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1 Introduction

Let X be a discrete metric space with bounded geometry. Associated to X , there is a C∗-
algebra C∗(X) called Roe algebra. The coarse Baum-Connes conjecture states that the coarse
assembly map μ : KX∗(X) → K∗(C∗(X)) is an isomorphism. It plays a very important role in
topology and geometry. In [11], Yu showed that the coarse Baum-Connes conjecture holds in
the case that X is uniformly embedded into a Hilbert space. Inspired by Gromov’s expander
graph structure, Higson [6] gave a counterexample to the coarse Baum-Connes conjecture.
The relevant construction is the box space X(Γ) of an infinite group Γ with property T, the
residually finite and linear type, that is, the coarse disjoint union of the quotient groups Γ/Γn.
In Higson’s original construction (see [7]), there is an algebraic lifting principle, that is, an
operator T ∈ C∗

alg(X(Γ)) will be restricted to an operator on C∗
alg(Γ/Γn) for all but finitely

many n, and such an operator can then be lifted to a Γn-invariant element of the Roe algebra of
Γ. In general, such lifting can be extended to the maximal norm closure. Using a certain type of
localization estimation of the operator norm in the case of asymptotic finite dimension, Higson
proved that the lifting can also be extended to the reduced norm closure. This was important
in his original construction of counterexamples to the coarse Baum-Connes conjecture. In fact,
such lifting can be extended to the maximal norm closure for every discrete metric space (see
[5]). The natural question is what kinds of conditions can guarantee the algebraic level lifting
to be extended to the reduced norm level. Generalizing the local estimation method in the case
of finite asymptotic dimension, Yu [5] introduced the concept of the operator norm localization
property. It is easy to prove that if the metric space has the operator norm localization property,
then the algebraic level lifting can be extended to the reduced norm level. In this paper, we study
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its basic properties and get some results on preserving properties of operator norm localization
property.

2 Preliminaries

In this section, we introduce the definition and basic properties of the operator norm local-
ization property for a discrete metric space.

Definition 2.1 (see [8]) Let X be a discrete metric space, and H be a separable and infinite
dimensional Hilbert space. A bounded operator T : �2(X)⊗H → �2(X)⊗H, is said to have prop-
agation at most r (abbr. Prop(T ) ≤ r) if for all ϕ, ψ ∈ �2(X)⊗H with d(Supp(ϕ), Supp(ψ)) > r

such that 〈Tϕ, ψ〉 = 0.

Note that X is a discrete metric space. Then we can write

�2(X) ⊗H =
⊕
x∈X

(δx ⊗H),

where δx is the Dirac function at x. Every bounded operator acting on �2(X) ⊗ H has a
corresponding matrix representation T = (Tx,y)x,y∈X , where Tx,y : δy ⊗ H → δx ⊗ H is a
bounded operator. The support of T (abbr. Supp(T )) is the complement (in X ×Y ) of the set
of all points (x, y) ∈ X × Y such that Tx,y = 0. We call that T is locally compact if Tx,y is a
compact operator for all x, y in X . For T to have propagation r, it is equivalent to saying that
the matrix coefficient Tx,y of T vanishes when d(x, y) > r. The space of operators acting on
�2(X) ⊗H with propagation at most r will be denoted by Ar(X).

Let ‖T ‖ denote the operator norm of a bounded linear operator T .

Definition 2.2 The collection of all locally compact, finite propagation operators on �2⊗H
is a ∗-subalgebra of B(�2(X)⊗H). Its norm-completion, denoted by C∗(X), is the Roe algebra
of X.

Definition 2.3 Let X be a discrete metric space. Let f : N → N be a (non-decreasing)
function. We say that X has the operator norm localization property relative to f with constant
c ≥ 1, if for any k > 0 and every T ∈ Ak(X), the following inequality holds:

‖T ‖ ≤ c sup{‖Tv‖ : v ∈ �2(X,H), ‖v‖ ≤ 1, diam(Supp(v)) ≤ f(k)}.

The infimum over all possible c is called the operator localization number of X.

Recall that a discrete metric space X has the bounded geometry, if for every R > 0, there
is a uniform bound on the number of elements in the ball of radius R in X. It is not necessary
to assume the metric space to be with the bounded geometry in the above definition. But our
interest is in the bounded geometric case.

Definition 2.4 A Borel map f from a metric space X to another metric space Y is called
coarse if

(1) f is metrically proper, i.e., the inverse image of any bounded set is bounded,
(2) for every R > 0, there exists an R′ > 0 such that d(f(x), f(y)) ≤ R′ for all x, y ∈ X

satisfying d(x, y) ≤ R.
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Definition 2.5 We say that the metric spaces X and Y are coarsely equivalent if there
exists an r > 0 and coarse maps ϕ : X → Y , ψ : Y → X such that dY (ϕ ◦ ψ(y), y) ≤ r and
dX(ψ ◦ ϕ(x), x) ≤ r for all x ∈ X and y ∈ Y .

