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Fractional Moments of Automorphic
L-Functions on GL(m)*
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Abstract Let m be an irreducible unitary cuspidal representation of GLy,(Ag), m > 2.
Assume that 7 is self-contragredient. The author gets upper and lower bounds of the same
order for fractional moments of automorphic L-function L(s,7) on the critical line under
Generalized Ramanujan Conjecture; the upper bound being conditionally subject to the
truth of Generalized Riemann Hypothesis.
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1 Introduction

Understanding moments of families of L-functions on the critical line has long been an
important subject in number theory. According to conjectures of Langlands, the general L-
functions should be expressed as products of primitive L-functions L(s, ) attached to cuspidal
automorphic representations of GL,,(Ag). For m = 1, these are the Riemann zeta function
¢(s) and Dirichlet L-functions L(s,x) with y primitive. It is conjectured that

/OT ‘C(% + it) ‘%dt ~ C,T(log T)*, (1.1)

where k > 0 and C; > 0 is a constant. For k = 1 and k£ = 2, (1.1) was proved by Hardy
and Littlewood [1] in 1918 and Ingham [2] in 1926, respectively. However, no unconditional
asymptotic formula has yet been proved for any other k.

It is of interest therefore to ask for the weaker result

T
. 1 2%
T&gTﬁz<i/ k(5+u)‘dt<zwbgTﬁ2. (1.2)
0

In this direction, Ramacharadra [3-4] and Heath-Brown [5-6] proved that the lower bound in
(1.2) holds for all rational k > 0, and the upper bound holds for k = %, where v is a positive
integer. Moreover, under Riemann Hypothesis (RH in brief), they showed that the lower bound
holds for all real k& > 0, and the upper bound holds for 0 < k < 2. Recently, Soundararajan [7]
showed that, under RH,

T .
1 2k :
/ ‘C<§+it)‘ dt < T (log T)*"**
0
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for any £ > 0 and any k& > 0. For Dirichlet L-functions L(s, x), we refer to [8]. For m = 2, the
asymptotic formula for the second moment of automorphic L-functions L(s, f) attached to a
holomorphic cusp form f for SLy(Z) was obtained by Good [9]. Recently, using Heath-Brown’s
method [5], Laurinéikas and Steuding [10] showed that

T 1 k? k2 1
/ ‘L(§+it,f)‘ dt > T (logT)*  for k = — with v € N,
0 v

T 1 ) k2 12 1 .
/ ‘L(§+lt’f>‘ dt < T (logT) fork:;w1th2|v and v € N,
0

where the upper bound was proved under Generalized Riemann Hypothesis (GRH in brief). Lii
and Sun [11] further improved the lower bound by extending the range of k to k = & < % with
u,v € N.

In this paper, we are concerned with the fractional moments of automorphic L-functions
L(s,m), where 7 = ®m, is an irreducible unitary cuspidal automorphic representation of
GL,,(Ag), where, throughout the paper, m > 2. To this end, we recall some background
on automorphic L-functions.

Let s = o +it. For 0 > 1, L(s,7) is defined by the products of local factors,

_ s, 8, Tp) = 1 N
L(s,m) = H Lp(s,mp),  Ly(s,mp) le_[l(l P ) '

p<oo

The complete L-function attached to 7 is defined by

D(8,7) = Loo(8, Moo ) L(s, ), (1.3)

m
where Loo(s,Too) = [ Tr(s + pr(j)). Here Tr(s) = 72T (%), and ax(p,j) and pr(j) (j =
j=1
1,---,m) are complex numbers associated with 7, and 7, respectively. It is well-known that
all the non-trivial zeros of L(s,7) are in the critical strip 0 < o < 1, while GRH predicts that
they lie on the vertical line o = % For m > 2, ®(s,7) is entire and satisfies a functional

equation
O(s,m) =¢e(s,m)P(1 — s,7), (1.4)

