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Abstract Herman constructed an autonomous system of two degrees of freedom which
says that in non-convex situations, oscillations do happen and Aubry-Mather Theory can-
not apply (see the results due to W. F. Chen in 1992). In this paper, it is shown that
although the orbits could visit a region far away from the initial point in phase space, they
can only exist in some fixed regions in I = (I1, I2) plane. Moreover, Aubry-Mather Theory
can be applied outside the regions.
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1 Introduction

By far, the most celebrated theory of small perturbations of completely integrable Hamilto-
nian systems is the so-called KAM-Theory which was discovered by A. Kolmogorov, V. Arnold
and J. Moser during the 1950s to 1970s. The theory guarantees the existence of invariant tori
with Diophantine rotation numbers. It is natural to ask after perturbation what happens to
the rest of the invariant tori of the unperturbed completely integrable system?

For the so-called twist maps S. Aubry [2–4] and J. Mather [17] (see [5, 18] for complete
survey) established the existence of special invariant sets which are projected injectively to the
circle and carry motions with any given rotation number. Moreover, the map preserves the
cyclic order of points on any of those invariant sets. This theory is now well-known as Aubry-
Mather Theory which is based on two key ingredients: (1) the variational principle for finding
desired motions; (2) the regularity of projection of any order-preserving orbit to the circle.
The variational method could be substituted by other topological methods (see [6, 14]). The
regularity of the projection allows us to take the limits with respect to rotation numbers. On the
other hand, solutions representing global minima in various variational problems associated to
a twist map and posed without assuming preservation of order turn out to be order-preserving
too.

Any attempt to apply Aubry-Mather Approach to the case of n(≥ 2) degrees of freedom
faces the obvious problem that the order-preserving property is no longer available. However,
there are some results about the preservation of periodic orbits, and the earliest one of those
results is Birkhoff-Lewis Theorem (see [8]), the accurate proof of which was given by Moser
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[20]. Conley and Zehnder [11] improved the results, and they discovered a remarkable global
method for finding periodic orbits for symplectic maps and Hamiltonian systems under non-
degenerate conditions. Bernstein and Katok [7] proved the existence of periodic orbits with any
rational rotation vector with the assumption of positive (or negative) definiteness. Katok [15]
also showed that there are infinitely many rotation vectors for which KAM tori do not exist.

For autonomous, nearly integrable, and positively (or negatively) definite systems with two-
degree of freedom, one can always reduce them to area-preserving twist maps of the annulus or
the cylinder [13]. But to indefinite systems, it is much more complicated. In this paper, we will
show that for any fixed energy surface with energy not too small comparing with perturbation,
one can still reduce the indefinite systems to exact area-preserving twist maps. Actually, the
two lines Ii = 0 (i = 1, 2) divide the whole energy surface to different connected components,
and every connected component determines a two-dimensional, half-infinite cylinder. Therefore,
Aubry-Mather Theory can be applied here, which asserts the existence of periodic and quasi-
periodic orbits, while KAM-Theory guarantees these orbits cannot wander in a large region on
this energy surface.

Theorem 1.1 Suppose that a Cr (r > 1) function g(θ1, θ2) �= 0 for any θ = (θ1, θ2) ∈ T
2

and the C1 norm of g(θ1, θ2) is bounded from below and above. Then there exists a constant
C > 0, such that on every energy surface SE with E ≤ −Cε or E ≥ Cε, there are periodic and
quasi-periodic orbits for the Hamiltonian system

H(I1, I2, θ1, θ2) =
1
2
I2
1 − 1

2
I2
2 + εg(θ1, θ2), θ = (θ1, θ2) ∈ T

2.

We know from [7] that periodic orbits for positively (or negatively) definite system have
the regularity property, and their action variable cannot change too much, i.e., they have the
uniform bound. However, this is not true for indefinite systems. Herman constructed an
example (see [10]) which shows that if the period of a periodic orbit is large enough, then this
orbit can visit a large region in the energy surface, i.e., its action variable does not have a
uniform bound. In the last section of this paper, we will show that this kind of orbits can only
exist in the energy surface with small energy in an absolute sense, i.e., they can only exist in
a small neighborhood of the resonant region. We will also prove that these orbits do not have
the ordering property.