Definition 2.6 Let Γ be a countable discrete group. A length function on Γ is a non-negative
real-valued function l satisfying that for all x and y in Γ,

(1) l(xy) ≤ l(x) + l(y),
(2) l(x−1) = l(x),
(3) l(x) = 0 if and only if x = 1.

This defines a metric on Γ by dΓ(f, g) = l(f−1g). A length function l is proper, if for all
C > 0, the subset l−1([0, C]) is finite which induces a proper metric on Γ. If Γ is a finitely
generated group and its generating set S is symmetric, i.e., S = S−1, then the length l(g) of
an element g ∈ Γ is defined to be the length of the shortest word in S representing g. In this
case, dΓ is the left invariant in the sense that dΓ(hf, hg) = dΓ(f, g).

From the definition, we immediately have the following two propositions.

Proposition 2.1 Let d and d′ be equivalent metrics on Γ. Then Γ has the operator norm
localization property with respect to d if and only if it has the operator norm localization property
with respect to d′.

Proof There are m1,m2 > 0 such that m1d
′(x, y) ≤ d(x, y) ≤ m2d

′(x, y), since d and d′

are equivalent metrics on Γ. Then the proposition holds from the definition.

Proposition 2.2 Let Y ⊂ X. If X has the operator norm localization property, then Y

has the operator norm localization property.

Proof It is obvious.

Proposition 2.3 Let Γ be a countable finitely generated group and Γ1 be a finitely generated
subgroup of Γ. If Γ has the operator norm localization property with a constant c, then Γ1 also
has the operator norm localization property with a constant c.

Proof Choose finite generating sets S and S1 for Γ and Γ1, such that S1 ⊆ S, S and S1 are
closed under the inverse operation. Then the induced metrics dS and dS1 satisfy dS1(x, y) ≥
dS(x, y) for all x, y ∈ Γ1. Note that Γ1 is a subset of Γ. Then Γ1 has the operator norm
localization property with respect to metric dS . Therefore, for each operator T ∈ B(�2(Γ1)⊗H)
with Prop(T ) ≤ r, there are a constant c and a non-decreasing function f : N → N, such that

‖T ‖ ≤ c sup{‖Tv‖ : v ∈ �2(Γ1, H), ‖v‖ ≤ 1,DiamΓ(Supp(v)) ≤ f(r)}.

Hence, for each v and for any x ∈ Supp(v), we can write x = x0g1 · · · gk for k ≤ f(r), where
gl ∈ S for all 0 ≤ l ≤ k, and x0 is a fixed element in Supp(v). Let Bf(r)(e) = {g ∈ Γ1 : g =
g1 · · · gj , gi ∈ S, j ≤ f(r)}. It is not difficult to see that Bf(r)(e) is a finite set. Therefore,
there exists an R(r) > 0 such that sup{dS1(g, e) : g ∈ Bf(r)(e)} ≤ R(r). Note that Supp(v) ⊂
x0Bf(r)(e). Then the diameter of Supp(v) is at most 2R(r) with respect to dS1 for all v. Let
fΓ1(r) = 2R(r) for each r. Hence,

‖T ‖ ≤ c sup{‖Tv‖ : v ∈ �2(Γ1, H), ‖v‖ ≤ 1,DiamΓ1(Supp(v)) ≤ fΓ1(r)}.

This completes the proof.
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Definition 2.7 Let X be a metric space. For every d > 0, x, y ∈ X, we say that x ∼d y if
and only if there is a chain of points x0, x1, · · · , xk with x0 = x, xk = y such that d(xi, xi+1) ≤ d

for all i < k. We call that the subset M of X is d-connected if and only if any two elements
of M are equivalent. A d-component of X is a d-connected subset, that is not contained in any
larger d-connected subset.

Proposition 2.4 Let Y be a discrete metric space with the bounded geometry which has
the operator norm localization property with a constant c. If there exists an injective map f

from X to Y satisfying that, for every R > 0, there exists R′ > 0 such that d(f(x), f(y)) ≤ R′

whenever d(x, y) ≤ R, then X has the operator norm localization property with a constant c.

Proof For every operator T ∈ Ar(X), we let

r′ = sup{d(f(x), f(y)) : (x, y) ∈ Supp(T )},

and set

Sy1,y2 =
{
Tf−1(y1),f−1(y2), if y1, y2 ∈ Im(f),
0, otherwise,

which defines an operator S = (Sy1,y2) ∈ B(�2(Y ) ⊗H). Then Prop(S) ≤ r′ and ‖S‖ = ‖T ‖.
Since Y has the operator norm localization property, we have

‖S‖ ≤ c sup{‖Sv‖ : v ∈ �2(Y,H), ‖v‖ ≤ 1,DiamY (Supp(v)) ≤ fY (r′)}.

