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Abstract When a plane shock hits a wedge head on, it experiences a reflection-diffraction
process and then a self-similar reflected shock moves outward as the original shock moves
forward in time. In this paper, shock reflection by large-angle wedges for compressible
flow modeled by the nonlinear wave equation is studied and a global theory of existence,
stability and regularity is established. Moreover, C0,1 is the optimal regularity for the
solutions across the degenerate sonic boundary.
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1 Introduction

We are concerned with the problems of shock reflection by wedges, which are modeled by the

nonlinear wave equation. When a plane shock hits a wedge head on, it experiences a reflection-

diffraction process and then a self-similar reflected shock moves outward as the original shock

moves forward in time. In [5], G.-Q. Chen and Feldman analyzed these phenomena of shock

reflection by large-angle wedges for potential flow, which is the first global theory for this

problem.

The compressible isentropic gas dynamics, neglecting the inertial terms, become

ρt +mx + ny = 0,

mt + px = 0,

nt + py = 0,

(1.1)

for (t, x, y) ∈ [0,∞) × R2, where ρ, p and (m,n) stand for density, pressure and momenta in

x and y directions respectively. We denote c2(ρ) := p′(ρ) = ργ , with γ > 0, and remark that

c2(ρ) is a positive and increasing function for all ρ > 0.

For smooth solutions or in regions where a solution U = (ρ,m, n) is smooth, eliminating m
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(a) Initial-boundary value problem

=
=

(b) Boundary value problem

Figure 1 Initial-boundary value problem and boundary value problem

and n in (1.1), we obtain a second order equation for ρ,

ρtt = −mtx − nty = pxx + pyy = div(c2(ρ)∇ρ). (1.2)

For more details for the derivation of (1.2), please refer to [3], in which the equation was first

studied systematically. When a plane shock with the lower state U1 = (ρ1,m1, 0) and the upper

state U0 = (ρ0, 0, 0), where m1 =
√
(p(ρ1)− p(ρ0))(ρ1 − ρ0) > 0 and ρ0 < ρ1, hits a symmetric

wedge W := {y > |x| cot θw} head on, it experiences a reflection-diffraction process, and the

reflection problem can be formulated as follows.

Problem 1.1 (Initial-Boundary Value Problem) (see Figure 1(a)) Seek a solution to (1.1),

with the initial condition at t = 0

U |t=0 =

{
U0, for |x| > y tan θw, y > 0,

U1, for y < 0,
(1.3)

and the momenta (m,n) parallel to the wall (see Figure 1(a))

m = n tan θw. (1.4)

Notice that the initial-boundary value problem (1.1) with (1.3)–(1.4) is invariant under the

self-similar scaling: (x, y, t) → (αx, αy, αt) for α ̸= 0. Thus we seek self-similar solutions with

the form (ρ,m, n)(x, y, t) = (ρ,m, n)(ξ, η) for (ξ, η) = (xt ,
y
t ). Write system (1.1) in self-similar

coordinates,

−ξρξ − ηρη +mξ + nη = 0,

−ξmξ − ηmη + c2(ρ)ρξ = 0,

−ξnξ − ηnη + c2(ρ)ρη = 0.

(1.5)

If the solutions are smooth, ρ satisfies

((c2 − ξ2)ρξ − ξηρη)ξ + ((c2 − η2)ρη − ξηρξ)η + ξρξ + ηρη = 0. (1.6)

The eigenvalues of the coefficient matrix of the second order terms of (1.6) are c2(ρ) and

c2(ρ)− ξ2 − η2.

The plane incident shock in the (ξ, η)-coordinates satisfies U = (ρ0, 0, 0) for η > η10, and

U = (ρ1, 0, n1) for η < η10, where η10 =
√

p(ρ1)−p(ρ0)
ρ1−ρ0

is the location of the incident shock,

uniquely determined by ρ0 and ρ1.
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Since the problem is symmetric with respect to the axis ξ = 0, it suffices to consider the

problem in the half-plane ξ ≥ 0 outside the half-wedge

Λ := {ξ ≥ 0, η < 0} ∪ {ξ ≥ η tan θw, η > 0}.

Then the initial-boundary value problem (1.1) and (1.3)–(1.4) in the (x, y, t)-coordinates can

be formulated as the following boundary value problem in the (ξ, η)-coordinates.

Problem 1.2 (Boundary Value Problem) (see Figure 1(b)) Seek a solution to (1.6) in the

self-domain Λ with the slip boundary condition on the wedge boundary ∂Λ

Dρ · ν = 0 (1.7)

and the asymptotic boundary condition at infinity

ρ→ ρ̃ =

{
ρ0 for η > η10, ξ > η tan θw,

ρ1 for η < η10, ξ > 0,
when ξ2 + η2 → ∞, (1.8)

in the sense that lim
R→∞

∥ρ− ρ̃∥C(Λ\BR)(0) = 0, where ν denotes the exterior unit normal to Ω on

the wedge.

Remark 1.1 On the wedge, the boundary condition m = n tan θw becomes ∂νρ = 0. The

last two equations in (1.5) are used for determining (m,n) once ρ is obtained. Thus Problem

1.1 is equivalent to Problem 1.2.

Since the momenta (0, n1) does not parallel the wall, the solution must differ from ρ1 in

{η < η10} ∩ Λ. Thus a shock diffraction by the wedge occurs. In this paper, we first follow

the von Neumann criterion to establish a local existence of regular shock reflection near the

reflection point and show that the structure of the solutions is as in Figure 2, when the wedge

angle is large and close to π
2 , in which the horizontal line is the incident shock S = {η = η10}

that hits the wedge at the point P0 = (η10 tan θw, η10), and the state (0) and the state (1)

ahead of and behind S are given by ρ0 and ρ1 respectively. The solution ρ differs from ρ1 in

the domain P0P1P2O because of the shock diffraction by the wedge vertex, where the curve

P0P1P2 is the reflected shock with the straight segment P0P1. State (2) is behind P0P1.

Figure 2 Regular reflection

Theorem 1.1 There exists a θ0 = θ0(ρ0, ρ1) ∈ (0, π2 ) such that, for any θw ∈ [θ0,
π
2 ), there

exists a global self-similar solution to Problem 1.2 (equivalently, Problem 1.1), which satisfies
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that, for (ξ, η) = (xt ,
y
t ), ρ ∈ C∞ in the open domain OP2P1P3, with

ρ =


ρ0 for η > η10 and ξ > η tan θw,

ρ1 for η < η10 below the reflection shock P0P1P2,

ρ2 in P0P1P3,

(1.9)

and ρ is C0,1, which is the optimal regularity across the degenerate sonic boundary P1P3, and

the reflected shock P0P1P2 is C1,1 at P1 and C∞ except P1. Moreover, the solutions tend to the

normal reflection when θw → π
2 .

There are two main difficulties to get the global existence. First, the ellipticity degenerates

at the sonic circle P1P3 (the boundary of the subsonic flow). Second, the oblique boundary

degenerates at P2. The techniques used here to prove the global existence of the solutions rely

on the Perron method developed in [10], which is to show the global existence of the solutions

to the linearized fixed boundary value problem; and on the application of the Schauder fixed

point theorem for the nonlinear free boundary value problem, which is based on [5] and [3]. In

this paper, we cannot get the estimates of ρ2−ρ directly in the process of proving the existence

of the solutions, when θw tends to π
2 , since it is not easy to find a global supersolution to the

boundary value problem about ϕ = c2(ρ2)−c2(ρ), because of the nonlinearity of the coefficients

of the governing equation and the equation for the oblique boundary condition. In addition,

we use the self-similar coordinates and polar coordinates simultaneously. The reason is that

it is hard to show η̃η̃′(ξ) + ξ > 0 for ξ > 0, and is then hard to get the obliqueness condition

on the shock (ξ, η̃(ξ)) during the iteration, which is an obstacle to proving the existence of the

solutions to the fixed boundary problem. But, it is easy to prove the obliqueness condition in

the polar coordinates, thus to get the global existence of the solutions for the regularized free

boundary value problem. However, the position of the reflected shock can be described more

precisely in self-similar coordinates (ξ, η) than in polar coordinates (r, θ), namely convexity.

Moreover, if there exists a solution to the regularized nonlinear free boundary problem in polar

coordinates, we can show that it is also a solution in self-similar coordinates.

In order to show the regularity near the sonic boundary, we write (1.6) in terms of the

function ψ = c2(ρ2)− c2(ρ) in the new (x, y)-coordinates, which will be specified in Section 5,

defined near P1P3 such that P1P3 becomes a segment on {x = 0}, of the form

(2c2x− ψ)ψxx + c2ψx − (ψx)
2 + ψyy −

1

γc22
ψ2
y = 0, in x > 0 and near x = 0, (1.10)

plus “small” terms, since ρ and ψ have the same regularity in Ω. For the solution ψ, (1.10) is

elliptic in {x > 0}; also ψ > 0 in {x > 0} and ψ = 0 on {x = 0}. The proof of the regularity

is exactly the same as that in [4], so we just list the results about the optimal regularity in

Section 5.

As we know, much effort has been devoted to the study of the phenomena of shock reflection.

Čanić, Keyfitz and Kim [2] got the existence of regular transonic shock reflection for the UTSD.

And Čanić, Keyfitz and Kim [3] established the existence results of Mach stem for the nonlinear

wave system. Zheng [15] studied the existence of the global solutions of two dimensional regular

shock reflection for the pressure system.

The organization of this paper is as the following. In Section 2, we derive the second-order

operator and the boundary conditions for the nonlinear wave system (1.1) in self-similar coor-
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dinates and in the polar coordinates, as in [3] and in [9]; and give the mathematical statement

of our results, Theorem 2.1. In Section 3, by using a regularized differential operator, with ϵ△ρ
added, we prove the existence of the solutions for the uniformly elliptic free boundary problem

in polar coordinates, as well as in self-similar coordinates. In Section 4, we proceed to the limit

as ϵ → 0 to get the global existence of the solutions to the original problem. In Section 5, we

establish the optimal regularity C0,1 of the solutions ρ across the degenerate sonic boundary.