Theorem 1.2 For any small enough ε > 0 and a constant C given in Theorem 1.1, if
q > 1

C ε
− 1

2 , the q-periodic orbits constructed by Herman can only exist in an energy surface with
energy −Cε < E < Cε. Moreover, if q > 2π

ε , these periodic orbits have no ordering property.

2 Existence of Aubry-Mather Sets

2.1 Settings

In this paper, we consider a system with Hamiltonian

H(I1, I2, θ1, θ2) =
I2
1

2
− I2

2

2
+ εg(θ1, θ2), θ = (θ1, θ2) ∈ T

2. (2.1)

To make the computations simple, we assume that the function g is a Cr (r > 1) function
of θ, and 0 < sup

θ
|g(θ)| < C1 for some constant C1 > 0.
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We restrict the Hamiltonian H = I2
1
2 − I2

2
2 + εg(θ1, θ2) to some fixed energy surface SE , i.e.,

we set

E =
I2
1

2
− I2

2

2
+ εg(θ1, θ2). (2.2)

Case (1) If E ≤ −C1ε, we eliminate I2 from the above equation (2.2). Thus we get two
functions, and denote them by K1 and K2 respectively, i.e.,{

K1(I1, θ1, θ2) =
√
I2
1 − 2E + 2εg(θ1, θ2),

K2(I1, θ1, θ2) = −√
I2
1 − 2E + 2εg(θ1, θ2).

Setting T = −θ2 as the new time variable and using (I1, θ1, E) as local coordinates on the
energy surface SE , one can easily check the formulas below⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dI1
dT

= − İ1
θ̇2

= − ε ∂g
∂θ1√

I2
1 − 2E + 2εg

= −∂K1

∂θ1
,

dθ1
dT

= − θ̇1
θ̇2

=
I1√

I2
1 − 2E + 2εg

=
∂K1

∂I1
,

(2.3)

where İ1, θ̇1, θ̇2 denote the derivatives of I1, θ1, θ2 with respect to time t. Formula (2.3) im-
plies that function K1(I1, θ1, T ) is a new Hamiltonian function on the energy surface SE , and
similarly, function K2(I1, θ1, T ) defines a new Hamiltonian function on the energy surface SE

too.
Case (2) If E ≥ C1ε, we can eliminate I1 from equation (2.2). We also get two functions

given by the following equations:{
K3(I2, θ2, θ1) =

√
I2
2 + 2E − 2εg(θ2, θ1),

K4(I2, θ2, θ1) = −
√
I2
2 + 2E − 2εg(θ2, θ1).

Set T = −θ1 and use (I2, θ2, E) as local coordinates on the energy surface SE . It is easy to
check that functions K3(I2, θ2, T ) and K4(I2, θ2, T ) are also Hamiltonian functions defined on
SE .

From the above discussions, we know that if the energy E ≥ C1ε or E ≤ −C1ε, the two lines
Ii = 0 (i = 1, 2) divide the energy surface into different connected open regions and K1,K2

are well defined in the region where I2 �= 0, while K3,K4 are well defined in the region where
I1 �= 0. In the following, we will show that Ki (i = 1, 2, 3, 4) is a convex or concave function
with respect to the action variable in the region where it is well defined. Obviously, it is enough
for us to prove that K1 is convex with respect to the action variable I1.

Since E ≤ −C1ε and 0 < |g(θ1,−T )| < C1, it is easy to know that

∂2K1

∂I2
1

(I1, θ1, T ) =
2εg − 2E

(I2
1 − 2E + 2εg)

3
2
> 0,

which implies that Hamiltonian function K1 is convex with respect to the variable I1. Consider
the time-2π map f defined by the new Hamiltonian function K1 on the energy surface SE . It
is clear that f is a Poincaré return map and the Mean Value Theorem of Integral implies that
f has the following form:

f(I1, θ1) =
(
I1 + εg1(I1, θ1), θ1 +

2πI1√
I2
1 − 2E + 2εg

)
, (2.4)
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where g1 arises from the perturbation term g �= 0.
There is a standard way to define a time-periodic Hamiltonian K1(I1, θ1, T ) of the time

period 2π, so that after the identification −θ2 = T , on the energy surface SE , trajectories of
K1 and H locally coincide up to time reparametrization (see, e.g., [9, Section 4.1]). It implies
that the Poincaré return map f of K1 coincides with the time-2π map of H . Since the time-2π
map of K1 is symplectic, it preserves the canonical 2-form ω2 = dI1 ∧ dθ1. Restriction of ω2

onto SE is an area form, which implies that f preserves a smooth area form on SE in its local
domain of definition. Moreover, from (2.4), one could check it easily that f is a twist map on
SE . In the same way, one can check that K2 is concave with respect to I1, and K3 (K4) is
convex (concave) with respect to I2 respectively, so that the time-2π maps of them are also
twist maps.