For each v, we set Av = Supp(v). We now define the operators Sv = (Sv
y1,y2

) ∈ B(�2(Y ) ⊗H)
by

Sv
y1,y2

=
{
Sy1,y2 , if y1 ∈ Av,
0, otherwise,

and T v ∈ B(�2(X) ⊗H) by T v
x1,x2

= Sv
f(x1),f(x2)

, ∀(x1, x2) ∈ X ×X. Note that ‖T v‖ = ‖Sv‖,
‖Sv‖ = ‖Svv‖ and Prop(T v) ≤ r, whence

‖T ‖ = ‖S‖ ≤ c sup{‖Svv‖ : v ∈ �2(Y,H), ‖v‖ ≤ 1,DiamY (Supp(v)) ≤ fY (r′)}
≤ c sup{‖Sv‖ : v ∈ �2(Y,H), ‖v‖ ≤ 1,DiamY (Supp(v)) ≤ fY (r′)}
≤ c sup{‖T v‖ : v ∈ �2(Y,H), ‖v‖ ≤ 1,DiamY (Supp(v)) ≤ fY (r′)}.

Let Bv be the r′-neighborhood of Av. Then Supp(Sv) ⊂ Bv×Bv and DiamY (Bv) ≤ fY (r′)+2r′.
Therefore, there exists a constant M(r) > 0, such that #Bv ≤M(r), where #Bv is the number
of elements in Bv. Let Dv = f−1(Bv). Since f is injective, we have #Dv ≤ #Bv ≤M(r). We
now present the set Dv as the union of 3r-components, and note that each component has a
diameter at most 3rM(r) and every two 3r-components are 3r-separated. So

‖T v‖ = sup{‖T vξ‖ : ξ ∈ �2(X,H), ‖ξ‖ ≤ 1,DiamX(Supp(ξ)) ≤ 3rM(r)}.

Note that ‖T vξ‖ ≤ ‖Tξ‖. Then the proposition follows if we set fX(r) = 3rM(r).
Let Γ be a group acting on a metric space X . For every k ≥ 0, the k-stabilizer Wk(x0) of

a point x0 ∈ X is defined to be the set of all g ∈ Γ with gx0 ∈ B(x0, k), where B(x0, k) is the
closed ball with the center x0 and the radius k. The concept of k-stabilizer is introduced by
Bell and Dranishnikov in their work on permanence properties of asymptotic dimension (see
[1]).
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Proposition 2.5 Let Γ be a finitely generated group acting freely and isometrically on a
metric space X (without assuming X to have the bounded geometry). If X has the operator norm
localization property with a constant cX and there exists an x0 ∈ X, such that for every k > 0,
Wk(x0) has the operator norm localization property with a constant cΓ, where cΓ is independent
of k. Then Γ has the operator norm localization property with the constant c = cXcΓ.

Proof We define a map π : Γ → X by the formula π(g) = gx0. Then we have Wk(x0) =
π−1(B(x0, k)). Let λ = max{d(sx0, x0) : s ∈ S}, where S is a generating set of Γ. Now we
show that π is λ-Lipschitz. In fact, for all g1, g2 ∈ Γ, we have d(π(g1), π(g2)) = d(g1x0, g2x0) =
d(g−1

2 g1x0, x0). Let g = g−1
2 g1 = s1 · · · sn, si ∈ S (1 ≤ i ≤ n) be the shortest word to represent

g. Then

d(π(g1), π(g2)) = d(s1 · · · snx0, x0) ≤
n∑

j=1

d(s1 · · · sjx0, s1 · · · sj−1x0) ≤ nλ = λd(g1, g2).

Let Y = π(Γ) ⊂ X . For each operator T in Ak(Γ), we define an operator S ∈ B(�2(Y )⊗H)
by

Sy1,y2 =
{
Tg1,g2 , if π−1(y1) = g1, π

−1(y2) = g2.
0, otherwise.

Then S ∈ Aλk(Y ) and ‖S‖ = ‖T ‖. Since X has the operator norm localization property with
the constant cX , we have

‖S‖ ≤ cX sup{‖Sv‖ : v ∈ �2(Y,H), ‖v‖ ≤ 1,DiamX(Supp(v)) ≤ fX(λk)}.
For each v, let Av be the λk-neighborhood of Supp(v) in Y , and define Sv ∈ B(�2(Y ) ⊗H) by

Sv
y1,y2

=
{
Sy1,y2 , if y1 ∈ Av,
0, otherwise.

Then ‖Sv‖ = ‖Svv‖. Similarly, we define an operator T v ∈ B(�2(Γ) ⊗H) by

T v
g1,g2

=
{
Sv

x,y, if π(g1) = x, π(g2) = y,
0, otherwise.

