Eyp oy F13Fy mod(ST, By EiiEr)
= —wE1Fy1 B3 — (V2 =2+ 0 2 E19F13E14E3; — (v — 1)E12E2 Eay

— (v = 1)E13E21 B3 — (v? — 1)E14Eo1 Eoy — (v* — 24+ v 2)[Ey1 Ea

+ (v = v V) E13E14]EysEoy — (v —3v 4+ 3v7! — v 3)EgyE19E14Foy

— (v* =30 +3 —v ) EgF19E3 E13 + vE11 Fo1 F3y

+ (V? =2+ v ) B By B3 Foy + (V2 — 1)E19E2 oy + (v? — 1)E13E2 Fo3

+ (V% = 1)E14Fo1 By + (v? — 2 + v 2)E12E13[F14E31 + (v — v~ 1) Bag B3]

— (0® = 3v+ 30" —v ) E1pEyn EaFy

+ (v* =302 + 3 —v 2 Eg3F13F04F1y mod(STC, By Eij Er)
= —(v® =2+ 0 ) EpEi1sEuEs — (V2 — 2+ 0 %) By By EysEoy

— (v =3v+30t - ’U_B)E13E14E23E24 — (v3 —3v+3v - v_3)[v_1E12E22

+ Eo1|E14Fay — (v = 302 +3 — v %) [0 E19Fay + Eo][v ' E13E23 + Eai]

+ (v? =24+ v 3 E11 By Bog oy + (v — 24+ v 3 EpE13E1, B3y

+ (W =3v+ 30 —v ) E12E13F92 Fos

+ (v® = 3v+ 307" — v ) EppEp[v ! E1yFoy + Ea]

— (W =30 +3 —v ) [v  E13Ea3 + Ear|[v ' E1yEay + Eoy] mod(STC, EpnEij Exy)
= (¥ —3v+3v —v ) E13E14E3Fey — (V¥ =30+ 30 — 0 ) E19E14Fa By

— (W' =30 +3 - v HEEynFoy — (0¥ —3v+3v! —v ) EaEi13F93Fas

— (U4 — 302 +3— U72)E12E21E22 — (U4 — 30?2 +3— U72)E13E21E23
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—(W* =30 +3—v ) EyFo + (0¥ —3v+ 30" — v ) E19F13F90 Eas
+ (0¥ =3v 4307 — v E19E14Fag Foy + (v — 302 + 3 — v %) E12E9 Ea
+(0® =304+ 30 — 0 E13E14 B3 Eay + (vt — 30? +3 — v 2)E13E0 B
+ (v = 30? +3 — v ) EFy Eay + (v — 30% +3 — v ) By Foy

=0 mod(S*, EynnEijEw).

Dually, by replacing all E’s in (3.1) by F’s, we get similar relations, say (3.1)’, for the
generators

Y = {Fi1, Fia, Fi3, Fia, Fo1, Fao, Fo3, Fou, F31, F39, F33, F34}

of subalgebra U, (A). It is easy to see that relations (3.1)" include the Serre relations S~. So,
similarly, if J is the ideal generated by the relations (3.1), then the negative part U, (A) of
quantum group U, (A) can be viewed as a factor algebra Q(v)(Y")/J of the free algebra Q(v)(Y")
generated by the set Y.

We define an ordering

Fi1 < Fio < Fi3 < Fiy < Fo1 < Fop < Foz < Foy < F31 < F39 < F33 < F3y

for the elements F11, Flg, F13, F14, F21, FQQ, F23, F24, F31, F32, F33, F34. Then this ordering in-
duces a degree-lexicographical ordering on the monomials of these elements. In a way similar
to the discussions in the positive part, we denote the polynomials obtained from the relations
n (3.1) by f1,---, f11, and let S7¢ = {f1, fo, -+, fi1}. Then, of course, S~ C S~¢, and we
have the following theorem.

Theorem 3.2 The set S~¢ is a Grébner-Shirshov basis of the algebra U, (A).

If we define an ordering

Fi1 < Eio < B3 < Fi14 < Ey1 < Eoy < Fog < Foy < F31 < E39 < F33 < B3y < K1 < K»
< K3 < K4 < Fi1 < Fia < Fiz3 < Fiy < Fo1 < Fog < Foz < Fyy < F31 < F39 < F33 < F3y

for the elements Eq1, E12, E13, E14, Fo1, Eog, Eos, Eoy, E31, E3o, Ess, B3, K1, Ko, K3, Ky, Fi1,
Fio, Fi3, F1y, Fo1, Foo, Fos, Foy, F31, F3o, F33, F34, then this ordering induces a degree-lexicogra-
phical ordering on the monomials of these elements. Now, by [3, Theorem 2.7], we are able to
state our main result.

Theorem 3.3 The set STCUK UTUS™¢ is a Grobner-Shirshov basis of the quantum group
Uy(A).

Acknowledgement The authors are grateful to the referee for helpful suggestions and
comments.
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