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Abstract Let π be an irreducible unitary cuspidal representation of GLm(AQ), m ≥ 2.
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1 Introduction

Understanding moments of families of L-functions on the critical line has long been an
important subject in number theory. According to conjectures of Langlands, the general L-
functions should be expressed as products of primitive L-functions L(s, π) attached to cuspidal
automorphic representations of GLm(AQ). For m = 1, these are the Riemann zeta function
ζ(s) and Dirichlet L-functions L(s, χ) with χ primitive. It is conjectured that

∫ T

0

∣∣∣ζ(1
2

+ it
)∣∣∣2k

dt ∼ CkT (logT )k2
, (1.1)

where k ≥ 0 and Ck > 0 is a constant. For k = 1 and k = 2, (1.1) was proved by Hardy
and Littlewood [1] in 1918 and Ingham [2] in 1926, respectively. However, no unconditional
asymptotic formula has yet been proved for any other k.

It is of interest therefore to ask for the weaker result

T (logT )k2 �
∫ T

0

∣∣∣ζ(1
2

+ it
)∣∣∣2k

dt � T (log T )k
2

. (1.2)

In this direction, Ramacharadra [3–4] and Heath-Brown [5–6] proved that the lower bound in
(1.2) holds for all rational k ≥ 0, and the upper bound holds for k = 1

v , where v is a positive
integer. Moreover, under Riemann Hypothesis (RH in brief), they showed that the lower bound
holds for all real k ≥ 0, and the upper bound holds for 0 ≤ k ≤ 2. Recently, Soundararajan [7]
showed that, under RH, ∫ T

0

∣∣∣ζ(1
2

+ it
)∣∣∣2k

dt � T (log T )k
2+ε
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for any ε > 0 and any k > 0. For Dirichlet L-functions L(s, χ), we refer to [8]. For m = 2, the
asymptotic formula for the second moment of automorphic L-functions L(s, f) attached to a
holomorphic cusp form f for SL2(Z) was obtained by Good [9]. Recently, using Heath-Brown’s
method [5], Laurinčikas and Steuding [10] showed that∫ T

0

∣∣∣L(1
2

+ it, f
)∣∣∣k2

dt � T (log T )k2

for k =
1
v

with v ∈ N,∫ T

0

∣∣∣L(1
2

+ it, f
)∣∣∣k2

dt � T (log T )k2

for k =
1
v

with 2 | v and v ∈ N,

where the upper bound was proved under Generalized Riemann Hypothesis (GRH in brief). Lü
and Sun [11] further improved the lower bound by extending the range of k to k = u

v ≤ 1
2 with

u, v ∈ N.
In this paper, we are concerned with the fractional moments of automorphic L-functions

L(s, π), where π = ⊗πp is an irreducible unitary cuspidal automorphic representation of
GLm(AQ), where, throughout the paper, m ≥ 2. To this end, we recall some background
on automorphic L-functions.

Let s = σ + it. For σ > 1, L(s, π) is defined by the products of local factors,

L(s, π) =
∏

p<∞
Lp(s, πp), Lp(s, πp) =

m∏
j=1

(
1 − απ(p, j)

ps

)−1

.

The complete L-function attached to π is defined by

Φ(s, π) = L∞(s, π∞)L(s, π), (1.3)

where L∞(s, π∞) =
m∏

j=1

ΓR(s + μπ(j)). Here ΓR(s) = π− s
2 Γ

(
s
2

)
, and απ(p, j) and μπ(j) (j =

1, · · · , m) are complex numbers associated with πp and π∞, respectively. It is well-known that
all the non-trivial zeros of L(s, π) are in the critical strip 0 < σ < 1, while GRH predicts that
they lie on the vertical line σ = 1

2 . For m ≥ 2, Φ(s, π) is entire and satisfies a functional
equation

Φ(s, π) = ε(s, π)Φ(1 − s, π̃), (1.4)

with π̃ the representation contragredient to π and ε(s, π) = επN
1
2−s
π , where επ is the root

number and Nπ > 1 is the conductor. For any p ≤ ∞, π̃p is equivalent to the complex
conjugate πp, and thus

{απ̃(j, p)} = {απ(j′, p)}, {μπ̃(j)} = {μπ(j′)}. (1.5)

Denote

aπ(p�) =
∑

1≤j≤m

απ(p, j)�. (1.6)