Let Bv be the λk-neighborhood of Av, and let R := fX(λk) + 2λk + 2λk. Then Prop(T v) ≤ k,
Supp(T v) ⊂ π−1(Bv) × π−1(Bv) and DiamX(Bv) ≤ R. Note that Γ acts on Y transitively.
Then there are x ∈ Y and g ∈ Γ, such that Bv ⊂ BY (x,R) = gBY (x0, R), where BY (x0, R)
is a ball in Y with the center x0 and the radius R. Hence, T v ∈ B(�2(g.WR(x0)) ⊗ H). By
the assumption that WR(x0) has the operator norm localization property with the constant cΓ,
there exists a non-decreasing function gR : N → N, such that

‖T v‖ ≤ cΓ sup{‖T vξ‖ : ξ ∈ �2(Γ, H), ‖ξ‖ ≤ 1,DiamΓ(Supp(ξ)) ≤ gR(r)}.
Note that ‖Sv‖ = ‖T v‖. Then

‖T ‖ = ‖S‖ ≤ cX sup{‖Sv‖ : v ∈ �2(X,H), ‖v‖ ≤ 1,DiamX(Supp(v)) ≤ fX(λr)}
≤ cX sup{‖Svv‖ : v ∈ �2(X,H), ‖v‖ ≤ 1,DiamX(Supp(v)) ≤ fX(λr)}
≤ cX sup{‖Sv‖ : v ∈ �2(X,H), ‖v‖ ≤ 1,DiamX(Supp(v)) ≤ fX(λr)}
≤ cX sup{‖T v‖ : v ∈ �2(X,H), ‖v‖ ≤ 1,DiamX(Supp(v)) ≤ fX(λr)}
≤ cΓcX sup{‖T vξ‖ : v ∈ �2(X,H), ‖v‖ ≤ 1,DiamX(Supp(v)) ≤ fX(λr),

ξ ∈ �2(Γ, H), ‖ξ‖ ≤ 1,DiamΓ(Supp(ξ)) ≤ gR(r)}.



598 X. J. Wang

Let fΓ(r) = gR(r). Since ‖T vξ‖ ≤ ‖Tξ‖ for each v and ξ, we obtain

‖T ‖ ≤ cΓcX sup{‖Tξ‖ : ξ ∈ �2(Γ, H), ‖ξ‖ ≤ 1,DiamΓ(Supp(ξ)) ≤ fΓ(r)}.

Then Γ has the operator norm localization property with the constant c = cΓcX .

Remark 2.1 From the proof of Proposition 2.5, it is easy to see that when Γ has the
bounded geometry, the assumption that Γ is finitely generated in Proposition 2.5 can be replaced
by the condition that if the map π : Γ → X satisfies for every R > 0 and all g1, g2 ∈ Γ with
d(g1, g2) ≤ R, then there exists an R′ > 0 such that d(π(g1), π(g2)) ≤ R′.

3 Coarse Invariance of the Operator Norm Localization Property

Coarse invariance is a basic property in the coarse geometry. Therefore, it is important to
know whether the operator norm localization property is coarsely invariant. Indeed we have
the following result.

Theorem 3.1 Let X and Y be metric spaces with the bounded geometry. If X is coarse
equivalent to Y , then X has the operator norm localization property with a constant c if and
only if Y has the operator norm localization property with a constant c.

We need some preparations to prove the above theorem. Recall that the metric space X is
proper if every close ball in the metric space is compact.

Lemma 3.1 (see [10]) Assume that f is a coarse map from a proper metric space X to
another metric space Y . Let HX = �2(X) ⊗H, HY = �2(Y ) ⊗H. Then for any ε > 0, there
exists an isometry Vf : HX → HY , such that Supp(Vf ) ⊆ {(y, x) ∈ Y ×X : d(f(x), y) ≤ ε}.

Lemma 3.2 Let X be a metric space with bounded geometry and Γ ⊂ X be an ε-net of
X. If Γ has the operator norm localization property with a constant c, then X has the operator
norm localization property with the constant c.

Remark 3.1 If we choose Γ and X as in Lemma 3.2, then the isometry can be chosen to
be unitary. The observation is due to [3].

Proof of Lemma 3.2 Let HΓ = �2(Γ) ⊗H and HX = �2(X) ⊗H . Let f : Γ → X be the
inclusion. Then f is a coarse map and Vf can be chosen to be unitary. Then Vf gives a rise to a
homomorphism Ad(V ∗

f ) from B(�2(X)⊗H) to B(�2(Γ) ⊗H) defined by Ad(V ∗
f )(T ) = V ∗

f TVf .

For each T ∈ B(�2(X) ⊗H) with Prop(T ) ≤ r, we let S = Ad(V ∗
f )(T ). Note that

Supp(V ∗
f TVf ) ⊆

{
(y, x) ∈ Γ × Γ :

∃x′ ∈ X, y′ ∈ X : (x′, x) ∈ Supp(Vf ),
(y′, x′) ∈ Supp(T ), (y, y′) ∈ Supp(V ∗

f )

}
,

which implies that

Prop(S) ≤ sup{d(y, x) : (y, x) ∈ Supp(S)}
≤ sup{d(y, y′) + d(y′, x′) + d(x′, x) : (x′, x) ∈ Supp(Vf ),

(y′, x′) ∈ Supp(T ), (y, y′) ∈ Supp(V ∗
f )}

≤ 2ε+ r.
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Let r′ = 2ε+ r. Since Γ has the operator norm localization property with a constant c, there
is a non-decreasing function fΓ : N → N, such that

‖S‖ ≤ c sup{‖Sξ‖ : ξ ∈ �2(Γ, H),DiamΓ(Supp(ξ)) ≤ fΓ(r′)}.