1
with 7 the representation contragredient to 7 and e(s,7) = £, Nz °. where e, is the root
number and N, > 1 is the conductor. For any p < oo, 7, is equivalent to the complex
conjugate 7y, and thus

{az(,p)} = {ax(i" P}, {nz()} = {u=(")}- (1.5)

Denote

Then for o > 1, we have
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where A(n) = logp is n = p’ and if 0 otherwise.
In this paper, we assume the Generalized Ramanujan Conjecture (GRC in brief) which
states that for any unramified p,

laz(p,7) =1 and Repur(j)=0, j=1,---,m. (1.7)

An important consequence of GRC is Selberg’s orthogonality conjecture proposed by Selberg
[12] in 1989, which states as follows. Let m and 7’ be automorphic irreducible cuspidal repre-
sentations of the groups GL,,(Ag) and GL,,/(Ag), respectively. Then

ar(p)ar (p)  [loglogz +O(1), ifr=n,
> = {0(1), it (1.8)

p<z

(1.8) was proved by Rudnick and Sarnak [13] under the hypothesis

Z |a7r Ing) OO,

which is an easy consequence of GRC. Under GRC, Liu and Ye [14] proved (1.8) in a more
precise form. Precisely, they proved the following result.

Proposition 1.1 Let m and " be automorphic irreducible cuspidal representations of the
groups GL,,(Ag) and GL,, (Ag), respectively, such that at least one of m and 7' is self contra-
gredient: m =7 or ' = /. Assume GRC for both m and ©’. Then

i (p)an (p) loglogx + Cy + O(exp{—cy/logz }), =
Z S T2 = Oy + Ei(itglogx) + O(exp{—cylogz }), 7 =7 ®a'™ for some 19 € R,
p<ax p C3 + O(exp{—cylogz }), ' 27 ®aT for any T € R,

where Fi is the exponential integral, and Cv, Co, Cs are positive constants.
For k> 0 and o > 1, we define I; (0, T, 7) = fOT |L(c + it, 7)|** dt. For brevity, we denote

Ik(%,T> = Ik(%,T,w) - /OT ’L(% +it,7r>’2kdt.

Theorem 1.1 Assume GRC. Let m be an automorphic irreducible cuspidal representation
of GLy,(Aq) such that m is self-contragredient. Let k € Q, k > 0. Then as T — oo, we have
Ii(3.T) > T (log T) . Under GRH, the range of k can be extended to k € R, k > 0.

Theorem 1.2 Assume GRC and GRH. Let w be as in Theorem 1.1. Let 0 < k < % —¢
for any e > 0. Then as T — oo, we have Ik(%,T) < T(logT)]€2

Theorems 1.1 and 1.2 are proved by Heath-Brown [5]. Since GRC was proved by Deligne
[15] for 7 being representations corresponding to holomorphic cusp forms, Theorems 1.1 and 1.2
hold without assuming GRC for m = 2. Thus Theorems 1.1 and 1.2 improve Lauriné¢ikas and
Steuding’s result and Lii and Sun’s result. We also note that Theorems 1.1 and 1.2 generalize
the recent results of Fomenko [16].

In the sequel, we will use ¢, co, - -- to denote positive constants and the implied constants
in “<” and “>” depending on m, k and .
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2 Proof of Theorems 1.1 and 1.2

Let w(t,T) = f e~(t=7) dr. Then w(t,T) has the following properties:

w(t,T) <1 forallt,

4T T
w(t,T)>1 for—<t<5—
3 3
Define -
J(0,T) := Jy(o, T, ) :/ |L (o + it, 7)|** w(t, T)dt.