Then for σ > 1, we have
d
ds

log L(s, π) = −
∞∑

n=1

Λ(n)aπ(n)
ns

,
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where Λ(n) = log p is n = p� and if 0 otherwise.
In this paper, we assume the Generalized Ramanujan Conjecture (GRC in brief) which

states that for any unramified p,

|απ(p, j)| = 1 and Re μπ(j) = 0, j = 1, · · · , m. (1.7)

An important consequence of GRC is Selberg’s orthogonality conjecture proposed by Selberg
[12] in 1989, which states as follows. Let π and π′ be automorphic irreducible cuspidal repre-
sentations of the groups GLm(AQ) and GLm′(AQ), respectively. Then

∑
p≤x

aπ(p)aπ′(p)
p

=
{

log log x + O(1), if π ∼= π′,
O(1), if π 
∼= π′. (1.8)

(1.8) was proved by Rudnick and Sarnak [13] under the hypothesis

∑
p

|aπ(p�)|2(log p)2

p�
< ∞,

which is an easy consequence of GRC. Under GRC, Liu and Ye [14] proved (1.8) in a more
precise form. Precisely, they proved the following result.

Proposition 1.1 Let π and π′ be automorphic irreducible cuspidal representations of the
groups GLm(AQ) and GLm′(AQ), respectively, such that at least one of π and π′ is self contra-
gredient: π ∼= π̃ or π′ ∼= π̃′. Assume GRC for both π and π′. Then

∑
p≤x

aπ(p)aπ′(p)
p

=

⎧⎨
⎩

log log x + C1 + O(exp{−c
√

log x }), π′ ∼= π,
C2 + Ei(iτ0 log x) + O(exp{−c

√
log x }), π′ ∼= π ⊗ αiτ0 for some τ0 ∈ R×,

C3 + O(exp{−c
√

log x }), π′ 
∼= π ⊗ αiτ for any τ ∈ R,

where Ei is the exponential integral, and C1, C2, C3 are positive constants.
For k ≥ 0 and σ ≥ 1

2 , we define Ik(σ, T, π) =
∫ T

0
|L(σ + it, π)|2k dt. For brevity, we denote

Ik

(1
2
, T

)
:= Ik

(1
2
, T, π

)
=

∫ T

0

∣∣∣L(1
2

+ it, π
)∣∣∣2k

dt.

Theorem 1.1 Assume GRC. Let π be an automorphic irreducible cuspidal representation
of GLm(AQ) such that π is self-contragredient. Let k ∈ Q, k ≥ 0. Then as T → ∞, we have
Ik(1

2 , T ) � T (log T )k
2

. Under GRH, the range of k can be extended to k ∈ R, k ≥ 0.

Theorem 1.2 Assume GRC and GRH. Let π be as in Theorem 1.1. Let 0 ≤ k ≤ 2
m − ε

for any ε > 0. Then as T → ∞, we have Ik

(
1
2 , T

) � T (log T )k
2

.

Theorems 1.1 and 1.2 are proved by Heath-Brown [5]. Since GRC was proved by Deligne
[15] for π being representations corresponding to holomorphic cusp forms, Theorems 1.1 and 1.2
hold without assuming GRC for m = 2. Thus Theorems 1.1 and 1.2 improve Laurinčikas and
Steuding’s result and Lü and Sun’s result. We also note that Theorems 1.1 and 1.2 generalize
the recent results of Fomenko [16].

In the sequel, we will use c1, c2, · · · to denote positive constants and the implied constants
in “�” and “�” depending on m, k and π.
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2 Proof of Theorems 1.1 and 1.2

Let w(t, T ) =
∫ 2T

T e−(t−τ)2 dτ. Then w(t, T ) has the following properties:⎧⎨
⎩

w(t, T ) � 1 for all t,

w(t, T ) � 1 for
4T

3
≤ t ≤ 5T

3
.

(2.1)

Define
J(σ, T ) := Jk(σ, T, π) =

∫ ∞

−∞
|L (σ + it, π)|2k w(t, T )dt.

By (2.1), we have J(1
2 , T ) � Ik(1

2 , 3T ). Thus Theorem 1.1 follows if under GRC,

J
(1

2
, T

)
� T (log T )k

2

for k ∈ Q, k ≥ 0, (2.2)

and under GRH, it holds for k ≥ 0.
On the other hand, if we can establish the upper bound

J
(1

2
, T

)
� T (logT )k2

for 0 ≤ k ≤ 2
m − ε for any ε > 0, (2.3)

under GRC and GRH, then by (2.1), we also have

Ik

(1
2
,
5T

3

)
− Ik

(1
2
,
4T

3

)
� J

(1
2
, T

)
� T (log T )k2

.