Note that

‖S‖2 = ‖V ∗
f TVf‖2 = sup

‖ξ‖≤1

‖V ∗
f TVfξ‖2 = sup

‖ξ‖≤1

〈TVfξ, TVfξ〉 = ‖T ‖2.

Therefore,

‖T ‖ = ‖S‖ ≤ c sup{‖TVfξ‖ : ξ ∈ �2(Γ.H),Diam(Supp(Vf ξ)) ≤ fΓ(r′) + 2ε}.

Let fX(r) = fΓ(r + 2ε) + 2ε. Then

‖T ‖ ≤ c sup{‖Tξ‖ : ξ ∈ �2(X,H),Diam(Supp(ξ)) ≤ fX(r)}.

Hence, X has the operator norm localization property with a constant c.

Remark 3.2 From the proof of Proposition 3.2, we have that if Γ is an ε-net of X with
the operator norm localization property, then for all r > 0, fX(r) = fΓ(r + 2ε) + 2ε depends
only on ε and fΓ.

Proof of Theorem 3.1 Assume that X has the operator norm localization property with
a constant c. Since X and Y are coarsely equivalent, there are a constant r0 > 0 and coarse
maps φ : X → Y , ψ : Y → X such that d(φ ◦ ψ(y), y) ≤ r0 and d(ψ ◦ φ(x), x) ≤ r0. Let
Y ′ = φ(X). Note that d(φ ◦ ψ(y), y) ≤ r0, y ∈ Y . Then Y ′ is an r0-net of Y . By Lemma 3.2,
it is sufficient to show that Y ′ has the operator norm localization property with a constant c.

We claim that DiamX(φ−1(B(y, r))), y ∈ Y ′, is uniformly bounded, where B(y, r) is a ball
in Y ′ with the center y and the radius r. In fact, since ψ is a coarse map, there is an R(r) > 0,
such that DiamX(ψ(B(y, r))) ≤ R(r). Furthermore, for all x1, x2 in φ−1(B(y, r)), we have

dX(x1, x2) ≤ dX(x1, ψ ◦ φ(x1)) + dX(ψ ◦ φ(x1), ψ ◦ φ(x2)) + dX(ψ ◦ φ(x2), x2)

≤ R(r) + 2r0.

So DiamX(φ−1(B(y, r))) ≤ R(r) + 2r0 for all y ∈ Y ′.
Let X ′ be the maximal subset of X , such that φ|X′ is injective. Then φ : X ′ → Y ′ is a one

to one map. Hence, for any operator T in B(�2(Y ′) ⊗H) with Prop(T ) ≤ r, one can define an
operator S ∈ B(�2(X ′) ⊗H) by Sx1,x2 = Tφ(x1),φ(x2), ∀x1, x2 ∈ X ′. Let r1 = R(r) + 2r0. Note
that ‖S‖ = ‖T ‖, Prop(S) ≤ r1, and X ′ is a subset of X with the operator norm localization
property. Then we obtain

‖T ‖ = ‖S‖ ≤ c sup{‖Sv‖ : ‖v‖ ≤ 1, v ∈ �2(X ′, H),DiamX(Supp(v)) ≤ fX(r1)}.

For each v, we define ξv = (ξv
y ) ∈ �2(Y ′, H) with ξv

y = vφ−1(y), y ∈ Y ′. Note that ‖Sv‖ = ‖Tξv‖
and φ is a coarse map. Then there exists a κ(fX(r1)) > 0, such that DiamY ′(Supp(ξv)) ≤
κ(fX(r1)). Let fY ′(r) = κ(fX(R(r) + 2r0)). Hence, we have

‖T ‖ ≤ c sup{‖Tξ‖ : ‖ξ‖ ≤ 1, ξ ∈ �2(Y ′, H),DiamY ′(Supp(ξ)) ≤ fY ′(r)}.

Therefore, Y ′ has the operator norm localization property.
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4 Some Examples

In this section, we will give some examples to show that there are many metric spaces with
the operator norm localization property.

Definition 4.1 (see [4, Definition 2.1]) A discrete, bounded geometry metric space X is
called a simple core, if for any R > 0, there is a compact subset K ⊂ X such that d(x, y) > R

whenever (x, y) ∈ X ×X\K ×K.

Proposition 4.1 Simple cores have the operator norm localization property with a constant
at most 2.

Proof It is easy to check by the definitions of the simple core and the operator norm
localization property.

Recall that two sets U1, U2 in a metric space are called d-disjoint if they are at least d-apart,
i.e., inf{d(x1, x2) : x1 ∈ U1, x2 ∈ U2} ≥ d.

Definition 4.2 (see [2]) We call that the metric space X has an asymptotic dimension less
than n, if for any number d > 0, one can find n+ 1 uniformly bounded families U0,U1, · · · ,Un

of d-disjoint sets in X, such that ∪U i is a cover of X. We denote it asymdimX ≤ n.