By (2.1), we have J(%,T) < Ij,(5,3T). Thus Theorem 1.1 follows if under GRC,

J(%,T) > T(logT)]€2 for ke Q, k >0,

and under GRH, it holds for & > 0.
On the other hand, if we can establish the upper bound

1
J(E’T) < T(logT)k2 for 0 <k <2 —¢ for any € > 0,

under GRC and GRH, then by (2.1), we also have

Ik(; 53T) Ik(; 43T) < J( T) < T(logT)"

Replacing T by ( ) 'T and summing up over j = 1,2,---, we obtain Theorem 1.2.

The following three sections will be devoted to the proof of (2.2) and (2.3).

3 The Coefficients of L(s,m)*

Q.

Let s = o 4 it. For o > 1, we define a branch of the multi-valued function L(s,7)* by

o)

L(s,m)* —exp{klogL(sW}fexp{kzzzawm } HH(

p j=1/¢=1 p j=1

I'(k +£) z
I(k)e!

118

For |z| < 1, we have (1 — 2)7F = . For positive integers ¢, define

£=0

CTk+0  k(k+1)---(k+l—1)
T TR 1 '

di(p")

Then for o > 1, we have

S | I A L
p £=0

p n=1

where hy(n) is the multiplicative function given by

hi(p) = Z di(P™)ar (p, 1) - - - di (p™™ ) aur (p,m)*™  for £ € N.

O+ A lm =t
£;>0

H. Pi

(2.2)

(2.3)
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Lemma 3.1 (see [5]) The multiplicative function dy(n) satisfies the following properties:
(1) For k>0 andn > 1, we have di(n) > 0;

(2) For fized k>0 and € > 0, we have di(n) < nc;

(3) If ¢ is an integer, then dge(n) = >,  dr(ny) - - di(ne).

ni-ne=n
Lemma 3.2 (see [17, 18]) Let f(n) > 0 be a multiplicative function satisfying
(i) X “E2f(p) ~rlogw for some T > 0;

(ii) '}‘(x><<1
(iii) ZZ>2 fp
(iv) ’;2 fiph) < 1o§x-
Then e - -
gf(n) - I'(7) 1ogxp1;[z( zz: )

where vy is Euler’s constant.

Lemma 3.3 Assume GRC. Let m be an automorphic irreducible cuspidal representation
of GL,(Ag), such that m is self-contragredient. We have

e*“/ok2
o~ Sy g T (13 L),

where vy is Euler’s constant.

Proof Note that di(p) = k. By (3.1) and (1.6), we have hy(p) = di(p)(ax(p,1) + ---
+az(p,m)) = kar(p). By Proposition 1.1,

Z |a7r =loglogx + C;1 + R(x),

where R(z) < exp{—cy/logz}. Integrating by parts, we get

10 a7r
> =k |hk<p>|2:k2/ logu dZ'
2

p

p<z p<u

T x

= k2/ log udloglogu + k;2/ logudR(u)
2 2

= k?logz + O(1)

~ k*logz, asx— 0. (3.2)

Next, by (1.7), we have
@) = B |ax (p)[* < K*m? <eom 1. (33)

Moreover, by (1.7), (3.1) and Lemma 3.1(3), we have for any € > 0,

(@) < D d™) - di(p™) = dkm (0°) < P (34)

L
£;>0
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Thus, for ¢ > 0 sufficiently small,

> 1

Ihk
Z Z - <00 (3.5)
1— l—e __
pAl>2 p,€>2 p= 2p E(p : 1)
Finally,
h ‘<« 2l « 2t « 2% l<prtde « =
2 Il 3w 30 30 pwatiope 3 1wt
Zf)fé;n iégx pﬁf €= Oi‘p pff

Combined with this estimate, Lemma 3.3 follows from (3.2), (3.4), (3.5) and Lemma 3.2.