Replacing T by
(

4
5

)j
T and summing up over j = 1, 2, · · · , we obtain Theorem 1.2.

The following three sections will be devoted to the proof of (2.2) and (2.3).

3 The Coefficients of L(s, π)k

Let s = σ + it. For σ > 1, we define a branch of the multi-valued function L(s, π)k by

L(s, π)k = exp {k log L(s, π)} = exp
{
k

∑
p

m∑
j=1

∞∑
�=1

απ(p, j)�

	p�s

}
=

∏
p

m∏
j=1

(
1 − απ(p, j)

ps

)−k

.

For |z| < 1, we have (1 − z)−k =
∞∑

�=0

Γ(k+�)
Γ(k)�! z�. For positive integers 	, define

dk(p�) =
Γ(k + 	)
Γ(k)	!

=
k(k + 1) · · · (k + 	 − 1)

	!
.

Then for σ > 1, we have

L(s, π)k =
∏
p

∞∑
�=0

hk(p�)
p�s

=
∞∑

n=1

hk(n)
ns

,

where hk(n) is the multiplicative function given by

hk(p�) =
∑

�1+···+�m=�
�j≥0

dk(p�1)απ(p, 1)�1 · · · dk(p�m)απ(p, m)�m for 	 ∈ N. (3.1)
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Lemma 3.1 (see [5]) The multiplicative function dk(n) satisfies the following properties:
(1) For k ≥ 0 and n ≥ 1, we have dk(n) ≥ 0;
(2) For fixed k ≥ 0 and ε > 0, we have dk(n) � nε;
(3) If 	 is an integer, then dk�(n) =

∑
n1···n�=n

dk(n1) · · · dk(n�).

Lemma 3.2 (see [17, 18]) Let f(n) ≥ 0 be a multiplicative function satisfying
( i )

∑
p≤x

log p
p f(p) ∼ τ log x for some τ > 0;

( ii ) f(p) � 1;
(iii)

∑
p,�≥2

f(p�)
p� < ∞;

(iv)
∑

p,�≥2
p�≤x

f(p�) � x
log x .

Then ∑
n≤x

f(n) ∼ e−γ0τ

Γ(τ)
x

log x

∏
p≤x

(
1 +

∞∑
�=1

f(p�)
p�

)
,

where γ0 is Euler’s constant.

Lemma 3.3 Assume GRC. Let π be an automorphic irreducible cuspidal representation
of GLm(AQ), such that π is self-contragredient. We have

∑
n≤x

|hk(n)|2 ∼ e−γ0k2

Γ(k2)
x

log x

∏
p≤x

(
1 +

∞∑
�=1

∣∣hk(p�)
∣∣2

p�

)
,

where γ0 is Euler’s constant.

Proof Note that dk(p) = k. By (3.1) and (1.6), we have hk(p) = dk(p)(απ(p, 1) + · · ·
+απ(p, m)) = kaπ(p). By Proposition 1.1,

∑
p≤x

|aπ(p)|2
p

= log log x + C1 + R(x),

where R(x) � exp{−c
√

log x}. Integrating by parts, we get

∑
p≤x

log p

p
|hk(p)|2 = k2

∫ x

2

log u d
∑
p≤u

|aπ(p)|2
p

= k2

∫ x

2

log u d log log u + k2

∫ x

2

log u dR(u)

= k2 log x + O(1)

∼ k2 log x, as x → ∞. (3.2)

Next, by (1.7), we have

|hk(p)|2 = k2 |aπ(p)|2 ≤ k2m2 �k,m 1. (3.3)

Moreover, by (1.7), (3.1) and Lemma 3.1(3), we have for any ε > 0,∣∣hk(p�)
∣∣ ≤ ∑

�1+···+�m=�
�j≥0

dk(p�1) · · · dk(p�m) = dkm(p�) � pε�. (3.4)
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Thus, for ε > 0 sufficiently small,

∑
p,�≥2

∣∣hk(p�)
∣∣2

p�
�

∑
p,�≥2

1
p�(1−ε)

=
∞∑

p=2

1
p1−ε(p1−ε − 1)

< ∞. (3.5)

Finally,∑
p,�≥2
p�≤x

∣∣hk(p�)
∣∣2 �

∑
p,�≥2
p�≤x

p2ε� �
∑

p≤√
x

∑
�≤ log x

log p

p2ε� � x2ε log x
∑

p≤√
x

1 � x
1
2+3ε � x

log x
.