2 The von Neumann Criterion and Local Theory for Shock Reflection

In this section, we first discuss the normal reflection solution, then follow the von Neumann

criterion to derive the necessary condition for the existence of the regular reflection and show

that the shock reflection is regular locally when the wedge angle is large, that is, when θw is

close to π
2 or, equivalently, the angle between the incident shock and the wedge

σ =
π

2
− θw (2.1)

tends to zero.

To find the reflected shock and the state between the wedge and it, denoted by state (2),

we need the Rankine-Hugoniot relation. Rewrite system (1.5) in the conservation form

∂ξ

m− ξρ
p− ξm
−ξn

+ ∂η

n− ηρ
−ηm
p− ηn

 = −2

 ρ
m
n

.
Let η = η(ξ) with slope σ′ = η′(ξ) being a shock. Then

(η − σ′ξ)[m] + σ′[p] = 0,

(η − σ′ξ)[n]− [p] = 0,

(η − σ′ξ)[ρ] + σ′[m]− [n] = 0,

(2.2)

where [f ] = f −f1 denotes the jump of f across the shock wave. For [ρ] ̸= 0, we can solve them

to obtain

dη

dξ
= σ′ =

ξη ± c
√
ξ2 + η2 − c2

ξ2 − c2
,

[p] = ξ[m] + η[n],

[p][ρ] = [m]2 + [n]2,

(2.3)

where

c2(ρ, ρ1) =
p(ρ)− p(ρ1)

ρ− ρ1
.

A useful and equivalent form for the Rankine-Hugoniot relation is

dη

dξ
= σ′ =

ξη ± c
√
ξ2 + η2 − c2

ξ2 − c2
,

[m] =
c2ξ ± cη

√
ξ2 + η2 − c2

c2(ξ2 + η2)
[p],

[n] =
c2η ∓ cξ

√
ξ2 + η2 − c2

c2(ξ2 + η2)
[p].

(2.4)
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Figure 3 Normal reflection

Use the plus branch for the reflected shock, which gives the shock evolution equation

dη

dξ
= f(ξ, η, ρ) =

ξη + c
√
ξ2 + η2 − c2

ξ2 − c2
=

η2 − c2

ξη − c
√
ξ2 + η2 − c2

. (2.5)

The second expression is equivalent to the first one, and both are well defined if c2(ρ) ≤ ξ2+η2.

Denote P2 = (0, η(0)), the point at the foot of the shock, and observe that we need η′(0) =√
η2−c2

c2
to be zero by symmetry. Thus

η(0) = −c(ρ, ρ1) = −

√
p(ρ)− p(ρ1)

ρ− ρ1
. (2.6)

This can be interpreted as a condition which determines ρ(P2) in the subsonic region at the

foot of the shock.

2.1 Normal shock reflection

In this case, the wedge angle is π
2 , i.e., σ = 0, and the incident shock normally reflects (see

Figure 3). The reflected shock is also a plane at η = η < 0, which will be defined below. Then

m2 = n2 = 0, and it follows from the Rankine-Hugoniot relation (2.2) that

η = −

√
p(ρ2)− p(ρ1)

ρ2 − ρ1
. (2.7)

At the reflected shock η = η < 0, the Rankine-Hugoniot relation (2.2) implies

−n1 = η(ρ2 − ρ1). (2.8)

Thus

(p(ρ1)− p(ρ0))(ρ1 − ρ0) = (p(ρ2)− p(ρ1))(ρ2 − ρ1). (2.9)

It can be shown that there is a unique solution ρ2 to (2.9) such that ρ2 > ρ1. Indeed, for

fixed ρ1 and ρ0, and denoting by F (ρ2) the right-hand side of (2.9), we have

F (ρ1) = 0, F (∞) = ∞,

F ′(s) =
(
p′(s) +

∫ 1

0

p(ρ1 + θ(s− ρ1))dθ
)
(s− ρ1) > 0 for s > ρ1.

Thus there exists a unique ρ2 ∈ (ρ1,∞) satisfying F (ρ2) = n21, i.e., (2.9) holds. Then the

position of the reflected shock η = η < 0 is uniquely determined by (2.7).

Moreover, for the sonic speed c(ρ2) =
√
p′(ρ2) of state (2), we have

|η| < c(ρ2). (2.10)
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2.2 The von Neumann criterion and local theory for regular reflection

In this subsection, we first follow the von Neumann criterion to derive the necessary condition

for the existence of regular reflection and show that, when the wedge angle is large, there exists

a unique state (2) with a two-shock structure at the reflected point, which is close to the solution

(ρ2,m2, n2) = (ρ2, 0, 0) of the normal reflection.

For a possible two-shock configuration satisfying the corresponding boundary condition on

the wedge η = ξ cot θw, we set the reflected point P0 = (η10 tan θw, η10) and assume that the

line that coincides with the reflected shock in state (2) will intersect with the axis η = 0 at the

point (η̃, 0) with the angle θs between the line and ξ = 0. It is easy to check that

η̃ = η10 tan θw − η10 tan θs. (2.11)

In addition, the momenta (m2, n2) should be parallel to the wall, i.e.,

m2 = n2 tan θw. (2.12)

This requirement and the Rankine-Hugoniot relation determine the state (2).

Proposition 2.1 (Regular Reflection of the Algebraic Portion) There exists a θc ∈ (0, π2 ),

depending only on ρ0 and ρ1, such that if θw > θc, there exists a constant state (ρ2,m2, n2)

with ρ2 > ρ1, satisfying (2.12) and the Rankine-Hugoniot condition.

Proof It follows from the second equation of (2.3) that,

p2 − p1 = η10(1 + tan2 θw)n2 − η10n1. (2.13)

Denoting ñ2 := (1 + tan2 θw)n2, we have

ñ2 − n1 = (p(ρ2)− p(ρ1))

√
ρ1 − ρ0

p(ρ1)− p(ρ0)
. (2.14)

Manipulating the third equation of (2.3), we obtain

(p(ρ2)− p(ρ1))(ρ2 − ρ1)− sin2 θwn
2
1 = cos2 θw(ñ2 − n1)

2. (2.15)

It follows from (2.14) and (2.15) that

(p(ρ2)− p(ρ1))
2 ρ1 − ρ0
p(ρ1)− p(ρ0)

= (1 + tan2 θw)(p(ρ2)− p(ρ1))(ρ2 − ρ1)

− tan2 θw(p(ρ1)− p(ρ0))(ρ1 − ρ0). (2.16)

Consider

f(ρ) = (1 + tan2 θw)(p(ρ)− p(ρ1))(p(ρ1)− p(ρ0))(ρ− ρ1)

− (p(ρ)− p(ρ1))
2(p(ρ1)− p(ρ0))− tan2 θw(p(ρ1)− p(ρ0))(ρ1 − ρ0). (2.17)

We need to show that there exists a ρ2 > ρ1, such that f(ρ2) = 0. In fact,

f ′(ρ) = (1 + tan2 θw)(p(ρ1)− p(ρ0))(ρ− ρ1)
[
p′(ρ) +

p(ρ)− p(ρ1)

ρ− ρ1

]
− 2(p(ρ)− p(ρ1))(ρ1 − ρ0)p

′(ρ).



650 X. M. Deng and W. Xiang

By the convexity of p(ρ), it is easy to show that f ′(ρ) > 0 for σ sufficiently small. Moreover,

f(ρ1) = − tan2 θw(p(ρ1) − p(ρ0))(ρ1 − ρ0) < 0, f(ρ) → ∞ if ρ → ∞, and by the continuity of

f(ρ), there exists a ρ2 > ρ1, such that f(ρ2) = 0. Define θc = inf{θw | f ′(ρ) > 0 and π
2−θw > 0}.

We obtain (ρ2,m2, n2) satisfying Rankine-Hugoniot relation for θw > θc, where (m2, n2) could

be obtained from (2.4).

This finishes the proof of the proposition.

Moreover, for σ = π
2 − θw ∈ (0, σ1), where σ1 is sufficiently small, depending only on ρ0, ρ1

and γ, we have

|ρ2 − ρ2|+
∣∣∣π
2
− θs

∣∣∣+ |η̃ − η|+ |c2 − c(ρ2)| ≤ C1σ, (2.18)

where c2 = ρ
γ
2
2 is the sonic speed of state (2). It follows from (2.10) and (2.18) that, if σ1 > 0

is small, then

|η̃| < c2. (2.19)

Thus we have established the local existence of the two-shock configuration near the reflected

point, so that behind the straight reflected shock emanating from the reflection point, state (2)

is pseudo-supersonic up to the sonic circle of state (2). Furthermore, this local structure is

stable in the limit θw → π
2 , i.e., σ → 0.

2.3 The oblique derivative boundary conditions

Following [3] and [9], since vorticity is confined to the lines of discontinuity of the Riemann

data, and these lines lie above the shock, that means mη − nξ = 0. Using this equation and

(1.5),

nξ = mη =
1

ξ2 + η2
(
η(c2 − ξ2)ρξ + ξ(c2 − η2)ρη

)
,

mξ =
1

ξ2 + η2
(
ξ(c2 + η2)ρξ − η(c2 − η2)ρη

)
,

nη =
1

ξ2 + η2
(
ξ(−c2 + ξ2)ρξ + η(c2 + ξ2)ρη

)
.

(2.20)

Differentiating the third equation of (2.3) along Γshock = {ξ, η(ξ)}, we get

(c2(ρ)[ρ] + [p])(ρξ + η′ρη) = 2[n](−η′(mξ + (1− (η′)2)mη) + η′nη), (2.21)

where [m] = −η′[n] are used. Replacing derivatives Dm and Dn by Dρ, and using (2.21) and

[n] = [p]
−η′ξ+η , we get

β(1) · ∇ρ = β
(1)
1 ρξ + β

(1)
2 ρη = 0, (2.22)

where β(1) is given by

β
(1)
1 (ρ) = (ξ2 + η2)(−η′ξ + η)(c2(ρ) + c2(ρ))

− 2c2(ρ){−η′ξ(c2 + η2) + (1− (η′)2)η(c2 − ξ2) + η′ξ(−c2 + ξ2)} (2.23)
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and

β
(1)
2 (ρ) = η′(ξ2 + η2)(−η′ξ + η)(c2(ρ) + c2(ρ))

− 2c2(ρ){η′η(c2 − η2) + (1− (η′)2)ξ(c2 − η2) + η′η(c2 + ξ2)}. (2.24)

Thus the obliqueness becomes

β(1) · ν = 2c2(ρ)(ηη′ + ξ){(c2 − ξ2)2(η′)2 + 2ξηη′ + c2 − η2}, (2.25)

where ν = (η′,−1) is the outward normal to Ω at Γshock. It is easy to check that

(c2 − ξ2)(η′)2 + 2ξηη′ + c2 − η2 ̸= 0,

if ξ2+η2 < c2. In fact, let g(y) = (c2− ξ2)2y2+2ξηy+ c2−η2, which is a quadratic polynomial

with coefficients depending smoothly on (ξ, η) and ρ. Notice ∆ = −4c2(ρ)(c2(ρ)− ξ2 − η2) and

c2(ρ)− ξ2 > 0, so g(y) > 0.