Lemma 3.4 Assume GRC. For any fized k > 0, there ezists a constant C > 0, such that

( ) Z|k ( 1)_k2 i lfl C<<1
o o 5 , uniformly jor —|—1ng0
n<N
. h 2 .
(log N)¥* <« > % < (log N)¥.
n<N

Proof By Lemma 3.3, we have the asymptotic formula

e—’mkz
S Ik ~ Sy 1ngH( +Z| “; ).

n<z

By (3.3), (3.4) and Proposition 1.1, we have

I1(+ £ ) - Soslr o)
:exp{;’;W—FO(l)}
= ex p{k‘22|w (1)}

2
=20 (logz)*
Therefore, there exist positive constants ¢; < ¢o, such that

cax loga: k2= 1< Z | (n 2 <o (logaz:)]c

n<x

21

By partial summation, the first assertion of the lemma follows. The second assertion follows
from the first one since, for o = l + % and 1 <n < N, we have n=! <« n?* <« n~!

Define Sy(s) = Y 2 and H(o,T) = [*_|Sn (0 +it)]> w(t, T) dt.

n<N
Lemma 3.5 Assume GRC. Let N < T and log N > logT. Then for L 5+ logN <o < %,

we have
1\ —+* 1\ —+*
T(a—a) < H(o,T) < T(U—E) ,

1
T (logT)* < H(E,T) < T (logT)"
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Proof Note that w(t,T) < e (*+T%) for ¢ <0 and t > 3T. By (3.4), we have Sy (s) <
Nzte for o > % and any € > 0. Thus, by (2.1) and the Montgomery-Vaughan Theorem (see
[19]), we find that

o 2 ()
H(o,T) <</ |Sn (o +it)|*dt < (T+N) > —
0 n<N

On the other hand, by (2.1), we have
5T

H(o,T) >>/3 |Sn(e+it)dt>T >

()
5 .
3 n<N nee

Therefore, Lemma 3.5 follows from Lemma 3.4.

4 Applications of Gabriel’s Inequality
We need the following Gabriel’s inequality.

Lemma 4.1 (see [20] or [5]) Let G(s) be regular in the strip {s € C : o < 0 < 8} and
continuous in the closed strip {s € C: a < o < }. Moreover, assume that G(s) — 0 ast — oo
uniformly in {s € C:a <o < S}. Then, for a << and any 6 >0,

B—~ '] Y-

/Oo Gy +it)° dt < (/Oo Gla+in)* ar) " (/ G+ i) ar) .

— 00 —00 — 00

Lemma 4.2 Let % <og< % and T > 2. Then for all k > 0,
1
J<§7T) < J(o,T)TFm(0=3) 4 g=ea?,

Proof Applying Lemma 4.1 with v = %, a=1—o0, f=o, % <o < %, 0 = 2k, and

we obtain

oo 1 2k
/ }L(— —|—it,7r>} e~ (=7 gy
o 2
(o] 1

e o] 1 1
< (/ LA -0 +it,m) | e=t=" dt)z(/ IL (0 +it, m) | e~ (=" dt)z.

— 00 —0o0

By the functional equation (1.3)—(1.5) and the Stirling’s formula, we have
IL(1 — o +it,m)| < | Lo +it, m)| (1 + |¢) 72,

where the implied constant depends on Imyi,(j), j =1, -+ ,m. It follows that

[ee]
/ IL(1—o+it,m)[*e -7 qt

—00
S |
<{ [T [T [ hino im0

00
< rhm(20-1) / |L (o +it, 7T)|2k e—(t—T)2 dt + e—cm—27

—00
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where we have used the bound L(o +it, 7) < [t|" for o > 1. Therefore,

OO L. 2k —(t—7)? km(o—1) > . 2k —(t—7)> —ceT?
‘L(E—Htﬂr)} e dt <7 2 |L (o +it,m)[" e dt +e 7 .
—o0

—00
Now integration respect to 7 on [T, 2T completes the proof of Lemma 4.2.
S o 1
Lemma 4.3 Let % <og< % and T > 2. Then for all k >0, J(0,T) < J(%,T)2 T 2.