Combined with this estimate, Lemma 3.3 follows from (3.2), (3.4), (3.5) and Lemma 3.2.

Lemma 3.4 Assume GRC. For any fixed k > 0, there exists a constant C > 0, such that(
σ − 1

2

)−k2

�
∑
n≤N

|hk(n)|2
n2σ

�
(
σ − 1

2

)−k2

, uniformly for
1
2

+
C

log N
≤ σ ≤ 1,

(log N)k2 �
∑
n≤N

|hk(n)|2
n

� (log N)k2
.

Proof By Lemma 3.3, we have the asymptotic formula

∑
n≤x

|hk(n)|2 ∼ e−γ0k2

Γ(k2)
x

log x

∏
p≤x

(
1 +

∞∑
�=1

∣∣hk(p�)
∣∣2

p�

)
.

By (3.3), (3.4) and Proposition 1.1, we have

∏
p≤x

(
1 +

∞∑
�=1

∣∣hk(p�)
∣∣2

p�

)
= exp

{ ∑
p≤x

log
(
1 +

|hk(p)|2
p

+ O
( 1

p2(1−ε)

))}

= exp
{ ∑

p≤x

|hk(p)|2
p

+ O(1)
}

= exp
{
k2

∑
p≤x

|aπ(p)|2
p

+ O(1)
}

= eO(1) (log x)k2

.

Therefore, there exist positive constants c1 < c2, such that

c1x (log x)k2−1 ≤
∑
n≤x

|hk(n)|2 ≤ c2x (log x)k2−1 .

By partial summation, the first assertion of the lemma follows. The second assertion follows
from the first one since, for σ = 1

2 + C
log N and 1 ≤ n ≤ N , we have n−1 � n2σ � n−1.

Define SN(s) =
∑

n≤N

hk(n)
ns and H(σ, T ) =

∫ ∞
−∞ |SN (σ + it)|2 w(t, T ) dt.

Lemma 3.5 Assume GRC. Let N � T and log N � log T . Then for 1
2 + C

log N ≤ σ ≤ 3
4 ,

we have

T
(
σ − 1

2

)−k2

� H(σ, T ) � T
(
σ − 1

2

)−k2

,

T (log T )k
2 � H

(1
2
, T

)
� T (log T )k2

.
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Proof Note that w(t, T ) � e−c3(t
2+T 2) for t ≤ 0 and t ≥ 3T . By (3.4), we have SN (s) �

N
1
2+ε for σ ≥ 1

2 and any ε > 0. Thus, by (2.1) and the Montgomery-Vaughan Theorem (see
[19]), we find that

H(σ, T ) �
∫ 3T

0

|SN (σ + it)|2 dt � (T + N)
∑
n≤N

|hk(n)|2
n2σ

.

On the other hand, by (2.1), we have

H(σ, T ) �
∫ 5T

3

4T
3

|SN (σ + it)|2 dt � T
∑
n≤N

|hk(n)|2
n2σ

.

Therefore, Lemma 3.5 follows from Lemma 3.4.

4 Applications of Gabriel’s Inequality

We need the following Gabriel’s inequality.

Lemma 4.1 (see [20] or [5]) Let G(s) be regular in the strip {s ∈ C : α < σ < β} and
continuous in the closed strip {s ∈ C : α ≤ σ ≤ β}. Moreover, assume that G(s) → 0 as t → ∞
uniformly in {s ∈ C : α ≤ σ ≤ β}. Then, for α ≤ γ ≤ β and any θ > 0,∫ ∞

−∞
|G(γ + it)|θ dt ≤

(∫ ∞

−∞
|G(α + it)|θ dt

) β−γ
β−α

( ∫ ∞

−∞
|G(β + it)|θ dt

) γ−α
β−α

.

Lemma 4.2 Let 1
2 ≤ σ ≤ 3

4 and T ≥ 2. Then for all k > 0,

J
(1

2
, T

)
� J(σ, T )T km(σ− 1

2 ) + e−c4T 2
.