Thus the obliqueness depends only on whether ηη′ + ξ equals zero.

Hereafter, we let η = l(ξ) denote the location of the reflected shock of state (2), the straight

part, that is,

l(ξ) = ξ cot θs + η̃ with η̃ =

√
p(ρ1)− p(ρ0)

ρ1 − ρ0

(
1− tan θw

tan θs

)
< 0, (2.26)

where θs is the angle between l(ξ) and the axis ξ = 0.

Another condition on the free boundary η(ξ) comes from the fact that the curved part and

the straight part of the reflected shock should match at least up to the first order. Denote

by P1 = (ξ1, η1) with ξ1 > 0 and η1 < 0, the intersection point of the line η = l(ξ) and

the sonic circle ξ2 + η2 = c22, i.e., (ξ1, η1) is the unique point for a small σ > 0 satisfying

l(ξ1)
2 + ξ21 = c22, η1 = l(ξ1), ξ1 > 0. The existence and uniqueness of such a point (ξ1, η1)

follow from −c2 < η̃ < 0. Then at P1, η(ξ) satisfies

η(ξ1) = l(ξ1), η′(ξ1) = l′(ξ1) =
ξ1η1 + c(ρ2)

√
ξ21 + η21 − c2(ρ2)

ξ21 − c2(ρ2)
. (2.27)

2.4 The free boundary problem in polar coordinates

We discuss the problem in polar coordinates first for the technical reason. Let (ξ, η) =

(r cos θ, r sin θ), and rewrite (1.6) as

((c2 − r2)ρr)r +
c2

r
ρr +

( c2
r2
ρθ

)
θ
= 0. (2.28)

As in self-similar coordinates, using the Rankine-Hugoniot relation in polar coordinates

correspondingly, we have

β
(2)
i Diρ = β

(2)
1 ρr + β

(2)
2 ρθ = 0, (2.29)

along {(r(θ), θ)} in (r, θ)-coordinates, and

β
(2)
1 = r′(c2(r2 − c2)− 3c2(c2 − r2)), β

(2)
2 = 3c2(r2 − c2)− c2(c2 − r2).
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Thus the obliqueness becomes

β(2) · (1,−r′) = −2r′(c2 − c2)r2 ≡ µ,

where (1,−r′(θ)) is the outward normal to Ω at Γshock. Note that µ becomes zero when r′(θ) =

0, that is, r = c(ρ). When the obliqueness fails, we have β
(2)
1 = 0 and β

(2)
2 = −c2(c2 − r2) < 0

in a subsonic region.

Next define Q to be the governing second-order quasi-linear operator in the subsonic domain

Qρ = ((c2 − r2)ρr)r +
c2

r
ρr +

( c2
r2
ρθ

)
θ
= 0, (2.30)

and M to be the derivative boundary operator

Mρ = β
(2)
1 ρr + β

(2)
2 ρθ = 0, on Γshock = {(r(θ), θ)}. (2.31)

Here β(2) = (β
(2)
1 , β

(2)
2 ) is a vector field. The second condition on Γshock is the shock evolution

equation

dr

dθ
= r

√
r2 − c2(ρ)

c(ρ)
:= g(r, θ, ρ(r, θ)) with r(θ1) = r1, (2.32)

where (r1, θ1) is the polar coordinates of (ξ1, η1).

The boundary conditions on the other parts of ∂Ω are

ρ = ρ2, on Γsonic = ∂Ω ∩ ∂Bc2(0), (2.33)

ρν = 0, on Γwedge = ∂Ω ∩ {θ = θw}, (2.34)

ρν = 0, on Σ0 = ∂Ω ∩
{
θ = −π

2

}
. (2.35)

At the Dirichlet boundary Γsonic, the ellipticity of the operator Q degenerates. At the point P2,

r′(−π
2 ) = 0, M fails to be oblique. We may alternatively express this as a one-point Dirichlet

condition by solving r(−π
2 ) = c(ρ(−π

2 , r(−
π
2 )), ρ1). In order to deal with this equation, we

introduce the notation

a = c−1
b (r), when c(a, b) = r (2.36)

for a fixed b. Thus,

ρ = ρ(P2) = c−1
ρ1

(
r
(
− π

2

))
. (2.37)

In this paper, we will establish the following theorem.

Theorem 2.1 There exists a θ0 ∈ [θc,
π
2 ) such that if θw ∈ [θ0,

π
2 ), there exists a solution

ρ ∈ C2+α(Ω) ∩ C0,1(Ω) for the initial data (1.8), to the free boundary value problem (2.30)–

(2.35) and (2.37). Lipschitz continuity is the optimal regularity for ρ across Γsonic. Moreover,

ρ tends to ρ2 as θw → π
2 .

The existence part of Theorem 2.1 is proved in two stages. First, we solve the regularized

free boundary value problem for Qϵ = Q+ϵ△ (△ is the Laplace operator) in Section 3. Second,

we consider the limit ϵ→ 0 and show that this limit yields a solution to (2.30)–(2.35) and (2.37)

in Section 4.
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3 The Regularized Problem

For a fixed ϵ ∈ (0, 1), we solve the free boundary value problem defined in Subsection 2.4.

But with Q replaced by the regularized operator Qϵ, the equation for ρ in the subsonic region

is now

Qϵρ = ((c2 − r2 + ϵ)ρr)r +
c2 + ϵ

r
ρr +

(c2 + ϵ

r2
ρθ

)
θ
= 0. (3.1)

The shock evolution equation remains the same

r′ = g(r, θ, ρ), r(θ1) = r1, (3.2)

and the boundary conditions are as before

Mρ = β(2) · ∇ρ, on Γshock =
{
(r, θ) : −π

2
< θ < θ1

}
, (3.3)

ρ = ρ2, on Γsonic, ρν = 0, on Γwedge ∪ Σ0, (3.4)

where ν is the outward normal to Ω at Γwedge ∪ Σ0, and

ρ(P2) = ρ = c−1
ρ1

(
r
(
− π

2

))
. (3.5)

We will focus on the proof of the existence theorem in this section as follows.

Theorem 3.1 There exists a θ0 ∈ [θc,
π
2 ) such that if θw ∈ [θ0,

π
2 ), then for each ϵ ∈ (0, ϵ0)

with some ϵ0 > 0, there exists a solution (ρϵ, rϵ) ∈ C−γ1

2+α(Ω
ϵ)×C1+1([−π

2 , θ1]) to the regularized

free boundary problem (3.1)–(3.5) such that

ρ1 < ρϵ ≤ ρϵ < ρ2 and c2(ρϵ) > r2, in Ω
ϵ\Γshock (3.6)

for some α, γ ∈ (0, 1) depending on ϵ, ρ0, ρ1 and θw. The function rϵ(θ), defining the position

of the free boundary Γϵ
shock, is in Kϵ, which will be defined later. Here Ωϵ is bounded by Γϵ

shock,

Σ0, Γwedge and Γsonic.

We prove Theorem 3.1 in the following steps (which take up four subsections of this section).

Step 1 Since the governing equation (3.1) is nonlinear, and the ellipticity is not known a

priori, we introduce a cut-off function into the equation Qϵρ = 0, which is a smooth increasing

function f ∈ C∞, such that

f(s) =

s, if s ≥ 0,

−1

2
ϵ, if s < −ϵ

(3.7)

and |f ′(s)| ≤ 1. Consider the following modified equation:

Qϵ,+ρ = [(f(c2 − r2) + ϵ)ρr]r +
[1
r
(f(c2 − r2) + ϵ) + r

]
ρr +

(c2 + ϵ

r2
ρθ

)
θ

= Di(a
ϵ
ii(r, θ, ρ)Diρ) + bϵ(r, ρ)Drρ = 0, in Ω. (3.8)

Step 2 We show the existence of the solutions to the linear problem with fixed boundary

Γshock defined by r(θ) ∈ Kϵ,δ and establish the Schauder estimates at Γshock, particularly near
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the point where obliqueness loses, and the Schauder estimates are near the corners and are

locally in the rest of the domain. For these elliptic estimates, we introduce some notations first.

Let V = {P1, P2, O, P3} denote the corners of Ω, V ′ = V \{P2}. Set Ω′ = Ω\(V ∪ Γshock).

For Ξ ∈ V , define the corner region

ΩΞ(δ) = {x ∈ Ω : dist(x,Ξ) ≤ σ}

and

Γ′(σ) = {Ξ ∈ Γshock | dist(Ξ, P1) > σ},

Γ(δ) =
{
x ∈ Ω ∩

∪
Ξ∈Γ′(σ)

Bσ(Ξ)
}
,

where Bδ(Ξ) is a ball of radius δ centered at Ξ. So we define a region that is close to Γshock

but does not contain the corner P1. We then define the weighted space

Cb
a ≡

{
u : ∥u∥ba ≡ sup

δ>0
δa+b|u|a,Ω\(Γ(δ)∪ΩV ′ (δ)) <∞

}
. (3.9)

In this paper, we cannot use the results in [11]–[14] directly to show the existence of the

solutions to the fixed boundary value problem. Instead, by using the Hölder gradient bounds to

the linear problem, we establish the existence result to the nonlinear fixed boundary problem

via the Perron method developed in [10].

