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Abstract This paper presents a definition of residue formulas for the Euler class of
cohomology-oriented sphere fibrations ξ. If the base of ξ is a topological manifold, a Hopf
index theorem can be obtained and, for the smooth category, a generalization of a residue
formula is derived for real vector bundles given in [2].
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1 Introduction

Let ξ : E
π−→B be a fibration whose fibre has the R-cohomology of an (r− 1)-sphere, where

R is a commutative ring with a unit, π is surjective and B is a Hausdorff, path-connected,
paracompact space.

We suppose that ξ is endowed with an R-orientation, i.e., a Thom class t(ξ) ∈ Hr(Zπ, E; R)
∼= R is given such that the natural inclusion jx : (C(π−1(x)), π−1(x)) ⊂ (Zπ, E) induces iso-
morphisms in cohomology for every x ∈ B, where C(π−1(x)) is the cone over π−1(x) and Zπ

is the cylinder of π, i.e., Zπ is the quotient of E × [0, 1] by the equivalent relation identifying
(z, 0) to (z′, 0) whenever π(z) = π(z′).

Finally, we assume that the Thom homomorphism Hp(B; R) → Hp+r(Zπ, E; R), given by
α→ ρ∗(α)t(ξ), is an isomorphism. Here ρ : Zπ → B is given by ρ([z, t]) = π(z).

Define then the Euler class e(ξ) ∈ Hr(B; R) by the relation j∗(t(ξ)) = ρ∗(e(ξ)), where
j : Zπ → (Zπ, E) is inclusion.

It is clear that the Euler class of ξ depends only on the equivalence class of the R-oriented
fibration ξ.

The long exact sequence for the pair (Zπ, E), together with Thom isomorphism, gives the
Gysin sequence

· · · → Hp−1(E; R)→ Hp−r(B; R)→ Hp(B; R) π∗
−→Hp(E; R)→ · · · ,

where the central map above is given by α→ α.e(ξ).
The main example for an R-oriented fibration is given by the R-oriented sphere bundle

associated to an R-oriented real vector bundle.
In this paper, we specify the definition of residue formulas for the Euler class associated to

the given sections, find a Hopf index theorem, and by restricting to the smooth category and
to real vector bundles, obtain a generalization of a result by Feng Huitao and Guo Enli [2].
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2 Residue Formulas

Let X be a closed subset of B. We say that a cross section σ of ξ over U −X is equivalent
to a cross section σ′ of ξ over U ′ −X, where U and U ′ are open neighbourhoods of X, if and
only if σ and σ′ agree on V −X for some open neighbourhood V of X.

The class [σ] of a cross section σ defined on U−X is called the germ of σ at X, and Sec(ξ, X)
will denote the set of those germs of ξ at X.

A residue formula for the Euler class of ξ consists of giving a map ResX : Sec(ξ, X) →
Hr(B, B − X ; R) for every closed subset X with Sec(ξ, X) �= ∅, such that the following two
conditions hold:

( i ) e(ξ) = j∗X(ResX([σ])) for all [σ] ∈ Sec(ξ, X), where j∗X : Hr(B, B −X ; R)→ Hr(B; R)
is induced by inclusion.

(ii) Let X ⊂ Y be closed subsets of B, U a neighborhood of Y in B, σX a cross section of
ξ over U −X and σY the restriction of σX to U − Y. Then

j∗XY (ResX [σX ]) = ResY [σY ],

where j∗XY : Hr(B, B −X ; R)→ Hr(B, B − Y ; R) is induced by inclusion.
Observe that given a cross section σ of ξ over B−X, X closed in B, e(ξ|B−X

) = 0. So there
is a class αX ∈ Hr(B, B −X ; R) such that j∗X(αX) = e(ξ). Thus, without condition (ii) above,
the definition of a residue formula would be uninteresting.

The following theorem proves existence of residue formulas.

Theorem 2.1 Let B be metrizable and π proper, i.e., π−1(K) is compact for any compact
K of B. There exist then residue formulas for the Euler class of ξ.

Proof Let σ be a cross section of ξ over U − X, where U is an open neighborhood of a
closed subset X of B. We may choose a nonnegative real continuous function f : B → R such
that f−1(0) = X , because B is metrizable and so perfectly normal.

Define σf : U → ρ−1(U) ⊂ Zπ by

σf (x) =

{
[σ(x), f(x)], if x ∈ U −X,

σ0(x), if x ∈ X,

where [ ] denotes the equivalence class and σ0(x) = [z, 0] for any z ∈ π−1(x).
It is clear that ρσf is the identity on U and σf is continuous because π is proper.
Define then ResX([σ]) ∈ Hr(B, B −X ; R) by the formula

i∗XC(ResX([σ])) = σ∗
f (t(ξ)),

where C is a closed neighborhood of X in U, i∗XC is the excision isomorphism for the inclusion
(C, C −X) ⊂ (B, B −X), and t(ξ) ∈ Hr(Zπ, Zπ − σ0(B); R) is the class applied to the Thom
class t(ξ) by the isomorphism associated to inclusion (Zπ, E) ⊂ (Zπ, Zπ − σ0(B)).

If we replace f by another function f ′, we get a homotopy from σf to σf ′ by H(x, t) =
[σ(x), (1 − t)f(x) + tf ′(x)], which shows that the definition of ResX is correct.

Finally, it is easy to check that we obtain in this way a residue formula.