So far, we have checked that f is an orientation-preserving (due to the fact that f is a
Poincaré return map for a Hamiltonian system), area-preserving, and twist map. To use Aubry-
Mather Theory, we still need to check that f has the property of exactness, which means that,
given any loop γ which goes once around SE , the area between γ and its image γ′ = f(γ) is
zero, i.e., ∫

γ′−γ

Idθ = 0.

2.2 Proof of exactness

Because f defined by (2.4) is a smooth area-preserving twist map, so f can be defined by a
so-called generating function h : R

2 → R
2 in the following way. Let F : R

2 → R
2 be a lift of f ,

given by F (x+ 2π, x′) = F (x, x′)+ (2π, 0). Then F (x, I) = (x′, I ′) can be implicitly defined by
the following equations: {

I = −∂1h(x, x′),
I ′ = ∂2h(x, x′). (2.5)

Here ∂i (i = 1, 2) is the partial derivative with respect to the ith component, h ∈ C2,
h(x+ 2π, x′ + 2π) = h(x, x′), and ∂2∂1h ≤ −c < 0 for some c > 0.

The value of h(x, x′) equals the minimal action getting from x to x′ in time 2π, where action
arises from the time-periodic Lagrangian system associated to F by Moser’s Theorem (see [21]).
In our case, ∂2K1

∂I2
1

(I1, θ1, T ) > 0 implies that our Hamiltonian is positive definite in the twist
region. We can thus apply the Legendre transformation to K1 and get a Lagrangian L, since
our Poincaré return map is a time-2π map for K1. Then the generating function h is given by
the following formula (see, e.g., [1]):

h(θ, θ′) = inf
γ(0)=θ

γ(2π)=θ′

∫ θ′

θ

L(γ(t), γ′(t), t)dt,

where the infimum is taken over all absolutely continuous curves γ that start at γ(0) = θ and
arrive at γ(2π) = θ′ in time 2π. Since K1 is periodic in θ, so is L. Therefore, h is also periodic
in θ.

From (2.5), we know I = −∂1h(θ, θ′), and from (2.4), we have θ′1 = θ1 + 2πI1√
I2
1−2E+2εg

. Thus

θ′1 = θ1 − 2π∂1h√
(∂1h)2 − 2E + 2εg

.
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Differentiating the above equation with respect to θ′1 and rearranging, we have

∂2∂1h =
( 4π(E − εg)

(I2
1 − 2E + 2εg)

3
2

)−1

< 0. (2.6)

The property of exactness for the map f defined by (2.4) comes from the following theorem.

Theorem 2.1 (Exactness Theorem (see [16, p. 1])) Any smooth twist cylinder map f

satisfying the monotone twist condition ∂θ′
∂I > 0 possesses a generating function h, such that the

map is given by (2.5) implicitly. Moreover, the map is exact:
∫

f(γ)−γ Idθ = 0, where γ is an
arbitrarily smooth, noncontractible circle on the cylinder if and only if h(θ+1, θ′ +1) = h(θ, θ′)
and ∂2∂1h < 0.

2.3 Introduction to Aubry-Mather Theorem

Aubry-Mather Theory studies the orbit structure of exact area-preserving twist (EAPT)
maps by projecting orbits into their first components, which form the configuration space.
Consider the space of configurations R

Z = {Θ | Θ : Z → R}, that is, the space of bi-infinite
sequences of real numbers with product topology. Given a function h : R

2 → R, we extend h

to arbitrary finite segments (xj , · · · , xk) (j < k) of configurations Θ ∈ R
Z by

h(xj , · · · , xk) =
k−1∑
i=j

h(xi, xi+1).