Step 3 We apply the Schauder fixed point theorem to prove the existence of the solutions

to the nonlinear fixed boundary problem and then to the free boundary problem. Here we will

remove the cut-off function and prove that the shock evolution equation can always be well-

defined. In order to use the Schauder fixed point theorem, we now define K = Kϵ,δ, a closed,

convex subset of a Hölder space C1+α1([−π
2 , θ1])∩C

2+α1([−π
2 , τ1)) (τ1 may depend on r̃, which

will be specified later), where α1 depends on ϵ and will be specified later, and the mapping

on it is r̃(θ) = Jr, where Jr will be defined in Subsection 3.4. The functions in K satisfy the

following properties:

(K1) r(θ1) = r1 and r′(θ1) = r1

√
r22−c2(ρ2)

c(ρ2)
;

(K2) r′(−π
2 ) = 0 and r′′(−π

2 ) = 0;

(K3) c(ρ1) + δ ≤ r(−π
2 );

(K4) 0 ≤ r′(θ) ≤ r21
c(ρ1)

for −π
2 ≤ θ ≤ θ1.

Note that (K3) guarantees that r(θ) does not touch the sonic circle r = ρ1.

3.1 The regularized linear fixed boundary problem

Replace ρ in the coefficients aii, b of (3.1) and β
(2)
i of (3.3) by a function w in a set W

defined in a bounded domain Ωϵ, depending on given values ρ2 and ρ1 as follows.

Definition 3.1 The elements in W ∈ C−γ
2 satisfy

(W1) ρ1 < ρϵ ≤ w ≤ ρ2, w(P2) = ρϵ, w = ρ2 on Γsonic, wν = 0 on Σ0 ∪ Γwedge;

(W2) ∥w∥−γ1

2 ≤ K;

(W3) |w|α0,Ω′
loc

≤ K0 and |w|1+µ,Γ(d) ≤ K0.

The weighted Sobolev space is defined by (3.9). The values of γ1, α0 ∈ (0, 1), and K, K0

will be specified latter. Obviously, W is closed, bounded and convex.
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The quasilinear equation (3.8) and boundary condition (3.3) are now replaced by the linear

problem (repeated indices are summed up)

Lϵ,+u = Di(a
ϵ
ii(Ξ, w)Diu) + bϵ(Ξ, w)D1u = 0, in Ω,

Mu = β
(2)
1 (Ξ, w)Dru+ β

(2)
2 (Ξ, w)Dθu = 0, on Γϵ

shock =
{
(r(θ), θ)

∣∣∣ − π

2
≤ θ ≤ θ1

}
, (3.10)

with the remaining boundary conditions

u = ρ2 on Γshock, uθ = 0 on Σ0, uν = 0 on Γwedge, u(P2) = ρϵ, (3.11)

where r(θ) ∈ Kϵ,δ ⊂ C1+α1([θw, θ1]) ∩ C2((−π
2 , θ1)) are given and w ∈ W. Because of the

cut-off function f , Lϵ,+ is uniformly elliptic in Ωϵ. In this subsection, we demonstrate that the

solutions u to the linear problems (3.10) and (3.11) satisfy Hölder and Schauder estimates in Ω′,

especially a uniform C1+µ(Γ(d0)) estimate near Γshock for any µ < min{γ1, α1}. This bound

gives the good enough compactness to establish the existence of a solution to the nonlinear

problem by applying the Schauder fixed point theorem.

First, we state the Schauder estimates including the Dirichlet and fixed Neumann bound-

aries, Γsonic and Σ0 ∪ Γwedge, and the Hölder estimates at the corners V ′.

Lemma 3.1 Assume that Γshock is given by {(r(θ), θ)} with r(θ) ∈ Kϵ,δ for some α1 and

that w ∈ W for given K, K0, α0 and γ. Then there exist γV , αΩ ∈ (0, 1) such that the solution

u ∈ C2+αΩ

loc (Ω′) ∩ CγV (ΩV ′(d0)) to the linear problems (3.10) and (3.11) satisfies

|u|γ,ΩV ′ (d0) ≤ C1|u|0 (3.12)

for any γ ≤ γV and

|u|2+α,Ω′
loc

≤ C2|u|0 (3.13)

for any α ≤ αΩ. The exponent γV depends on the Riemann data ρ0, ρ1, θw, and both αΩ and

γV depend on ϵ but are independent of α1 and γ1. The constant C2 is independent of K but

depends on K0.

Proof We refer to [14, Theorem 1] for the corner estimates at P1 and P3. Near the origin,

since the governing equation can be written in self-similar coordinates in the form of (1.6), we

refer to [13] to get the corner estimate at O. Here γV is a fixed value that depends on the

Riemann data ρ0, ρ1 and θw, as well as the ellipticity ratio ϵ, but not on γ1, α1, K or K0. Next

we can use standard interior and boundary Schauder estimates to get the local estimate (3.13).

The constant C2 depends on ϵ, the Cα-norm of the coefficients aij and the domain.

Because the interior Schauder estimates can be applied once more, a solution in C2+α
loc (Ω′)

is actually in C3
loc(Ω

′).

We next state the Hölder gradient estimates at Γshock, especially at the point P2 where the

boundary operator M is not oblique.

Lemma 3.2 Assume that Γshock is given by {(r(θ), θ)} with r(θ) ∈ Kϵ,δ for some α1 and

that w ∈ W for given K, K0, α0 and γ1. Then there exists a positive constant d0 such that
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for any d ≤ d0, the solution u ∈ C1
loc(Ω ∪ Γshock) ∪ C3

loc(Ω) to the linear problem (3.10)–(3.11)

satisfies

|u|1+µ,Γ(d)\Bd(P1) ≤ C(ϵ, δ, α1, γ1,K, d0)|u|0 (3.14)

for any µ < min{γ1, α1}.

We omit the long proof here since it is the same as the one for Theorem 3.5 in [3].

The next lemma will be used in the proof of the local existence of the solutions to the fixed

boundary value problem near P2.

Lemma 3.3 There exists a neighborhood of P2 on Γshock, such that η′(ξ) > 0.

Proof By the Implicit Theorem, the shock wave can be described by η = η(ξ) locally. Thus,

rr′ = ξ(∂ξ∂θ + r′(θ)∂ξ∂r ) + ηη′(∂ξ∂θ + r′(θ)∂ξ∂r ) = r cos θ(−r sin θ + r′(θ) cos θ) + 2r sin θη′(−r sin θ +
r′ cos θ), so η′ = r cos θ+r′ sin θ

−r sin θ+r′ cos θ . We claim that there exists a d0 > 0, such that η′(ξ) > 0 for

(ξ, η(ξ)) ∈ Bd0(P2). In fact, let f(θ) = r cos θ + r′ sin θ, then f(−π
2 ) = 0. By using the fact

r′′(−π
2 ) = 0 in Property (K2), we have f ′(−π

2 ) = r(−π
2 ) > 0. So f(θ) > 0, and thus η′(ξ) > 0

for (r(θ), θ) ∈ Bd0(P2) with some d0 > 0 and ξ > 0.

Now, we will focus on the proof of the existence of the solutions.

Before giving the existence of the solutions, we introduce two definitions with some modifi-

cation compared to [10]. We call (3.10)–(3.11) is locally solvable, if for each y ∈ Ω, there is a

neighborhood O(y) and let N = O(y) ∩ {Ω\({P2} ∪ Γsonic)} such that for any h ∈ C(N), there

is a solution v ∈ C2(N) ∩ C(N) to the problem

Lϵ,+v = 0 in N ∩ Ω, Mv = 0 on N ∩ ∂Ω, v = h on ∂′N,

when P2 /∈ N(y); or

Lϵ,+v = 0 in N ∩ Ω, Mv = 0 on N ∩ ∂Ω, v = h on ∂′N, v|P2 = ρ,

when P2 ∈ N(y). Here ∂′N = ∂N ∩ Ω. We denote this function v by (h)y to emphasize its

dependence on h and y.

A subsolution (supersolution) to (3.10)–(3.11) is a function w ∈ C(Ω), v(r(θw), θw) = ρ

such that for any y ∈ Ω, if h ≥ w (h ≤ w) on ∂′N , then (h)y ≥ w ((h)y ≤ w) in N . The set of

all subsolutions (supersolutions) is denoted by S− (S+).

We now establish the existence of the solutions to (3.10) and (3.11).

Lemma 3.4 Assume that Γshock is given by {(r(θ), θ)} with r(θ) ∈ Kϵ,δ for some α1 and

that w ∈ W for given K, K0, α0 and γ1. Then there exist γV , αΩ ∈ (0, 1) and d0 > 0, where

γV , αΩ and d0 are independent of γ1 and α1, such that the solution in C1+µ(Γ(d0)\Bd0(P1))∩
C2+α

loc (Ω′) ∩ Cγ(ΩV ′(d0)) to the linear problems (3.10) and (3.11) exists for any α ≤ αΩ, µ <

min{γ1, α1}, γ ≤ γV and d ≤ d0 and satisfies (3.12), (3.13) and (3.14).

Proof For fixed ϵ > 0 and δ > 0, without confusion, let uϵ,δ = u.

We use the Perron method to show the existence of a solution to (3.10) and (3.11).

Compared to [10], the local existence at P2 is the only new case we need to show. In fact, let

B2 be a neighborhood of P2 with smooth boundary. B2 is sufficiently small such that O /∈ B2,
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β
(2)
1 ≤ 0 and β

(2)
2 < 0. Thus, we can study the local existence in (ξ, η)-coordinates in B2.

Introduce the coordinate transformation near P2{
ξ̂ = ξ̂(θ),

η̂ = η̂(r, θ)
(3.15)

such that ξ̂(c(ρ),−π
2 ) = 0, η̂(c(ρ,−π

2 )) = −c(ρ), ∂ξ̂
∂r = 0, ∂ξ̂

∂θ = − 1

β
(2)
2

> 0, ∂η̂
∂r = −1 and

∂η̂
∂θ = −β

(2)
1

β
(2)
2

≥ 0. Moreover, η̂(r, θ) = η̂(ξ̂(r(θ), θ)) along Γshock ∩B2. Thus,

η̂′(ξ̂) =
∂η̂
∂r r

′(θ) + ∂η̂
∂θ

∂ξ̂
∂r r

′(θ) + ∂ξ̂
∂θ

= −(β
(2)
1 − β

(2)
2 r′(θ)) ≥ 0.