Note that simple cores have finite asymptotic dimension. In general, the metric spaces with
finite asymptotic dimensions also have the operator norm localization property.

Proposition 4.2 (see [9]) If Γ has finite asymptotic dimension, asymdim Γ ≤ n, then Γ
has the operator norm localization property with constant n+ 1.

For the readers convenience, we provide the following proof.

Proof For every r > 0, let d = 10r. Since asymdim Γ ≤ n, there are R-bounded families
U0,U1, · · · ,Un of d-disjoint sets in Γ, such that

⋃
i

U i is a cover of Γ. For each operator T in

B(�2(Γ) ⊗H) with Prop(T ) ≤ r, we define operators T i ∈ B(�2(X) ⊗H) by

T i
x,y =

{
Tx,y, x ∈ A ∈ V i,
0, otherwise,

where V i = {A − Bi : A ∈ U i}, B0 = ∅ and Bi = ∪{B : B ∈ Uj , 0 ≤ j < i} (i ≤ n). Then

T =
n∑

i=0

T i. Since d(U, V ) > d for all V, U ∈ U i, we have

‖T i‖ = sup{‖T iξ‖ : ‖ξ‖ ≤ 1,Diam(Supp(ξ)) ≤ R+ 2r}.

Let f(r) = R+ 2r. Then we get

‖T ‖ ≤
n∑

i=0

‖T i‖ ≤ (n+ 1)max
i

{‖T i‖}

≤ (n+ 1) sup{‖T iξ‖ : ‖ξ‖ ≤ 1,Diam(Supp(ξ)) ≤ f(r)}
≤ (n+ 1) sup{‖Tξ‖ : ‖ξ‖ ≤ 1,Diam(Supp(ξ)) ≤ f(r)}.

So Γ has the operator norm localization property with the constant n+ 1.
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Proposition 4.3 Let X and Y be discrete metric spaces with the bounded geometry. If
X has a finite asymptotic dimension and Y has the operator norm localization property, then
X × Y has the operator norm localization property.

Proof Let dX and dY be metrics on X and Y , respectively. Since any two metrics d and
d′ on X × Y with d((x1, y), (x2, y)) = d′((x1, y), (x2, y)) = dX(x1, x2) and d((x, y1), (x, y2)) =
d′((x, y1), (x, y2)) = dY (y1, y2) for all x, x1, x2 ∈ X and y, y1, y2 ∈ Y are equivalent, we equip
X × Y with the �1 metric, i.e., d(x, y) = dX(x1, x2) + dY (y1, y2), where x = (x1, y1) and
y = (x2, y2) both in X × Y .

Assume asymdim(X) ≤ n. For every r > 0, we let d = 10r. Then there are R-bounded

families U0, · · · ,Un of d-disjoint sets in X , such that
n⋃

j=1

Uj is a cover of X . Let π be the

projection from X × Y to the first coordinate. For each operator T in B(�2(X × Y ) ⊗H) with
Prop(T ) ≤ r, we define operators T i ∈ B(�2(X × Y ) ⊗H) by

T i
x,y =

{
Tx,y, π(x) ∈ A ∈ V i,
0, otherwise,

where V i = {A − Bi : A ∈ U i}, B0 = ∅ and Bi = ∪{B : B ∈ Uj , 0 ≤ j < i} (i ≤ n). Then

‖T ‖ =
∥∥∥ n∑

i=0

T i
∥∥∥ ≤ (n+ 1) max

0≤i≤n
{‖T i‖}. For all 0 ≤ i ≤ n and every A ∈ U i, let

T i,A
x,y =

{
T i

x,y, if π(x) ∈ A,
0, otherwise,

which defines an operator T i,A = (T i,A
x,y ) ∈ B(�2(X×Y )⊗H). Then we have ‖T i‖ = sup{‖T i,A‖ :

A ∈ U i}. Note that Y has the operator norm localization property and Y is the R-net of A×Y
for all A ∈ U i. If we regard Y as a subset of A × Y , by Remark 3.2, there are a c > 0 and a
non-decreasing function f : N → N, such that

‖T i,A‖ ≤ c sup{‖T i,Aξ‖ : ‖ξ‖ ≤ 1, ξ ∈ �2(A× Y,H),Diam(supp(ξ)) ≤ f(r)}
≤ c sup{‖Tξ‖ : ‖ξ‖ ≤ 1, ξ ∈ �2(X × Y,H),Diam(supp(ξ)) ≤ f(r)}

for all A ∈ U i (1 ≤ i ≤ n). Therefore,

‖T ‖ ≤ (n+ 1) sup{‖T i,A‖ : A ∈ U i}
≤ (n+ 1)c sup{‖Tξ‖ : ξ ∈ �2(X × Y,H), ‖ξ‖ ≤ 1,Diam(supp(ξ)) ≤ f(r)}.