Say that segment is minimal or action-minimizing with respect to h, if

h(xj , · · · , xk) ≤ h(x∗j , · · · , x∗k)

for all (x∗j , · · · , x∗k) with x∗j = xj and x∗k = xk.
A configuration x ∈ R

Z is called minimal or action-minimizing with respect to h if every
finite segment of x is minimal or action-minimizing with respect to h. The set of all action-
minimizing trajectories is denoted by Σ̃ = Σ̃(h) ⊂ R

Z.
A configuration x ∈ R

Z is called stationary, if

∂2h(xk−1, xk) + ∂1h(xk, xk+1) = 0 (2.7)

for all k ∈ Z.
This equation is an analogue of the Euler-Lagrange equation. Indeed, this equation says that

the sum
∑
k

h(xk, xk+1) is extremized with respect to each xk, because the formal derivative of

the sum with respect to each xk is zero. In particular, each minimal configuration is stationary.
By direct calculation using (2.6), we have the following lemma.

Lemma 2.1 Suppose that h is a C2 smooth function. Then there is one-to-one corre-
spondence between stationary configurations and orbits of an EAPT Φ: A → A, given by the
following relation: Let 0 ≤ x0 = θ0 < 1. Then

{xk}k∈Z → Φk(θ0, I0) = (xk mod 2π, ∂2h(xk−1, xk)),

{Φk(θ0, I0)}k∈Z → Φ̃k(xk, Ik), {xk}k∈Z ∈ R
Z.
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Here, Φ̃ is a lift of Φ.

Action-minimizing configurations have the following properties.

Theorem 2.2 (Aubry-Mather) Every minimal configuration Θ ∈ Σ̃ has a rotation number
ρ(Θ), and for every rotation number ω ∈ R, there is a minimal configuration Θ ∈ Σ̃ with
ρ(Σ) = ω. Moreover, there exists a circle homeomorphism ψ with rotation number ω, such that
Θ is the orbit of the lift ψ̃ of ψ.

2.4 Existence of Aubry-Mather sets

In this section, we will prove that on the energy surface SE there are Aubry-Mather sets
existing in regions where the Hamiltonian functions Ki (i = 1, 2, 3, 4) are well defined. More
exactly, we will define a region (S) in I = (I1, I2)-plane, and we will show if the action variable
I is outside of the region (S), then there are Aubry-Mather sets existing for some Hamiltonian
function Ki (i = 1, 2, 3, 4). To prove such a result, we need the following Theorem 2.3. Let us
first explain the notations used in the theorem.

Consider an integrable symplectic diffeomorphism f0 : f0(x, r) = (x + a(r), r), where a :
U ⊂ R

n → R
n is a regular injective map. Add a small and periodic perturbation to f0 and

denote the new map by f . By saying the rotation vector v, we mean that if for some lift
Fm(x0, r0) = (xm, rm), m ∈ Z, the formula below holds:

lim
m→±∞

xm − x0

m
= v.

Theorem 2.3 (see [15, Proposition 2]) Suppose that C1 norm of perturbation term is
bounded from below and above. If a minimal orbit has the rotation vector v, then for all integers
n = 0, 1, 2, 3, · · · , there exists a constant C2 > 0, such that the following holds:

|rn − a−1(v)| < C2ε
1
2 .

Proposition 2.1 For any small enough ε, define region (S) in the I = (I1, I2) plane below:⎧⎪⎪⎨
⎪⎪⎩
I1 − C0ε

1
2 < I2 < I1 + C0ε

1
2 ,

−I1 − C0ε
1
2 < I2 < −I1 + C0ε

1
2 ,

−C0ε
1
2 < I1 < C0ε

1
2 ,

−C0ε
1
2 < I2 < C0ε

1
2 ,

(2.8)

where C0 = C2 + 2
√
C1. Then after perturbation outside region (S), there are Aubry-Mather

sets for Hamiltonian function Ki (i = 1, 2, 3, 4) with the same rotation number of unperturbed
orbits.

Proof In Section 2.1, we have shown that outside region satisfies

−C1ε <
I2
1

2
− I2

2

2
+ εg < C1ε.

We can always find a new Hamiltonian function whose time-2π map is a twist map. Therefore,
Aubry-Mather Theory guarantees the existence of minimal orbits with appropriate rotation
numbers. On the other hand, Theorem 2.3 implies that after ε-perturbation, the action variable
of any minimal orbits changes less than C2ε

1
2 .
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Proof of Theorem 1.1 Proposition 2.1 directly shows C = 1
2C

2
0 . There are regions on

the energy surface SE , and these regions are homeomorphic to half-infinity cylinders, while
on cylinders there are periodic and quasi-periodic orbits with a rotation number ω satisfying
|ω| ≥ |I1| ≥ Cε

1
2 or |ω| ≥ |I2| ≥ Cε

1
2 .