So η̂(ξ̂) is an increasing function on Γshock ∩ B2. From ∂ξ̂
∂θ = − 1

β
(2)
2

> 0 and ∂ξ̂
∂r = 0, we know

that η̂(ξ̂) ≥ −c(ρ). Reflect the region B2 across ξ̂ = 0 to obtain a new region, still denoted

by B2. Furthermore, we replace Ω by Ωσ which is σ-distance from the point P2 upward (see

Figure 4). On the bottom straight boundary of Ωσ, impose

u = ρ, on bottom of Ωσ.

^

^

Figure 4 Domain with tip P2 removed

Now, we study the following boundary value problem:
L̂ϵ,δu = âijDju+ b̂iDiu = 0, in Ωσ,

M̂u = ∂ξ̂u = 0, on ∂Ωσ ∩ Γshock,

u = h, on ∂B2 ∩ Ω,

u = ρ, on Σσ,

(3.16)

where

ãϵ11 =
âϵ11

β̂2
2

, ãϵ12 = ãϵ21 = − β̂1
β̂2
2

âϵ22, ãϵ22 = âϵ11 +
( β̂1
β̂2

)2

â22,

b̃ϵ1 =
∂âϵ11
∂η̂

− âϵ22

β̂2
2

∂β̂1

∂ξ̂
+
β̂1â

ϵ
22

β̂2
2

∂β̂2
∂η̂

+
β̂1â

ϵ
22

β̂3
2

∂β̂2

∂ξ̂
− β̂2

1 â
ϵ
22

β̂3
2

∂β̂2
∂η̂

+
( β̂1
β̂2

)2 ∂âϵ22
∂η̂

− b̂ϵ,

b̃ϵ2 = − â
ϵ
22

β̂3
2

∂β̂2

∂ξ̂
+
âϵ22β̂1

β̂3
2

+
1

β̂2

∂âϵ22

∂ξ̂
− β̂1

β̂2
2

∂âϵ22
∂η̂

.
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Here âϵii, b̂
ϵ and β̂i (i = 1, 2) are the coefficients of (3.10) and (3.11) in (ξ̂, η̂)-coordinate, and h

is a continuous function satisfying ρ < h ≤ ρ2.

From now on, the proceeder is the same as [4]. Roughly speaking, we get the solutions uσ
to this problem, and then let σ → 0 with the barrier function v = ρ+c(1−e−l(η̂+rw)) to deduce

that the limiting function solves the problem locally. Please refer to [4] for more details.

3.2 The regularized nonlinear fixed boundary problem

This subsection is devoted to proving the existence of the solutions to the nonlinear problem

(3.1) with a fixed boundary.

We have the following existence lemma for the fixed boundary.

Lemma 3.5 For ϵ ∈ (0, ϵ0) and δ ∈ (0, δ0), given r(θ) ∈ Kϵ,δ ⊂ C1+α1 , there exists a

solution ρϵ,δ ∈ C−γ1

2+α(Ω
ϵ,δ) to (3.1) and (3.3)–(3.5) such that

ρ1 < ρϵ,δ ≤ ρϵ,δ ≤ ρ2 (3.17)

for some α(ϵ, δ), γ(ϵ, δ) ∈ (0, 1). Moreover, for some d0 > 0, the solution ρϵ,δ satisfies

|ρϵ,δ|γ,Γ(d0)∪Bd0
(P1) ≤ K0, (3.18)

where γ and K1 depend on δ, ϵ, γV and K, but both are independent of α1.

The proof based on Schauder fixed point theorem is the same as in [4] or in [3], so we omit

the details.

3.3 Three important properties for nonlinear problems

In this subsection, we will show three properties of the solutions to the nonlinear problems

(3.1) and (3.3)–(3.5). First, we show c2(ρϵ,δ)− r2 ≥ 0 in Ω
ϵ,δ
, which guarantees the ellipticity

of the nonlinear equations. Thus the cut-off function can be removed.

Lemma 3.6 There exist positive constants ϵ0 and δ0, such that for 0 < ϵ ≤ ϵ0 and

0 < δ ≤ δ0, the solution ρϵ,δ ∈ C(Ω) ∩ C2(Ω) ∩ C1(Ω\Γsonic) to (3.1), (3.3)–(3.5) satisfies

c2(ρϵ,δ) ≥ r2, in Ω
ϵ,δ
. (3.19)

Proof For the notational simplicity, throughout the proof, we write ρ = ρϵ,δ.

We show the lemma by contradiction arguments. More precisely, assume that there exists a

nonempty set D = {(ξ, η) ∈ Ω : c2(ρ)−r2 < 0} and let Xmin ∈ D be the minimum point. First,

it is easy to check that P2 /∈ D. Also O /∈ D, thus D ⊂ Ωs, where Ωs = {X ∈ Ω\V : r2 > c2(ρ)}
and V is the set of all the corner points of Ω. Hence there are three possible locations of Xmin.

First, if Xmin is the inner point of Ω. For notational simplicity, denote c2(ρ) = ργ = u from

now on. Then multiplying γργ−1 over the equation Qϵ,+ρ = 0, we have

Lu = γργ−1 ·Qϵ,+ρ

= aϵii

(
Diiu− γ − 1

γ

1

ργ
|Diu|2

)
+ f ′(c2 − r2)(c2 − r2)rur +

1

r2
u2θ + bϵur

= 0. (3.20)
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Note that ϵ
2 ≤ aϵ11 ≤ ϵ due to the cut-off function f in D. We evaluate Lr2 in D

Lr2 ≥ −2ϵ
∣∣∣1− 2

γ − 1

γ

1

ργ
r2
∣∣∣+ f ′(c2 − r2)(c2 − r2)rur + 2c2

≥ 2c2(ρ)− 2ϵ
∣∣∣1− 2

|γ − 1|
γ

1

ργ1
c2(ρ)

∣∣∣ > 0 (3.21)

with any small ϵ < ϵ0 where ϵ0 = γc2(ρ1)c
2(ρ)

|γc2(ρ1)−2|γ−1|c2(ρ)| . Then using the fact that (c2 −
r2)r(Xmin) = 0, we obtain

0 > Lu− Lr2

= aϵiiDii(u− r2)− γ − 1

γργ
aϵiiDi(u+ r2)Di(u− r2)

+ f ′(c2 − r2)(c2 − r2)r(u− r2)r +
1

r2
(u+ r2)θ(u− r2)θ + b(u− r2)r. (3.22)

Since Xmin is an interior minimum point, we have Di(u − r2)(Xmin) = 0, and aϵiiDii(u −
r2)(Xmin) ≥ 0, which contradicts the inequality Lu− Lr2 < 0 in D ∩ Ω.

Second, if Xmin is located on Γshock ∩D, multiplying γργ−1 over the equation Mρ = 0, we

have 0 = γργ−1Mρ = M̃u = βiDiu. On the one hand,

M̃r2 = 2rβ
(2)
1 = 2rr′(c2(r2 − c2)− 3c2(c2 − r2)) > 0 (3.23)

in Γshock ∩ D, where we use the fact r2 ≥ c2 ≥ c2 in Ωs. On the other hand, at Xmin, the

outward normal derivative of u− r2 becomes non-positive (that is, ∇(u− r2)(1,−r′) ≤ 0) and

the tangential derivative becomes zero (that is, ∇(u− r2)(r′, 1) = 0), so (1 + (r′)2)(u− r2)r ≤
0 at Xmin, which implies (u− r2)r ≤ 0. Thus we have

0 > M̃(u− r2) = (β
(2)
1 − r′β

(2)
2 )(u− r2)r = µ(u− r2)r ≥ 0,

which is a contradiction.

Finally, if Xmin is located on {Σ0 ∪ Γwedge} ∩D, then

γργ−1 ∂ρ

∂n
− ∂r2

∂n
= γργ−1ρν = 0,

which is a contradiction due to Hopf Lemma, i.e., ∂(u−r2)
∂n(Xmin)

< 0. Therefore, there is no minimum

point and thus the set D = ∅, which completes the proof.

Based on Lemma 3.6, as Lemma 3.2 in [9], we can show that the solutions to the fixed

boundary value problems (3.1) and (3.3)–(3.5) satisfy r − c(ρ) ≥ 0 on Γshock.

Lemma 3.7 Let 0 < ϵ ≤ ϵ0 and 0 < δ ≤ δ0, and ρ
ϵ,δ ∈ C(Ω) ∩ C2(Ω) ∩ C1(Ω\Γsonic) is a

solution to the boundary value problems (3.1) and (3.3)–(3.5). Then c(ρε,δ)− r ≤ 0 on Γϵ,δ
shock.

We omit the long proof here. One could refer to [4] or [9] for details. With this lemma, the

integration in (3.24) in the next section is always well defined on Γshock. Next, as in [3] and

[15], we have the monotonicity of ρ along Γshock, which will be used to describe the convexity

of the shock wave in (ξ, η)-coordinate.

Lemma 3.8 Suppose that ρϵ,δ ∈ C1(Ω ∪ Γshock ∪ Γwedge ∪Σ0) ∩Cα(Ω) is a solution to the

boundary value problems (3.1) and (3.3)–(3.5). Then ρϵ,δ is monotonic on Γshock.
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3.4 The regularized nonlinear free boundary problem

We will show the existence of the solutions to the regularized free boundary problems.

Lemma 3.9 For each ϵ ∈ (0, ϵ0) and δ ∈ (0, δ0) with some δ0 > 0, there exists a solution

(ρϵ,δ, rϵ,δ) ∈ C−γ
2+α(Ω

ϵ,δ)×C1+α([−π
2 , θ1)) to the regularized free boundary problems (3.1), (3.3)–

(3.5) and (3.2) at the points of Γϵ,δ
shock where rϵ,δ ≥ c(ρ0) + 2δ.

Proof For notational simplicity, we suppress the ϵ and δ dependence.