Proof Applying Lemma 4.1 withy =0, <o <3, a=3, =2, 0=2kand G(s) as in
(4.1), we obtain

= 2k 2 o 1 2k s N30
/ L (o +it, )| e =" dt < (/ ‘L(5 +it,7r)‘ o= (t=7) dt)
—o0

—00

Here we have used the fact that ffooo |L (% + it, 7r) ‘Qk e~ =7 dt < 1. Now integration respect
to 7 on [T,2T] and the Jensen’s inequality give the assertion of Lemma 4.3.

u

For the proof of Theorem 1.1, in what follows, we will take k& = 2 with v,v € N and
(u,v) = 1; under GRH, we can take k = % with v = 1 and u = k > 0. For the proof of Theorem
1.2, wewilltakekz%withoguzkg %—5f0rany5>0, and v = 1.

2
v

Define g(s,n) = L (s,m)" — Sy(s)” and K(0,T) = ffooo lg (o +it,7)|” w(t, T)dt.
Lemma 4.4 Assume GRC. Let % <o < %, N T andT > 2. Then for any e > 0,

5—4do
3

402
3 .

1 P
K (0,T) < K(§,T> (TN-3(3-9))

Proof Applying Lemma 4.1 with v = o, % <o < %, a = %, 8 = %, 0 = % and

v(s—it)?
G(s) = g(s,m)e 5 , we obtain

/ lg(o +it, ) Te (-7 gt

oo

< (/_OO ‘g(% +it,7r)

oo

2 . 5—40 00 5

v 3

e a) ([ (e
P\

Recall that Sy(s) < N2*¢ for 0 > 3 and any ¢ > 0. Thus g(s,7) < NGV 4 [¢|** for
o> % This gives

[ JoG+it)
- g4 10, T

2 402
v

e (=)’ dt) o

2 2
v v

e—(t—T)2 dt + N1+2‘Se—077'2.

3T
E 5
e 4t < / ‘g(z + it,w)
3

[ee]
Therefore,
/ lg(o +it, )| 7 e~ dt
oo 1 2 5—40 3z 2 402
< (/ ‘g(§+it,7r) e*“*”gdt) ’ (/ g(%—l—it,ﬂ)‘ e*<t*7>2dt) ’
o z

5—4do

> 1 2 2 3 2 40-2
+ (/ ‘9(5 —|—it,7r)‘ e (t=7) dt) (N1F2ee=erm )y T,
—00
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Now integration respect to 7 over [T, 2T] and the Holder’s inequality give us

T 3 > o
K (0,7) < K / / —I— it 77) et qy dT)

+emes TP N Z“K(1 T) 340
27

Lo NF7) [ /5 P oNE TR
< K(—,T) (/ ‘g(— + 1t,7r) dt) 4T K(—,T)
2 . 4 2
It remains to establish the bound
o5 2 Cki—e)
/T ‘g(z + 1t,7r)‘ dt < TN~HGE=9), (4.2)

The function g(% + it, 7T) has a representation as an absolutely convergent Dirichlet series. In
view of the identity

hie(n) = Z hi(ny) -« - hg(ne), L£E€N,

n=mni--ny

we find that

where

n=ny---ny
nj<N,j=1, v

= > hk(m) - hi(ng)

n=mni--ny
Hnj >N

< Z |k ()] -+ - [hg(ny)]

Nn=ni--Ny

< Z ﬁk(nl) e '/f;k(nv) = /h\‘u(n)v

Nn=ni-Ny

where /i{u(n) is the nth coefficient of the Dirichlet series expansion of the function

ST (-5 ) s

p 1<j<m

By (1.7), we have hy(n) = dy(n). Thus a(n) < d,(n) < nf for any ¢ > 0. By Montgomery-
Vaughan Theorem (see [19]), we have for N < T,

3T
2
z
2

By the Jensen’s inequality,

/:; g(g—i—it,w) dt<<T( / ‘g( +1t7r)‘dt>

This proves (4.2) and thus completes the proof of Lemma 4.4.