2.5 KAM result

Recall the basic KAM Theorem. Let U ⊂ R
n be an open-bounded set in R

n, M := U ×T
n

be the phase space, and suppose that a Hamiltonian function has the form

Hε(I, θ) := H0(I) + εH1(I, θ)

with real-analytic functions H0, H1 and ε being a small real number. The variables (I, θ) are the
standard symplectic “action-angle” variables, and the symplectic form is given by the formula
below

dI ∧ dθ :=
n∑

i=1

dIi ∧ dθi.

Theorem 2.4 (Kolmogorov) In any neighborhood of any torus I0 × T
n ⊂ M such that

det ∂2
IIH0(I0) = det

( ∂2H0

∂Ii∂Ij
(I0)

)
�= 0, (2.9)

there exists a positive measure set of points in the phase space M which belongs to the analytic
KAM tori for Hε, provided that ε is small enough.

To the Hamiltonian function defined by equation (2.1), H0 = I2
1
2 − I2

2
2 , a simple computation

shows that det ∂2
IIH0(I0) = −1 �= 0, so Theorem 2.4 implies that after ε-perturbation, for any

I = (I1, I2), there are KAM tori in the neighborhood of it. Especially, in any neighborhood of
the lines

±I1 − C0ε
1
2 = I2 = ±I1 + C0ε

1
2 , I1 = ±C0ε

1
2 , I2 = ±C0ε

1
2 ,

there are KAM tori, and those KAM tori separate the whole energy surface in disjoint parts.

3 Regions Where the Orbits Constructed by Herman Exist

3.1 Herman’s example

Consider the integrable map f : T ∗(T2) → T ∗(T2),

f(θ, r) = (θ + rB, r),

where B = ( 0 1
1 0 ), θ = (θ1, θ2) and r = (r1, r2).

For small ε, add an ε-size perburbation to f , such that the perturbed map in the covering
space has the following form:

F (x, r) = (x1 + r2, x2 + r1, r1 + ε cos (2π(x1 + r2)), r2). (3.1)
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For j ≥ 2, the jth iterates of F is

F j(x, r) = (xj
1, x

j
2, r

j
1, r

j
2)

=
(
x1 + jr2, x2 + jr1 + ε

j−1∑
k=1

(j − k) cos (2π(x1 + kr2)),

r1 + ε

j∑
k=1

cos (2π(x1 + kr2)), r2
)
.

Take any integer q ≥ 2 and an integer vector ω = (1, 1). Then the action variables of an
unperturbed tori with the rotation vector ω

q are r = rω,q = (1
q ,

1
q ). With this rotation vector

and choosing x2 arbitrarily, one can check it easily that {F i(− 1
2q , x2,

1
q ,

1
q ), i ∈ Z} is a Birkhoff

periodic orbit.
(
Let h be the generating function of F , and define Lω,q(x) =

q−1∑
i=0

h(xi, xi+1) as

an action of a periodic orbit x with rotation number ω. x is called a Birkhoff periodic orbit if
it satisfies ∂Lω,q

∂xi = 0, ∀ i ∈ Z.
)

For 1 ≤ j ≤ q,

rj
1 − r1 = ε

j∑
k=1

cos
(
2π

(
k − 1

2

)
r2

)
= ε

sin(2πjr2)
2 sin(πr2)

,

where r2 = 1
q . Taking j = [ q

4 ] the integer part of q
4 , for large q, we have

|rj
1 − r1| ≈ εq

2π
. (3.2)

To this example, it is easy to check that the map defined in (3.1) has the following properties:
(1) F is an area-preserving map;
(2) F is a symplectic map;
(3) det(DF q − Id) = 0, i.e., the periodic orbits of F are all degenerate;
(4) For q > 2π

ε , the action variables of those orbits will deviate more than 1.
To coincide with Section 2, we do the following transformations:⎧⎪⎨

⎪⎩
I1 =

r1 + r2√
2

, I2 =
r1 − r2√

2
,

θ1 =
x1 + x2√

2
, θ2 =

x1 − x2√
2

.
(3.3)