For each r(θ) ∈ Kϵ,δ ⊂ C1+α([−π
2 , θ1]) ∩ C

2([−π
2 , δ)), using the solution ρ to the nonlinear

fixed boundary problems (3.1) and (3.3)–(3.5) given by Lemma 3.4, we first define the map J

on K, r̃ = Jr, as

r̃(θ) = r2 +

∫ θ

θ1

g(r(s), s, ρ(r(s), s))ds. (3.24)

There are two cases for the approximate shock position r̃(θ).

Case 1 r̃(−π
2 ) ≥ c(ρ1)+ δ (see Figure 5(a)). We check that J maps K into itself. It is easy

to check that r̃(θ) ∈ C1+α([θw, θ1]) ∩ C2([θw, θ)). Property (K1) follows from (3.24). By the

definition of g and ρ(P2) = ρ, r̃′(θ) = 0 holds. From the oblique boundary condition, we have

ρθ(θ)− ρθ(−π
2 )

|θ + π
2 |

= −β
(2)
1 ρr

β
(2)
2 r′

·
r′(θ)− r′(−π

2 )

|θ + π
2 |

→ 0

as θ tends to −π
2 , since ρ ∈ C1+µ(Γd0\Bd0(P1)) and r′′(−π

2 ) = 0 for the older one. Thus,

ρ(θ)− ρ(−π
2 ) = o(1)|θ + π

2 |
2 for θ close to −π

2 . This implies that c(ρ) = r(−π
2 ) + o(1)|θ + π

2 |
2

for θ close to −π
2 . Moreover, since r′′(−π

2 ) = 0, we have r − r(−π
2 ) = o(1)|θ + π

2 |
2 for θ close

to −π
2 . Thus r̃

′ =
√

r2(r2−c2)
c2

= o(1)|θ + π
2 | for θ close to −π

2 , which implies that r̃′′(−π
2 ) = 0,

and we get Property (K2). The only thing left is to show that Property (K4) holds. In fact,

it comes from the expression of g(r(θ), θ, ρ(r(θ), θ)), the upper and lower bounds of ρ, Lemma

3.5 and the bound of r in Lemma 3.6.

(a)

( )

'

O

( )
(b)

Figure 5 Approximate shock position

Case 2 r̃(−π
2 ) < c(ρ1) + δ. Since r̃′(θ) > 0 for θ ∈ (−π

2 , θ1) and r2 = c(ρ2) > c(ρ1) + δ,

there exists a unique θa ∈ (θw, θ1) such that r̃(θa) = c(ρ1)+ δ (see Figure 5(b)) . Now choosing

τ which will be determined later such that r̃(θa + τ) ≤ c(ρ1) + 2δ and letting x1 = θa + τ + π
2 ,

we modify the approximate shock position on −π
2 ≤ θ ≤ θa + τ by defining

˜̃r(θ) = c(ρ1) + δ +A
(
θ +

π

2

)3

+B
(
θ +

π

2

)n
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with a = r̃(θa + τ) − c(ρ1) − δ, b = r̃′(θa + τ), A = na−bx1

(n−3)x3
1
and B = bx1−3a

(n−3)xn
1
. Let τ be small

enough such that bx1−3a > 0. Then choose n sufficiently large such that na−bx1 > 0, where n

depends on δ but not on the iteration. In fact, it is easy to see that |b| ≤
√
c2(ρ1)

c2(ρ2)−c2(ρ1)
c2(ρ1)

,

so there exists a constant C(ρ1, ρ2), such that |bx1| ≤ C(ρ1, ρ2). If 3δ ≤ bx1, we choose τ such

that a = δ and n1 = 2C(ρ0,ρ1)
δ , which depend only on ρ0 and ρ1. If 3δ > bx1, we can let τ

be small enough, such that we can get new a and b such that 3a = bx1 since bx1 > 0 and

r̃(θa) = c(ρ0) + δ. Thus, choosing n2 = 4, we have A > 0 and B = 0. Let n = max(n1, n2),

which is independent of the iterative process, and thus ˜̃r(θ) is a strictly increasing function on

[−π
2 , θa + τ ]. Furthermore, 0 = ˜̃r′(−π

2 ) ≤ ˜̃r′(θ) ≤ ˜̃r′(θa + τ) = r̃′(θa + τ). We define

r̃(θ) =

{
r̃(θ) for θ ∈ [θa + τ, θ1],˜̃r(θ) for θ ∈ [−π

2 , θa + τ ].

From the definition, it is easy to show that r̃(θ), θ ∈ [−π
2 , θ1] satisfies properties (K1)–(K4). We

only need to show that r̃(θ) ∈ C1+µ([−π
2 , θ1])∩C

2([−π
2 , δ)). In fact, r̃(θ) ∈ C1+α1([θa+ τ, θ1]),

r̃(θ) ∈ C+∞([−π
2 , θ1]), and r̃′(θ) ∈ C([−π

2 , θ1]), so we have r̃(θ) ∈ C1+α1([−π
2 , θ1]). Thus

∥r̃∥C1+α([−π
2 ,θ1]) ≤ C(ρ1, ρ2, ϵ, δ), and then (K1)–(K4) hold.

As in [4], we could easily prove that the map is continuous and compact since n is uniquely

determined. Thus, we get the existence of the solution (ρϵ,δ, rϵ,δ) to the free boundary problem

by Schauder fixed point argument, and rϵ,δ ∈ C1+µ([−π
2 , θ1]) ∩ C

2([−π
2 , θ1)) for µ ≤ α1. This

completes the proof of the lemma.

Remark 3.1 There may be two cases for the solution pair (ρϵ,δ, rϵ,δ) as follows:

Case I If rϵ,δ > c(ρ1) + 2δ for all θ ∈ (−π
2 , θ1), then rϵ,δ ∈ C2+α((−π

2 , θ1)) and drϵ,δ

dθ =

rϵ,δ
√

(rϵ,δ)2−c2(ρϵ,δ)

c(ρϵ,δ)
.

Case II If rϵ,δ < c(ρ1) + 2δ for some point, then there exists a θ∗ ∈ (−π
2 , θ1), such that

(1) for each θ ∈ (−π
2 , θ

∗), r(θ) = c(ρ1) + δ +A(θ + π
2 )

3 +B(θ + π
2 )

n;

(2) for any θ ∈ (θ∗, θ1),
drϵ,δ

dθ = rϵ,δ
√

(rϵ,δ)2−c2(ρϵ,δ)

c(ρϵ,δ)
.

In the following, we consider Case I first and give the precise description of the shock wave

in (ξ, η)-coordinates.

Lemma 3.10 For the solutions to (3.1)–(3.5), the free boundary can be described as Γshock =

{(ξ, η(ξ)) | 0 < ξ < ξ1} with η(ξ) ∈ C2
loc((0, ξ1)), η

′(ξ) > 0 and η′′ ≥ 0. In addition, η(ξ) > l(ξ)

for 0 < ξ < ξ1.

Proof We define

F (ξ, η) = ξ2 + η2 − r2(θ(ξ, η)) = 0, on Γshock. (3.25)

It is easy to check that Fη = (2η − 2rr′θη)|ξ=0 = 2η(0) ̸= 0. By the Implicit Theorem, there

exists an η = η(ξ) such that (3.25) holds locally on Γshock near ξ = 0, and ∂η
∂ξ

∣∣
ξ=0

= 0, that is,

there exists a ξ > 0, such that (ξ, η(ξ)) ∈ Γshock for 0 < ξ ≤ ξ.

Recall that η′ = f(ξ, η(ξ), ρ(ξ, η(ξ))), and we calculate η′′ = fξ + fηη
′ + fρρ

′ for ξ ∈ (0, ξ).

Observing that if ρ is a constant the shock would be a straight line, we get fξ + fηη
′ = 0.

Therefore, the sign of η′′ is determined entirely by the sign of fρ and ρ′. Since ρ′ > 0 by ρ
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increasing, dc2

dρ > 0 and

∂f

∂c2
=

(ξc− η
√
ξ2 + η2 − c2)2

c(ξη − c
√
ξ2 + η2 − c2)2

√
ξ2 + η2 − c2

≥ 0,

this finishes the proof of the convexity. Then 0 ≤ η′(ξ) < l′(ξ1) ≤ Cσ for 0 < ξ < ξ1. Thus, we

have η(ξ) = η1 +
∫ ξ

ξ1
η′(s)ds > ξ1 +

∫ ξ

ξ1
l′(ξ1)ds = l(ξ), for ξ < ξ1, which finishes the proof of

the lemma.

Next, we will demonstrate that Case II will not happen if the angle of the wedge is large

and δ0 is small only depending on ρ1, ρ0 in the following remark.

Remark 3.2 Let θ be close to θ∗ from the right-hand side. We have

drϵ,δ(θ)

dθ
= rϵ,δ

√
(rϵ,δ)2 − c2(ρϵ,δ)

c(ρϵ,δ)
.

As the proof of Lemma 3.10, the shock reflection boundary can be expressed locally in (ξ, η)-

coordinates, which satisfies

(ηϵ,δ(ξ))′ =
c2(ρϵ,δ)− (ηϵ,δ)2

c(ρϵ,δ)
√
ξ2 + (ηϵ,δ)2 − c2(ρϵ,δ)− ξηϵ,δ

.

As δ → 0, we divide it into two cases. First, if |θ∗ + π
2 | < C ≪ 1, where C is independent of δ

and will be specified later, as in Lemma 3.3, η′ = r cos θ+r′ sin θ
−r sin θ+r′ cos θ . Let (rϵ,δ(θ∗), θ∗) = (ξ∗, η∗).

We have that if ξ < ξ∗, because A = na−bx1

(n−3)x3
1
< na

(n−3)x3
1
≤ C(ρ1, ρ2)δ, then

η′ =
c(ρ1) + δ + (O(1)ξ∗)r × |O(1)|(θ∗ + π

2 )
2 + δ∗O(1)(θ∗ + π

2 )
2

−(c(ρ1) + δ) sin θ +O(1)θ∗
> 0,

when δ, |θ∗+ π
2 | are small enough depending only on ρ1. Then from the C1-regularity, we obtain

that η′ > 0 for 0 < ξ − ξ∗ ≪ 1. We can show that Lemma 3.10 holds for ξ ∈ (ξ∗, ξ1). Thus,

from the fact that 0 ≤ η′(ξ) ≤ η′(ξ1) ≤ Cσ, there exists a θ0 ∈ [θc,
π
2 ) and τ∗ > 0, such that

ξ2 + (ηϵ,δ(ξ))2 > c(ρ1) + τ∗ for θ ∈ (θ∗, θ1), if θw ∈ [θ0,
π
2 ), where θ0 is independent of δ, which

contradicts the continuity of rϵ,δ at θ∗.