Proof Applying Lemma 4.1 with γ = 1
2 , α = 1 − σ, β = σ, 1

2 ≤ σ ≤ 3
4 , θ = 2k, and

G(s) = L(s, π)e
(s−iτ)2

2k , (4.1)

we obtain ∫ ∞

−∞

∣∣∣L(1
2

+ it, π
)∣∣∣2k

e−(t−τ)2 dt

�
(∫ ∞

−∞
|L (1 − σ + it, π)|2k e−(t−τ)2 dt

) 1
2
(∫ ∞

−∞
|L (σ + it, π)|2k e−(t−τ)2 dt

) 1
2
.

By the functional equation (1.3)–(1.5) and the Stirling’s formula, we have

|L(1 − σ + it, π)| � |L(σ + it, π)| (1 + |t|)m(σ− 1
2 )

,

where the implied constant depends on Imμπ(j), j = 1, · · · , m. It follows that∫ ∞

−∞
|L (1 − σ + it, π)|2k e−(t−τ)2 dt

�
{ ∫ τ

2

−∞
+

∫ 3τ
2

τ
2

+
∫ ∞

3τ
2

}
|L(σ + it, π)|2k (1 + |t|)km(2σ−1) e−(t−τ)2 dt

� τkm(2σ−1)

∫ ∞

−∞
|L (σ + it, π)|2k e−(t−τ)2 dt + e−c5τ2

,



638 Q. H. Pi

where we have used the bound L(σ + it, π) � |t|m
4 for σ ≥ 1

2 . Therefore,∫ ∞

−∞

∣∣∣L(1
2

+ it, π
)∣∣∣2k

e−(t−τ)2 dt � τkm(σ− 1
2 )

∫ ∞

−∞
|L (σ + it, π)|2k e−(t−τ)2 dt + e−c6τ2

.

Now integration respect to τ on [T, 2T ] completes the proof of Lemma 4.2.

Lemma 4.3 Let 1
2 ≤ σ ≤ 3

4 and T ≥ 2. Then for all k > 0, J(σ, T ) � J
(

1
2 , T

) 3
2−σ

T σ− 1
2 .

Proof Applying Lemma 4.1 with γ = σ, 1
2 ≤ σ ≤ 3

4 , α = 1
2 , β = 3

2 , θ = 2k and G(s) as in
(4.1), we obtain∫ ∞

−∞
|L (σ + it, π)|2k e−(t−τ)2 dt �

(∫ ∞

−∞

∣∣∣L(1
2

+ it, π
)∣∣∣2k

e−(t−τ)2 dt
) 3

2−σ

.

Here we have used the fact that
∫ ∞
−∞

∣∣L (
3
2 + it, π

)∣∣2k e−(t−τ)2 dt � 1. Now integration respect
to τ on [T, 2T ] and the Jensen’s inequality give the assertion of Lemma 4.3.

For the proof of Theorem 1.1, in what follows, we will take k = u
v with u, v ∈ N and

(u, v) = 1; under GRH, we can take k = u
v with v = 1 and u = k ≥ 0. For the proof of Theorem

1.2, we will take k = u
v with 0 ≤ u = k ≤ 2

m − ε for any ε > 0, and v = 1.

Define g(s, π) = L (s, π)u − SN (s)v and K(σ, T ) =
∫ ∞
−∞ |g (σ + it, π)| 2

v w(t, T ) dt.

Lemma 4.4 Assume GRC. Let 1
2 ≤ σ ≤ 3

4 , N � T and T ≥ 2. Then for any ε > 0,

K (σ, T ) � K
(1

2
, T

) 5−4σ
3

(TN− 1
v ( 3

2−ε))
4σ−2

3 .

Proof Applying Lemma 4.1 with γ = σ, 1
2 ≤ σ ≤ 3

4 , α = 1
2 , β = 5

4 , θ = 2
v and

G(s) = g(s, π)e
v(s−iτ)2

2 , we obtain∫ ∞

−∞
|g(σ + it, π)| 2

v e−(t−τ)2 dt

�
( ∫ ∞

−∞

∣∣∣g(1
2

+ it, π
)∣∣∣ 2

v

e−(t−τ)2 dt
) 5−4σ

3
(∫ ∞

−∞

∣∣∣g(5
4

+ it, π
)∣∣∣ 2

v

e−(t−τ)2 dt
) 4σ−2

3
.