Suppose now that X is a compact homologically locally connected subspace of B (see [3,
Chapter 6]). This implies that the connected and path connected components of X coincide and
they are open and closed in X. In particular, X has a finite number of connected components
and we can choose an open neighborhood VF for each connected component F of X, such that
V F ∩ V F ′ = ∅ whenever F and F ′ are distinct connected components of X.
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Lemma 2.1 The following diagram commutes:

Sec(ξ, X) ResX−→ Hr(B, B −X ; R) ↘
↓ ↑∑

F

j∗FX ⊕F Hr(V F , V F − F ; R)∏
F Sec(ξ, F ) ⊕F ResF−→ ⊕F Hr(B, B − F ; R) ↗

where F runs through the connected components of X, and jFX : (B, B −X) ⊂ (B, B − F ).

Suppose now that B is a compact R-oriented topological manifold of dimension n and X
is a closed homologically locally connected subspace of B, so that we have Alexander duality
isomorphism DX : Hi(B, B − X ; R) → Hn−i(X ; R) (see [3, Chapter 6]). Then we have the
following Hopf index theorem for a given cross section σ of ξ over B −X .

Theorem 2.2
De(ξ) =

∑
F

(iF )∗DF (ResF ([σ])),

where F runs through the connected components of X, D represents Poincaré duality for B,
DF is Alexander duality for F , and iF : F ⊂ B inclusion.

Proof In fact, the previous lemma gives

ResX [σ] =
∑
F

j∗FX(ResF [σ]),

and so
DX(ResX [σ]) =

∑
F

(iFX)∗(DF (ResF [σ]))

with iFX : F ⊂ X, and then

De(ξ) = Dj∗X(ResX([σ])) = (iX)∗DXResX([σ]) =
∑
F

(iF )∗DF (ResF [σ]),

where ix : X ⊂ B.

Suppose now that each connected component F of X is an R-oriented closed topological
manifold, tFB ∈ Hn−n(F )(B, B−F ; R) the Thom class for the inclusion F ⊂ B, i.e., DF (tFB) =
[F ], where [F ] ∈ Hn(F )(F ; R) is the homology fundamental orientation class of F and n(F ) the
dimension of F.

We define θF : Hi(F ; R) → Hi+n−n(F )(B, B − F ; R) by the formula DF (θF (γ)) = D(γ),
where D : Hi(F ; R)→ Hn(F )−i(F ; R) is Poincaré duality. In particular, θF (1) = tFB.

We also define the normal class of F in B by eFB = j∗F (tFB), where jF : F ⊂ (B, B − F ).
Therefore the composition i∗F ◦ θF : Hi(F ; R)→ Hi+n−n(F )(F ; R) consists of right multiplica-
tion by eFB.

If we further assume that B is a smooth manifold and F are smooth submanifolds with a
normal bundle νF , then eFB coincides with the Euler class e(νF ), and in this case, composition
i∗F ◦ θF : Hi(F ; R)→ Hi+n−n(F )(F ; R) is the map appearing in the Gysin sequence for νF and
consists of right multiplication by e(νF ).

Finally, suppose that ξ : E
π−→B is an r-dimensional smooth real vector bundle, X a compact

subset of B such that each connected component of X is a smooth submanifold, and σ is a
cross section of ξ without zeros on B −X.

Define then Lσ(x) : Tx(B) → π−1(x) for all x ∈ X such that σ(x) = 0 by Lσ(x)v =
r∑

i=1

vfi.ei(x), where e1, · · · , er is a basis of cross sections of ξ in a neighborhood of x such that

σ(x) = 0.
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It is clear that the above definition is correct because if ∇ is a linear connection on ξ, the
linear map (∇σ)x : TxB → π−1(x), given by v → ∇vσ, extends Lσ(x) and TxF ⊂ kerLσ(x) for
all x ∈ F. Also assume that TxF = kerLσ(x) for all x ∈ F, i.e., σ is nondegenerate in the sense
of Bott [1].

We have then the following result.

Theorem 2.3 The residue of σ at F is given by

De(ξF /Lσ(νF )) = DF (ResF [σ]),

and we have
De(ξ) =

∑
F

(iF )∗De(ξF /Lσ(νF )).

Proof In fact, we have the exact sequence of vector bundles over F

0→ νF
Lσ−→ξF → ξF /Lσ(νF )→ 0.

Therefore,
e(ξF ) = e(ξF /Lσ(νF ))e(νF ).

Consider then the commutative diagram

Hr(π−1(F )) σ∗→ Hr(F )
j∗← Hr(V F )

↑ ↑
Hr(π−1F, π−1F − σ0F ) λ∗← Hr(π−1V F , π−1V F − σ0V F ) σ∗→ Hr(V F , V F − F )

and so we have

e(ξF ) = σ∗π∗e(ξF ) = σ∗i∗(t(ξF )) = σ∗i∗λ∗(t(ξV F
)) = j∗i∗σ∗(t(ξV F

)) = j∗i∗i∗
FV F

(ResF [σ]).

Let αF (σ) ∈ Hr−n+n(F )(F ) be given by θF (αF (σ)) = ResF [σ]. So we get

e(ξF ) = i∗F θF (αF (σ)) = αF (σ).eFB = αF (σ).e(νF ).

Whence
αF (σ) = e(ξF /Lσ(νF )),

and so
De(ξF /Lσ(νF )) = DF (ResF [σ]).

Therefore

DX(ResX [σ]) =
∑
F

(iFX)∗DF (ResF [σ]) =
∑
F

(iFX)∗De(ξF /Lσ(νF )),

and so
De(ξ) =

∑
F

(iF )∗De(ξF /Lσ(νF )).

Observe that all we needed was that ξF contains a subbundle isomorphic to νF .

Remark 2.1 The theorem above holds for any coefficient ring R, in particular, for Z or
Z/(2), and generalizes a formula given in [2].
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