For another case, i.e., θ∗+ π
2 > C > 0 only depending on ρ1, let (r(θ

∗), θ∗) = (ξ∗, η∗). Then

η∗ > −c(ρ1) +O(1)ξ∗ and ρϵ,δ(ξ∗, η∗) = ρ1 +O(1)δ. Thus c(ρϵ,δ) > (ηϵ,δ)2 for 0 < ξ − ξ∗ ≪ 1,

if δ is small enough, which implies that (ηϵ,δ(ξ))′ > 0. Thus as in the first case, we could obtain

the contradiction to deduce that Case II does not happen for our regular shock reflection if the

angle of wedge is large.

Now, we focus on the proof of Theorem 3.1. Here η′(ξ) > 0 for ξ ∈ (0, ξ1).

Proof of Theorem 3.1 We note that Remark 3.2 and Lemma 3.10 imply that there exists

a constant δ∗ > 0 independent of ϵ, such that rϵ,δ ≥ ρ1 + 2δ∗. By choosing δ0 < δ∗, the

solution pair (ρϵ,δ, rϵ,δ) is independent of δ, and then we discard the note of δ. Thus, we have

c2(P2) > r2(P2), which implies that β
(2)
2 ≤ −δ < 0 for some δ > 0. So the estimates obtained

in Lemma 3.2 and Lemma 3.3 do not depend on δ, and ρϵ satisfies all the estimates in Theorem

3.1.
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Remark 3.3 Now, it is easy to show that the free boundary value problem (3.1)–(3.5) is

equivalent to the following problem in self-similar coordinates:

Lϵρ = Di(aij(Ξ, ρ)Djρ) + ϵ△ρ+ bi(Ξ, ρ)Diρ = 0, in Ω, (3.26)

where a11(ξ, η) = c2(ρ) − ξ2 + ϵ, a22(ξ, η) = c2(ρ) − η2 + ϵ, a12(ξ, η) = a21(ξ, η) = −ξη,
b1(ξ, η) = ξ and b2(ξ, η) = η, and the shock evolution equation

dη

dξ
= f(ξ, η, ρ) with η(ξ1) = η1,

and with the boundary condition on Γshock,

Nu = βiDiρ = β(Ξ, ρ)Diρ = 0, on Γshock = {η = η(ξ) | 0 ≤ ξ ≤ ξ1}, (3.27)

where βi is a function of (ξ, η), ρ and η′ are defined in (2.23) and (2.24), with the remaining

boundary conditions

u = ρ2 on Γsonic, uξ = 0 on Σ0, uν = 0 on Γwedge, u(P2) = ρ, (3.28)

where ν is the outward normal to Ω at η = ξ cot θw. We remark that from the expression of η′,

it is easy to show that (2.25) implies that (3.27) is oblique on Γshock.

4 The Limiting Solution

In this section, we study the limiting solutions, as the elliptic regularization parameter ϵ

tends to zero. We start with the regularized solutions (3.26)–(3.28) in (ξ, η)-coordinates, whose

existence is guaranteed by Theorem 3.1. Denote by ρϵ a sequence of regularized solutions of

the free boundary value problem.

Following [3], we could find a uniform lower barrier to obtain the uniform ellipticity in any

compact domain contained by Ω\Γsonic for the solutions to the regularized problems.

Lemma 4.1 There exists a positive function φ, which is independent of ϵ, such that c2(ρϵ)−
(ξ2 + η2) ≥ φ in Ω\Γsonic, and φ tends to zero, as dist((ξ, η),Γsonic) → 0.

Lemma 4.1 implies that we can get the uniform ellipticity of (3.1) which is independent of

ϵ in B3RX0
/4(X0) ∩ Ωϵ.

The existence of a uniform lower bound of c2 − ξ2 − η2 independent of ϵ implies that the

governing equation (3.1) is locally uniform elliptic independent of ϵ, which allows us to use

standard local compactness arguments to get a limit ρ locally in the interior of the domain. We

next show that the sequence of domain Ωϵ converges to a domain Ω, as ϵ tends to zero.

Lemma 4.2 The sequence ηϵ has a convergent subsequence, whose limit η belongs to

Cγ([0, ξ1]) for all γ ∈ (0, 1). The limiting curve η is convex.

Proof Theorem 3.1 gives the existence of a sequence (ρϵ, ηϵ) of the solutions to the

regularized free boundary problems for which ηϵ belongs to the set Kϵ for each ϵ. Now ρ1 < ρ ≤
ρϵ ≤ ρ2, and the definition of Kϵ immediately gives a C1 bound for ηϵ, uniformly in ϵ. Thus by

the Arzela-Ascoli theorem, ηϵ has a convergent subsequence, and the limit η ∈ Cγ([0, ξ1]) for

all γ ∈ (0, 1). In addition, as we know, ηϵ is convex for each ϵ > 0, so is the limiting function.
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We remark that away from point P1, from Lemma 3.2 and Lemma 4.1, ∥ηϵ∥1+α is uni-

formly bounded. By using Arzela-Ascoli Theorem again, the limit function η(ξ) is in fact

in C1+α([0, ξ1)). The limit value η(0) = lim
ϵ→0

ηϵ(0) is also established, and the corresponding

subsequence of domains Ωϵ also has a limit, Ω.

In the remaining lemmas, without further comments, we carry out the limiting arguments

using the convergent subsequence of ηϵ, which is still written as ηϵ.

Lemma 4.3 The sequence ρϵ has a limit ρ ∈ C2+α′

loc for some α′ > 0. The limit ρ satisfies

the quasi-linear degenerate elliptic equation (3.26). Moreover, ρ1 + δ∗ ≤ ρϵ ≤ ρϵ < ρ2 in Ω.

Proof The proof is based on local compactness arguments and on uniform L∞ bounds

for ρϵ: ρ1 + δ∗ < ρϵ < ρϵ < ρ2. The main ideas follow those used in Lemma 4.2 of [3]. Fix

Ω1 b Ω. There exists an ϵ′ (which depends on Ω1), such that Ω1  Ωϵ for ϵ ≤ ϵ′, and then for

Ω2  Ω1, |ρϵ|Cα(Ω2)
≤ C, where α ∈ (0, 1) and C is independent of ϵ. With these estimates

of the coefficients of Qϵ, and the boundness of ρϵ, we get from the standard estimates in [7]

(Theorem 8.32 and Theorem 6.2 for the interior, and Theorem 8.33 and Lemma 6.5 for the

boundary Ω2) that |ρϵ|C2,α(Ω2)
≤ C. By the Arzela-Ascoli theorem, there exists a C2,α′

loc (Ω2)-

convergent subsequence for α′ < α. Now let Ω1 vary in Ω and use a diagonalization argument

to obtain a subsequence of ρϵ which converges in C2,α′

loc (Ω) to a limit C2,α′

loc (Ω) which satisfies

Qρ = 0 in Ω. From the uniform L∞ bounds for ρϵ, we get ρ1 < ρ ≤ ρ < ρ2 in Ω.

In the next lemma, we prove the Lipschitz continuity of the solutions near the degenerate

sonic boundary.

Lemma 4.4 The solution ρ to the free boundary value problem (3.26)–(3.28) is Lipschitz

continuous up to the boundary Γsonic.

Proof On the one hand, since ρ ≤ ρ2 in Ω, c2(ρ)− ξ2 − η2 < c2(ρ2)− ξ2 − η2.

On the other hand, it follows from Lemma 3.1 that c2(ρ)− ξ2 − η2 > ξ2 + η2 − c2(ρ2) in Ω.

Letting r22 = c2(ρ2), we have

|c2(ρ)− c2(ρ2)| ≤ |c2(ρ)− ξ2 − η2|+ |c2(ρ2)− ξ2 − η2|
≤ 2|c2(ρ2)− ξ2 − η2|
≤ 4r2|r2 −

√
ξ2 + η2|,

which implies that ρ is Lipschitz continuous up to the degenerate boundary Γsonic.

The next task is to show that ρ and η satisfy both the shock evolution equation (2.5) and

the oblique derivative boundary condition (3.27) on Γshock.

Lemma 4.5 The limits η and ρ satisfy

η′ = f(ξ, η, ρ) and Nρ = β(ξ, η(ξ)) · ∇ρ = 0, on Γshock.

Furthermore, η ∈ C2+α′
([0, ξ1))∩C1([0, ξ1]) and ρ ∈ C2+α′

loc (Ω∪ Γshock ∪Σ0 ∪ Γwedge\Bδ(V ))∩
C(Ω ∪ Γshock ∪ Σ0 ∪ Γwedge) for some α′ > 0. In addition, ρ = ρ at P2 = (0, η(0)), where

ρ = c−1
ρ1

(−η(0)).

Proof As in [3], we just focus on dealing with the behavior of the solutions near P2.
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Since ηϵ → η(ξ) in C2+α′

loc for ξ ̸= 0, and ρϵ → ρ in C1+α′

loc , we have (ηϵ)′ = f(ξ, ηϵ, ρϵ) →
f(ξ, η, ρ), ∀ξ ̸= 0, and thus η′ = f(ξ, η, ρ) for ξ ̸= 0. Furthermore,

0 = Nρ = β(ηϵ(ξ), ρϵ) · ∇ρϵ(ξ, ηϵ(ξ)) → β(η(ξ), ρ) · ∇ρ(ξ, η(ξ)), ∀ξ ̸= 0,

where we use the continuity of β and ρ. Then β(η, ρ) · ∇ρ = 0 on Γshock\{(0, η(0))}.
We now focus on the behavior of the solutions at P2. By Lemma 4.2, ηϵ → η in Cγ([0, ξ1])

for any 0 < γ < 1. Furthermore c2(ρϵ, ρ1) = (ηϵ(0))2, where ρϵ = ρ(0, ηϵ(0)) for fixed ϵ > 0.