Recall that SN (s) � N
1
2+ε for σ ≥ 1

2 and any ε > 0. Thus g(s, π) � N ( 1
2+ε)v + |t|mu

4 for
σ ≥ 1

2 . This gives

∫ ∞

−∞

∣∣∣g(5
4

+ it, π
)∣∣∣ 2

v

e−(t−τ)2 dt �
∫ 3τ

2

τ
2

∣∣∣g(5
4

+ it, π
)∣∣∣ 2

v

e−(t−τ)2 dt + N1+2εe−c7τ2
.

Therefore,∫ ∞

−∞
|g(σ + it, π)| 2

v e−(t−τ)2 dt

�
(∫ ∞

−∞

∣∣∣g(1
2

+ it, π
)∣∣∣ 2

v

e−(t−τ)2 dt
) 5−4σ

3
(∫ 3τ

2

τ
2

∣∣∣g(5
4

+ it, π
)∣∣∣ 2

v

e−(t−τ)2 dt
) 4σ−2

3

+
(∫ ∞

−∞

∣∣∣g(1
2

+ it, π
)∣∣∣ 2

v

e−(t−τ)2 dt
) 5−4σ

3
(N1+2εe−c7τ2

)
4σ−2

3 .
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Now integration respect to τ over [T, 2T ] and the Hölder’s inequality give us

K (σ, T ) � K
(1

2
, T

) 5−4σ
3

(∫ 2T

T

∫ 3τ
2

τ
2

∣∣∣g(5
4

+ it, π
)∣∣∣ 2

v

e−(t−τ)2 dt dτ
) 4σ−2

3

+ e−c8T 2
N

4σ−2+ε
3 K

(1
2
, T

)5−4σ
3

� K
(1

2
, T

) 5−4σ
3

(∫ 2T

T

∣∣∣g(5
4

+ it, π
)∣∣∣ 2

v

dt
) 4σ−2

3
+ e−c9T 2

K
(1

2
, T

) 5−4σ
3

.

It remains to establish the bound∫ 2T

T

∣∣∣g(5
4

+ it, π
)∣∣∣ 2

v

dt � TN−k( 3
2−ε). (4.2)

The function g
(

5
4 + it, π

)
has a representation as an absolutely convergent Dirichlet series. In

view of the identity
hk�(n) =

∑
n=n1···n�

hk(n1) · · · hk(n�), 	 ∈ N,

we find that

g
(5

4
+ it, π

)
= L

(5
4

+ it, π
)u

− SN

(5
4

+ it
)v

=
∞∑

n=N

a(n)
n

5
4+it

,

where

a(n) = hu(n) −
∑

n=n1···nv
nj≤N, j=1,··· ,v

hk(n1) · · · hk(nv)

=
∑

n=n1···nv
∃nj>N

hk(n1) · · · hk(nv)

�
∑

n=n1···nv

|hk(n1)| · · · |hk(nv)|

�
∑

n=n1···nv

ĥk(n1) · · · ĥk(nv) = ĥu(n),

where ĥu(n) is the nth coefficient of the Dirichlet series expansion of the function

L̂(s, π)u =
( ∏

p

∏
1≤j≤m

(
1 − |απ(p, j)|

ps

)−1)u

, σ >
1
2
.

By (1.7), we have ĥu(n) = du(n). Thus a(n) � du(n) � nε for any ε > 0. By Montgomery-
Vaughan Theorem (see [19]), we have for N � T ,∫ 3T

2

T
2

∣∣∣g(5
4

+ it, π
)∣∣∣2 dt � T

∑
n≥N

|a(n)|2
n

5
2

� TN−3
2+ε.

By the Jensen’s inequality,∫ 3T
2

T
2

∣∣∣g(5
4

+ it, π
)∣∣∣ 2

v

dt � T
( 1

T

∫ 3T

0

∣∣∣g(5
4

+ it, π
)∣∣∣2 dt

) 1
v � TN− 1

v ( 3
2−ε).

This proves (4.2) and thus completes the proof of Lemma 4.4.
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5 Proof of (2.2) and (2.3)

First, we prove (2.2). By the definition of g(s, π),

|SN (s)|2 = |SN (s)v| 2
v = |L(s, π)u − g(s, π)| 2

v � |L(s, π)|2k + |g(s, π)| 2
v .