g(i+1t w)‘ dt<<TZ| WP e

n>N n2

2 1
v v

< TN~ (379,
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5 Proof of (2.2) and (2.3)

First, we prove (2.2). By the definition of g(s, 7),

Do

2
v

<

1Sn ()2 = 1S (s)"]* = |[L(s, )" = g(s,m)|* < |L(s,m)|* +|g(s,7)

Hence
H(o,T) < J(0,T)+ K(0,T). (5.1)
Similarly,
K(o,T) < H(o,T)+ J(0,T). (5.2)
If K(%,T) < T, then by Lemma 3.5 and (5.1) with o = %, we have
T (logT)* < H(%T) < J(%,T) +K<%,T) < J(%,T) 4T,

ie., J(%,T) > T (log T)kZ. If K(%,T) > T, then by Lemma 4.4, we see that
1

140 -2 (: 1
. T) —ldo2(3_g) <<K(§,T)N%<1—E><1—2“>. (5.3)

K (0,T) < K(
Now we choose N =Tz and & = 1. By (5.1)~(5.3), we have
1 L(l_ ) 1 1 55 (3—0)
H(o,T) < J(o,T) +K(§,T)T2v 5-0) < J(o,T) + [H(a,T) +J(§,T)}T2v —
Hence, either
1 L(1—0)
H(o,T) < H(E,T)T% i—o (5.4)
or

1
H(o,T) < J(o,T) + J(E, T)T% 3o, (5.5)

Take o = £ + %. By Lemma 3.5 and (5.4), we have
—k2? k2 1\ -+ 1 Ll_p) K2 _C
CF T (logT)* = T(U - 5) < H(0,T) < H(E, T)T2v i) « T(logT)* e~

Thus, esv < c’fé for some c19 > 0, which is impossible when C' is sufficiently large. Therefore,
(5.5) is valid. Now (5.5) and Lemma 4.3 imply

1, \&—° 1
H(o,T) < J(E,T)z To=% +J(§,T)Tz%<%*”>. (5.6)
Taking o = % + % in (5.6) and applying Lemma 3.5, we get
k:2 1 1 1_% 1 < 1
T (logT)* < H(a,T) < J(E,T) n J(E,T)e £ < J(E,T).
This completes the proof of (2.2).
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Next we prove (2.3). Note that in this case k = ¢ with 0 <u =k < % — ¢ for any € > 0,
and v = 1. By the definition of ¢(s, ), we have
J(o,T) < H(o,T) + K(o,T). (5.7)

If K(3,T) < T, then by Lemma 3.5 and (5.7) with o = 3, we have
1 1 1 2
J(i,T> < H(i,T) + K(i,T> < T (logT)*".
If K(%, T) > T, then by Lemma 4.4, we see that

40-2.3

K(UvT) < K(%,T)N_ T (5—¢) < K(%,T)NQ(l—%E)(%—U).

This estimate combined with (5.7) and (5.2) gives
1 2(1-3)(3~0)
J(0,T) < H(o,T) + K(§,T)N 393
1 1 2(1-32)(3-0)
< H(o,T) + [H(Q,T) n J(2,T)}N 3)(3-0)
Hence, either
1 1
J(0,T) < J<§,T)N2(1*§E)(T") (5.8)
or
1
J(0,T) < H(o,T) + H(E,T)Nﬂl*as)(r“). (5.9)

Now we take N =T and 0 = 5 + %. Recall that k < 2 — . Then by (5.8) and Lemma 4.2,
we have

J(%,T) < J(o, T)ka(U*%) < J(%vT)Te(mfg)(%,g)7

ie., es(m=3)0 < C(m, k), which is false for C sufficiently large. Therefore, (5.9) holds. By
Lemma 3.5 and (5.9) with o = 1 + %, we have J(3,7) < H(3.T) < T(logT)*". This
completes the proof of (2.3).
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