Therefore, as ϵ → 0, the right-hand side converges to η2(0). Hence c2(ρϵ, ρ1) → η2(0). By the

continuity and monotonicity of c, the sequence ρϵ has a limit ρ. Moreover, c(ρ, ρ1) = −η(0),
which defines ρ, therefore ρ = ρ, and the sequence of traces of the functions ρϵ at (0, ηϵ(0))

converges to ρ. We still have to show that ρ is continuous at P2, i.e., lim
ξ→0

ρ(ξ, η(ξ)) = ρ. In fact,

η′ϵ has a limit η′ = f(ξ, η(ξ), ρ(ξ, η)) in C1+α for ξ ̸= 0, and η′ϵ(0) = 0 for each ϵ > 0, then for

any δ > 0, there exists an h0 ̸= 0 such that |η′(h)| ≤ |η′(h)−η′ϵ(h)|+ |η′ϵ(h)| ≤ δ for 0 < h < h0,

which implies the continuity of η′ at ξ = 0 and η′(0) = 0. Thus

f(h, η(h), ρ(h, η(h))) = η′(h) → η′(0) = 0 = f(0, η(0), ρ), as h→ 0.

This implies that ρ(h, η(h)) → ρ and so ρ is continuous at P2. Moreover ρ(P2) = ρ with

ρ = c−1
ρ1

(−η(0)).
This finishes the proof of the lemma.

Proof of the Existence Part of Theorem 2.1 The above four lemmas, i.e., Lemmas

4.2–4.5 show that there exists a solution pair (ρ, η) ∈ C2+α(Ω)∩C(Ω\Γsonic)∩C0,1(Ω∪Γsonic)×
C2+α′

(0, ξ1) satisfying (3.26)–(3.28). This finishes the proof of the existence part of Theorem

2.1.

Finally, we show that the solution ρ obtained in Theorem 2.1 tends to the normal reflection

solution ρ2, as θw → π
2 .

Lemma 4.6 Assume that ρ is the solution to the free boundary value problem (3.26)–(3.28).

Then ρ tends to ρ2, as θw → π
2 .

Proof It is easy to see that ηc ≤ η(ξ) ≤ η1, where ηc = η1 − η′(ξ1)ξ1. Moreover, it follows

from the definition of η′(ξ1) that η′(ξ1) → 0, as θw → π
2 . Thus |η(ξ) − η1| ≤ |η1 − ηc| ≤∫ ξ1

0
|l′(s)|ds = |η′(ξ1)|ξ1. This implies that η(ξ) → η, since η1 → η, as θw → π

2 . It is easy to see

that ηc ≤ c(ρ) ≤ η1. By the Squeeze Theorem, c(ρ) tends to c(ρ2) as θw → π
2 . Thus ρ→ ρ2, as

θw → π
2 .

This finishes the proof of the lemma.

5 Optimal Regularity near the Sonic Boundary

In this section, we will prove that Lipschitz continuity is the optimal regularity for ρ across

the sonic boundary Γsonic, since we have proven that the solution ρ to the free boundary value

problem (3.26)–(3.28) is Lipschitz continuous in Ω up to the degenerate boundary Γsonic. We

will study the behaviors of ρ near r = r2 := c(ρ2), where (r, θ) = (
√
ξ2 + η2, arctan(ηξ )) are

polar coordinates with respect to self-similar coordinates (ξ, η). The proof of Theorem 1.1 is

long and exactly the same as that in Section 5 of [4]. So we just sketch them in this section.
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For ε ∈ (0, c22 ), denote Ωε := Ω ∩ {(r, θ) : 0 < c2 − r < ε}, the ε-neighborhood of the sonic

circle Γsonic within Ω. In Ωε, introduce the coordinates

x = c2 − r, y = θw − θ. (5.1)

It is convenient to study the regularity in terms of the difference between c2(ρ2) and c
2(ρ), since

ψ and ρ have the same regularity in Ωε. Thus we introduce

ψ = c2(ρ2)− c2(ρ). (5.2)

It follows from (2.28) that ψ satisfies

L1ψ := (2c2x− ψ +O1)ψxx + (c2 +O2)ψx − (1 +O3)ψ
2
x

+ (1 +O4)ψyy −
( 1

γc22
+O5

)
ψ2
y = 0, in Q+

r,R (5.3)

in the (x, y)-coordinates, where

O1(x, ψ) = −x2,

O2(x, ψ) = −3x+
ψ

c2
,

O3(x, ψ) = −γ − 1

γ
(2c2x− ψ − x2),

O4(x, ψ) =
(c2)

2 − ψ

(c2 − x)2
− 1,

O5(x, ψ) =
1

(c2 − x)2
− 1

(c2)2
.

(5.4)

Moreover, ψ satisfies the following conditions:

ψ > 0, in Q+
r,R, (5.5)

ψ = 0, on ∂Q+
r,R ∩ {x = 0}, (5.6)

where Q+
r,R := {(x, y) : x ∈ (0, ϵ), |y| < R} ⊂ R2, with R = θw − arctan(η1

ξ1
), since we can

extend ψ(x, y) from Ωε by defining ψ(x, y) = ψ(x,−y) for (x, y) ∈ Ωε, and also the domain Ωε

with respect to y. Thus, without further comments, we study the behaviors of ψ in Q+
r,R. It is

easy to see that the terms Oi(x, y), i = 1, · · · , 5, are continuously differentiable and

|O1(x, y)|
x2

,
|Ok(x, y)|

x
≤ N for k = 2, · · · , 5, (5.7)

|DO1(x, y)|
x

, |DOk(x, y)| ≤ N for k = 2, · · · , 5 (5.8)

in {x > 0} for some constant N depending only on c2 and γ. Inequalities (5.7) and (5.8) imply

that the terms Oi(x, y), i = 1, · · · , 5, are “small”. Thus, the main terms of (5.3) form the

following equation:

(2c2 − ψ)ψxx + c2ψx − ψ2
x + ψyy −

1

γc22
ψ2
y = 0, in Q+

r,R. (5.9)
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It follows from Lemma 4.1 and Lemma 4.5 that

0 ≤ ψ ≤ 2(c2 − ϑ)x, (5.10)

where ϑ depends only on ρ2 and γ. Then (5.9) is uniformly elliptic in every subdomain {x > δ}
with δ > 0. It is the same to (5.3) in Q+

r,R if r is sufficiently small. Then we have the following

two theorems, the proofs of which are quite long and similar to [1]. One can refer to [4] for

details.

Theorem 5.1 Let ρ ∈ C2+α(Ω) ∩ C(Ω) be the solution to the free boundary value problem

(3.26)–(3.28) obtained in Section 4. Then ρ cannot be C1 across the degenerate sonic boundary

Γsonic.

In the following theorem, we study more detailed regularity of ρ near the sonic circle in the

case of C0,1 interacting transonic shock solutions.

We use a localized version of Ωε: For a given neighborhood N (Γsonic) of Γsonic and ε > 0,

define Ωε := Ω ∩ N (Γsonic) ∩ {x < ε}. Since N (Γsonic) will be fixed in the following theorem,

we do not specify the dependence of Ωε on N (Γsonic).

Theorem 5.2 Let ψ = c22−c2(ρ), where ρ is the solution to the free boundary value problem

(3.26)–(3.28) obtained in Section 4, and satisfies the following properties:

There exists a neighborhood N (Γsonic) of Γsonic such that

(a) ψ is C0,1 across the part Γsonic of the degenerate sonic boundary;

(b) there exists a ϑ0 > 0 so that, in the coordinates introduced by (5.1),

|ψ| ≤ (2c2 − ϑ0)x, in Ω ∩N (Γsonic). (5.11)

Then we have

(i) there exists an ε0 > 0, such that ψ is C1,α in Ω up to Γsonic away from the point P1

for any α ∈ (0, 1), that is, for any α ∈ (0, 1) and any given (ξ0, η0) ∈ Γsonic\P1, there exists a

K <∞ depending only on ρ0, ρ1, γ, ε0, α, ∥ψ∥C0,1 and d = dist((ξ0, η0),Γshock) so that

∥ψ∥1,α;B d
2
(ξ0,η0)∩Ω ε0

2

≤ K;

(ii) for any (ξ0, η0) ∈ Γsonic\P1,

lim
(ξ,η)→(ξ0,η0)

(ξ,η)∈Ω

Drψ = c2;

(iii) the limit lim
(ξ,η)→P1

(ξ,η)∈Ω

Drψ does not exist.

6 Conclusions

A solution ρ has been constructed by Theorem 2.1 to the differential equation (3.26) in Ω,

and combining this function with ρ = ρi in state (i), i.e., we have obtained a solution which is

piecewise constant in the supersonic region, which is Lipschitz continuous across the degenerate

sonic boundary Γsonic from Ω to state (2). To recover the momentum components, m and n,
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we could in principle integrate the second and the third equation in (1.5), which can be written

as transport equations in the radial variable r,

∂m

∂r
=

1

r
c2(ρ)ρξ,

∂n

∂r
=

1

r
c2(ρ)ρη, (6.1)

and integrated from the boundary of the subsonic region toward the origin. We note that the

sonic boundary can be written as r = r2 for θ ∈ [arctan(η1

ξ1
), θw], and the boundary conditions

for m and n are of the form m(r2, θ) = m2 and n(r2, θ) = n2 respectively, since (m,n) have the

same regularity as ρ in P0P1P2O. Note that we have proven that Dρ does not converge in Ω

as (ξ, η) tends to (ξ1, η1), thus (6.1) may not be meaningful. In addition, the behavior c2(ρ)
ρη

r

in (6.1) at the origin causes a logarithmic singularity in n (but not in m, since c2(ρ)
ρξ

r remains

bounded since ρξ(0, 0) = 0).
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[14] Lieberman, G., Optimal Hölder regularity for mixed boundary value problems, J. Math. Anal. Appl., 143,
1989, 572–586.

[15] Zheng, Y., Two-dimensional regular shock reflection for the pressure gradient system of conservation laws,
Acta Math. Sin., 22, 2006, 177–210.