Hence

H(σ, T ) � J(σ, T ) + K(σ, T ). (5.1)

Similarly,

K(σ, T ) � H(σ, T ) + J(σ, T ). (5.2)

If K
(

1
2 , T

) ≤ T , then by Lemma 3.5 and (5.1) with σ = 1
2 , we have

T (log T )k
2 � H

(1
2
, T

)
� J

(1
2
, T

)
+ K

(1
2
, T

)
� J

(1
2
, T

)
+ T,

i.e., J
(

1
2 , T

) � T (log T )k
2

. If K
(

1
2 , T

)
> T , then by Lemma 4.4, we see that

K (σ, T ) � K
(1

2
, T

)
N− 1

v
4σ−2

3 ( 3
2−ε) � K

(1
2
, T

)
N

1
v (1−ε)(1−2σ). (5.3)

Now we choose N = T
1
2 and ε = 1

2 . By (5.1)–(5.3), we have

H(σ, T ) � J(σ, T ) + K
(1

2
, T

)
T

1
2v ( 1

2−σ) � J(σ, T ) +
[
H

(1
2
, T

)
+ J

(1
2
, T

)]
T

1
2v ( 1

2−σ).

Hence, either

H(σ, T ) � H
(1

2
, T

)
T

1
2v ( 1

2−σ) (5.4)

or

H(σ, T ) � J(σ, T ) + J
(1

2
, T

)
T

1
2v ( 1

2−σ). (5.5)

Take σ = 1
2 + C

log T . By Lemma 3.5 and (5.4), we have

C−k2
T (log T )k

2

= T
(
σ − 1

2

)−k2

� H(σ, T ) � H
(1

2
, T

)
T

1
2v ( 1

2−σ) � T (log T )k2

e−
C
2v .

Thus, e
C
2v ≤ ck2

10 for some c10 > 0, which is impossible when C is sufficiently large. Therefore,
(5.5) is valid. Now (5.5) and Lemma 4.3 imply

H(σ, T ) � J
(1

2
, T

)3
2−σ

T σ− 1
2 + J

(1
2
, T

)
T

1
2v ( 1

2−σ). (5.6)

Taking σ = 1
2 + C

log T in (5.6) and applying Lemma 3.5, we get

T (log T )k
2 � H

(1
2
, T

)
� J

(1
2
, T

)1− C
log T

+ J
(1

2
, T

)
e−

C
2v � J

(1
2
, T

)
.

This completes the proof of (2.2).



Fractional Moments of Automorphic L-Functions on GL(m) 641

Next we prove (2.3). Note that in this case k = u
v with 0 ≤ u = k ≤ 2

m − ε for any ε > 0,
and v = 1. By the definition of g(s, π), we have

J(σ, T ) � H(σ, T ) + K(σ, T ). (5.7)

If K(1
2 , T ) ≤ T , then by Lemma 3.5 and (5.7) with σ = 1

2 , we have

J
(1

2
, T

)
� H

(1
2
, T

)
+ K

(1
2
, T

)
� T (log T )k

2

.

If K(1
2 , T ) > T , then by Lemma 4.4, we see that

K (σ, T ) � K
(1

2
, T

)
N− 4σ−2

3 ( 3
2−ε) � K

(1
2
, T

)
N2(1− 2

3 ε)( 1
2−σ).

This estimate combined with (5.7) and (5.2) gives

J(σ, T ) � H(σ, T ) + K
(1

2
, T

)
N2(1− 2

3 ε)( 1
2−σ)

� H(σ, T ) +
[
H

(1
2
, T

)
+ J

(1
2
, T

)]
N2(1− 2

3 ε)( 1
2−σ).

Hence, either

J(σ, T ) � J
(1

2
, T

)
N2(1− 2

3 ε)( 1
2−σ) (5.8)

or

J(σ, T ) � H(σ, T ) + H
(1

2
, T

)
N2(1− 2

3 ε)( 1
2−σ). (5.9)

Now we take N = T and σ = 1
2 + C

log T . Recall that k ≤ 2
m − ε. Then by (5.8) and Lemma 4.2,

we have
J
(1

2
, T

)
� J(σ, T )T mk(σ− 1

2 ) � J
(1

2
, T

)
T ε(m− 4

3 )( 1
2−σ),

i.e., eε(m− 4
3 )C ≤ C(m, k), which is false for C sufficiently large. Therefore, (5.9) holds. By

Lemma 3.5 and (5.9) with σ = 1
2 + C

log T , we have J
(

1
2 , T

) � H
(

1
2 , T

) � T (log T )k2
. This

completes the proof of (2.3).
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