Let cX×Y = (n+ 1)c. The proof is completed.

The class of finitely generated groups with finite asymptotic dimension contains hyperbolic
groups, Z

n, free groups with finite generators Fn and so on. So the category of the metric
spaces with the operator norm localization property is very large.

5 Union Property

Let Γ1 and Γ2 be metric spaces. If both Γ1 and Γ2 have the operator norm localization
property, a natural question is whether Γ1 ∪ Γ2 has the operator norm localization property.
In this section, we show that the operator norm localization property is preserved by any finite
union, certain infinite union and direct limit of the group.
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Definition 5.1 A family of metric spaces {Γα}α∈J is said to have the operator norm
localization property uniformly, if there exist a common constant c ≥ 1 and a common (non-
decreasing) function f : N → N, such that for each α ∈ J , Γα has the operator norm localization
property relative to f with a constant c.

Theorem 5.1 Let {Γα}α∈J be a family of metric spaces which has the operator norm
localization property uniformly with a constant c. Let X =

⋃
α∈J

Γα. If X has the bounded

geometry, and for all t > 0, there exists a Yt ⊂ X, such that {Γα\Yt} is t-disjoint and Yt

has the operator norm localization property with a constant c, then X has the operator norm
localization property with a constant 2c.

Proof For every r > 0, we let t = 10r, such that {Γα\Yt} is 10r-disjoint. For all operators
T ∈ Ar(X) and each α ∈ J , we define an operator Tα = (Tα

x,y) ∈ B(�2(X) ⊗H) by

Tα
x,y =

{
Tx,y, if x ∈ Γα\Vr(Yt),
0, otherwise,

where Vr(Yt) is an r-neighborhood of Yt. Then Supp(Tα) ⊂ (Γα\Yt) × (Γα\Yt).
Now let

T ′
x,y =

{
Tx,y, if x ∈ Vr(Yt),
0, otherwise,

which defines an operator T ′ = (T ′
x,y) ∈ B(�2(X) ⊗ H). Moreover, Supp(T ′) ⊂ V2r(Yt) ×

V2r(Yt). Let S =
∑

α∈J

Tα. It is clear that Prop(S) ≤ r. Since {Γα}α∈J have the operator norm

localization property uniformly, we have

‖S‖ ≤ sup
α∈J

‖Tα‖ ≤ c sup
α∈J

{‖Tαξ‖ : ‖ξ‖ ≤ 1, ξ ∈ �2(Γα, H),Diam(Supp(ξ)) ≤ f(r)}.

By Theorem 3.1, V2r(Yt) has the operator norm localization property with a constant c. Then
there exists a nondecreasing function ft : N → N, such that

‖T ′‖ ≤ c sup{‖T ′ξ‖ : ‖ξ‖ ≤ 1, ξ ∈ �2(V2r(Yt), H),Diam(Supp(ξ)) ≤ ft(r)}.
Let fX(r) = max{f(r), ft(r)}. Note that ‖Tαξ‖ ≤ ‖Tξ‖ and ‖T ′ξ‖ ≤ ‖Tξ‖, ξ ∈ �2(X,H).
Then

‖T ‖ = ‖S + T ′‖ ≤ ‖S‖ + ‖T ′‖
≤ 2 max{‖S‖, ‖T ′‖}
≤ 2c sup{‖Tξ‖ : ξ ∈ �2(X,H), ‖ξ‖ ≤ 1,DiamX(Supp(ξ)) ≤ fX(r)}.

Hence, X has the operator norm localization property with constant 2c.

Corollary 5.1 Let Γ = Γ1∪Γ2 be a discrete metric space with the bounded geometry. If Γ1

and Γ2 have the operator norm localization property, then Γ has the operator norm localization
property.

Proof Take the family {Γα} consisting of the sets Γ1 and Γ2. For each t > 0, put Yt = Γ1.
Then it satisfies all the conditions of Theorem 5.1.

Lemma 5.1 Let Γ be a discrete metric space with the bounded geometry. For all ε > 0 and
every operator T in B(�2(Γ)⊗H) with Prop(T ) ≤ r, there exists an operator T ′ ∈ B(�2(Γ)⊗H),
such that
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(1) Prop(T ′) ≤ r;
(2) Supp(T ′) is a bounded subset of Γ × Γ;
(3) ‖T ′‖ ≤ ‖T ‖ ≤ (1 + ε)‖T ′‖ and ‖T ′ξ‖ ≤ ‖Tξ‖ for all ξ ∈ �2(Γ, H).

Proof For all 0 < δ0 <
‖T‖2

2 , we choose a vector v0 ∈ �2(Γ, H) with ‖v0‖ ≤ 1, such that
‖T ‖2 ≤ ‖Tv0‖2 + δ0. Let Tv0 = ξv0 = (ξv0

x )x∈Γ. Then, ‖Tv0‖2 =
∑
x∈Γ

‖ξv0
x ‖2 ≤ ‖T ‖2. Therefore,

for all 0 < δ1 <
‖T‖2

2 , there exists a finite subset Fv0 of Γ, such that
∑
x∈Γ

‖ξv0
x ‖2 ≤

∑
x∈Fv0

‖ξv0
x ‖2 + δ1.