It is easy to check that dr1 ∧dx1 +dr2 ∧dx2 = dI1 ∧ dθ1 +dI2 ∧dθ2, so this is a symplectic
transformation, and the map in new coordinates has the following form:

F (θ1, θ2, I1, I2) = (θ′1, θ
′
2, I

′
1, I

′
2)

=
(
θ1 + I1, θ2 − I2, I1 +

ε√
2

cos (
√

2π(I1 − I2 + θ1 + θ2)),

I2 +
ε√
2

cos (
√

2π(I1 − I2 + θ1 + θ2))
)
. (3.4)

The generating function of (3.4) is

h(θ, θ′) =
1
2
(θ′1 − θ1)2 − 1

2
(θ′2 − θ2)2 +

ε

2π
sin

√
2π(θ′1 + θ′2),
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where θ = (θ1, θ2), θ′ = (θ′1, θ
′
2) ∈ T

2.
Using the so-called generating function method (see, e.g., [19, Proposition 9.18] and [12,

Theorem 58.9]), we know that the Hamiltonian function of (3.4) has the following form:

H(I1, I2, θ1, θ2) =
I2
1

2
− I2

2

2
+ εg(I1, I2, θ1, θ2),

where g is a trigonometric function, and so it is bounded from below and above.

Proposition 3.1 For q >
√

2
C0
ε−

1
2 , these periodic orbits given by (3.4) are all in region (S),

i.e., these orbits are all on the energy surface SE with energy |E| < Cε.

Proof From (3.3), we know action variables of any two points on the periodic orbits
{F i(− 1

2q , x2,
1
q ,

1
q ), i ∈ Z} all satisfy I1 − I2 =

√
2r2 =

√
2

q , so if q >
√

2
C0
ε−

1
2 , we have 0 <

I1 − I2 < C0ε
1
2 . This relation implies |E| < 1

2C
2
0ε = Cε.

Project orbits defined in (3.1) into their angular components, and consider the “state space”
(R2)Z = {Θ |Θ : Z → R

2}, which is composed of bi-infinite sequences y = (· · · , y−1, y0, y1, · · · )
of vectors in R

2 with product topology and satisfies the following periodicity condition:

yi+q = yi + (1, 1).

We defined the “Aubry-graph” to be the union of the line segments in R
3 joining (i, yi) and

(i+ 1, yi+1) for any integer i ∈ Z. Without loss of generality let y0 = ( 1
2q , x2) for any fixed x2,

and we define the translation to be (T(a,b)y)i = yi−a + (b, b) for a, b ∈ Z.

Proposition 3.2 Assume q > 2π
ε . Let {F i(− 1

2q , x2,
1
q ,

1
q ), i ∈ Z} be a periodic orbit with

the rotation vector ω = (1
q ,

1
q ). Let y be the corresponding state with y0 = (− 1

2q , x2). There
exists an r ∈ Z, such that (Tr,0y) intersects with y.

Proof If q
4 ∈ Z, take r = q

4 ; or else take r = q+1
4 . It is clear that if q > 2π

ε , the deviation
of yr is more than 3

4 , so the following computations are obvious:

(Tr,0y)0 = y−r >
3
4
− 1

2
=

1
4
> 0 = y0,

(Tr,0y)r = y0 = 0 <
3
4
< yr.

These two relation imply that (Tr,0y) intersects with y.

Remark 3.1 In this example, one can check it easily that {F i(− 1
2q + 1

2 , x2,
1
q ,

1
q ), i ∈ Z}

is another family of periodic orbits with the rotation vector ω = (1
q ,

1
q ). Actually, {F i(− 1

2q , x2,

± 1
q ,

1
q ), i ∈ Z} and {F i(− 1

2q + 1
2 , x2,± 1

q ,
1
q ), i ∈ Z} are periodic orbits with the rotation vector

ω = (± 1
q ,

1
q ); {F i( 1

2q , x2,± 1
q ,− 1

q ), i ∈ Z} and {F i( 1
2q − 1

2 , x2,± 1
q ,− 1

q ), i ∈ Z} are periodic
orbits with the rotation vector ω = (± 1

q ,− 1
q ). Almost in the same way, one can check that

Propositions 3.1 and 3.2 are valid for all these periodic orbits.
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