Let Av0 be the r-neighborhood of Fv0 , and define T v0 = (T v0
x,y) ∈ B(�2(X) ⊗H) by

T v0
x,y =

{
Tx,y, if x ∈ Av0 ,
0, otherwise.

Then Prop(T v0) ≤ r,
∑

x∈Fv0

‖ξv0
x ‖2 ≤ ‖T v0v0‖2 and Supp(T v0) is a bounded subset of Γ × Γ.

Let δv0 = δ0 + δ1 and choose δ0, δ1 small enough, such that
(
1 +

δv0

‖T ‖2 − δv0

)
≤ (1 + ε)2.

Let T ′ = T v0. Then we obtain

‖T ′‖2 ≤ ‖T ‖2 ≤ ‖Tv0‖2 + δ0 ≤
∑

x∈Fv0

‖ξv0
x ‖2 + δ0 + δ1

≤ ‖T v0v0‖2 + δv0 ≤ ‖T v0‖2 + δv0 =
(
1 +

δv0

‖T v0‖2

)
‖T v0‖2

≤
(
1 +

δv0

‖T ‖2 − δv0

)
‖T v0‖2 ≤ (1 + ε)2‖T ′‖2.

Hence ‖T ′‖ ≤ ‖T ‖ ≤ (1 + ε)‖T ′‖, as desired. The proof is now completed.

Theorem 5.2 Let Γ be the limit of a direct system of countable discrete groups

G1
φ1−→ G2

φ2−→ G3
φ3−→ · · · ,

in which the maps Gn
φn−→ Gn+1 are injective. If {Gn}n∈N has the operator norm localization

property uniformly with a constant c, then Γ has the operator norm localization property with
a constant c.

Proof Let Γ be a direct limit as in the statement of the theorem. Without loss of generality,
we assume that Gi is a subgroup of Γ for i ∈ N. Then Γ =

⋃
i∈N

Gi. Equip Γ with a proper length

function lΓ and the associated metric dΓ. Metrize each of the subgroups Gn as subspaces of
Γ. The metric and length function on Gn are simply the restrictions of dΓ and lΓ. By Lemma
5.1, for any ε > 0 and for any operator T ∈ B(�2(Γ) ⊗H) with Prop(T ) ≤ r, there exists an
operator T ′ in B(�2(Γ) ⊗ H) with Prop(T ′) ≤ r such that Supp(T ′) is a bounded subset of
Γ × Γ. So there exists a j ∈ N such that Supp(T ′) ⊂ Gj × Gj . Since {Gi} have the operator
norm localization property uniformly with a constant c, we have

‖T ‖ ≤ (1 + ε)‖T ′‖ ≤ c(1 + ε) sup{‖T ′ξ‖ : ξ ∈ �2(Gj , H), ‖ξ‖ ≤ 1,Diam(Supp(ξ)) ≤ fr)}.
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Note that ‖T ′ξ‖ ≤ ‖Tξ‖ for all ξ ∈ �2(Γ, H). Therefore,

‖T ‖ ≤ c(1 + ε) sup{‖Tξ‖ : ‖ξ‖ ≤ 1, ξ ∈ �2(Γ, H), Diam(Supp(ξ)) ≤ f(r)}.

So Γ has the operator norm localization property.

Theorem 5.3 Let Γ be a discrete metric space with bounded geometry. Then the following
are equivalent:

(1) Γ has the operator norm localization property;
(2) A = {F : F ⊂ Γ,#F <∞} has the operator norm localization property uniformly.

Proof It is obvious that (1) implies (2).
Now let us prove that (2) implies (1). For each operator T ∈ B(�2(Γ)⊗H) with Prop(T ) ≤ r,

by Lemma 5.1, for all ε > 0, there is an operator T ′ ∈ B(�2(Γ)⊗H) with Prop(T ′) ≤ r, such that
Supp(T ′) is a bounded subset of Γ × Γ. By the bounded geometry of Γ, there exists an F ∈ A
such that Supp(T ′) ⊂ F × F . By the assumption that A has the operator norm localization
property uniformly, there are a constant c and a non-decreasing function f : N → N, such that

‖T ‖ ≤ (1 + ε)‖T ′‖ ≤ c(1 + ε) sup{‖T ′ξ‖ : ξ ∈ �2(Γ, H), ‖ξ‖ ≤ 1,Diam(Supp(ξ)) ≤ f(r)}.

Note that ‖Tξ‖ ≥ ‖T ′ξ‖ for all ξ ∈ �2(Γ, H). Therefore,

‖T ‖ ≤ c(1 + ε) sup{‖Tξ‖ : ξ ∈ �2(Γ, H), ‖ξ‖ ≤ 1,Diam(Supp(ξ)) ≤ f(r)}.

So Γ has the operator norm localization property. This completes the proof.
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