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Abstract The authors study the inverse problem of recovering damping coefficients for two
coupled hyperbolic PDEs with Neumann boundary conditions by means of an additional
measurement of Dirichlet boundary traces of the two solutions on a suitable, explicit sub-
portion Γ1 of the boundary Γ, and over a computable time interval T > 0. Under sharp
conditions on Γ0 = Γ\Γ1, T > 0, the uniqueness and stability of the damping coefficients
are established. The proof uses critically the Carleman estimate due to Lasiecka et al. in
2000, together with a convenient tactical route “post-Carleman estimates” suggested by
Isakov in 2006.
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1 Introduction—Problem Formulation, Assumptions

1.1 Setting and Problem formulation

Let Ω ⊂ Rn, n ≥ 2, be an open bounded domain with boundary Γ = ∂Ω of class C2,

consisting of the closure of two disjoint parts: Γ0 (the uncontrolled or unobserved part) and

Γ1 (the controlled or observed part), both relatively open in Γ. Namely, Γ = ∂Ω = Γ0 ∪ Γ1,

Γ0 ∩ Γ1 = ∅. Let ν = [ν1, · · · , νn] be the unit outward normal vector on Γ, and let ∂
∂ν = ∇ · ν

denote the corresponding normal derivative.

1.2 Main geometrical assumptions

Following [25, Section 5], [9] and [16], throughout this paper, we make the following assump-

tions:

(A.1) Given the triple {Ω,Γ0,Γ1}, ∂Ω = Γ0 ∪ Γ1, Γ0 = Γ\Γ1, there exists a strictly convex

(real-valued) non-negative function d : Ω → R+, of class C3(Ω), such that, if we introduce the

(conservative) vector field h(x) = [h1(x), · · · , hn(x)] ≡ ∇d(x), x ∈ Ω, then the following two

properties hold true:
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(i)

∂d

∂ν

∣∣∣
Γ0

= ∇d · ν = h · ν = 0, on Γ0 = Γ \ Γ1; h ≡ ∇d; (1.1)

(ii) the (symmetric) Hessian matrix Hd of d(x) (i.e., the Jacobian matrix Jh of h(x)) is

strictly positive definite on Ω: there exists a constant ρ > 0, such that for all x ∈ Ω,

Hd(x) = Jh(x) =

 dx1x1 · · · dx1xn

...
...

dxnx1 · · · dxnxn

 =


∂h1
∂x1

· · · ∂h1
∂xn

...
...

∂hn
∂x1

· · · ∂hn
∂xn

 ≥ ρI. (1.2)

(A.2) d(x) has no critical point on Ω :

inf
x∈Ω

|h(x)| = inf
x∈Ω

|∇d(x)| = s > 0. (1.3)

Remark 1.1 Assumption (A.1) is due to the Neumann boundary conditions of the hy-

perbolic problem to follow. It was introduced in [25, Section 5]. Assumption (A.2) is needed

for the validity of the pointwise Carleman estimate in Section 3 below (it will imply that the

constant β is positive, β > 0, in estimate (3.11) below). Actually, as noted in [16, Remark

1.1.3, p. 229], assumption (A.2) = (1.3) is needed to hold true only with the infimum computed

for x ∈ Γ0 (the uncontrolled or unobserved part of the boundary Γ). Moreover, (A.2) can, in

effect, be dispensed with [16, Section 10] by use of two vector fields. For the sake of keeping

the exposition simpler, we shall not exploit here this substantial generalization. Assumptions

(A.1) and (A.2) hold true for large classes of triples {Ω,Γ0,Γ1} (see Appendix in [16] or [20]).

One canonical case is that Γ0 is flat: here then we can take d(x) = |x−x0|2, with x0 collocated

on the hyperplane containing Γ0 and outside Ω. Then h(x) = ∇d(x) = 2(x − x0) is radial.

Another case is where Γ0 is either convex or concave and subtended by a common point; more

precisely, see [16, Theorem A.4.1, p. 301], in which case, the corresponding required d( · ) can
also be explicitly constructed. See illustrative configurations in the Appendix.

1.3 The coupled hyperbolic system with two unknown damping coefficients

Following [14], we consider the following coupled system of two second-order hyperbolic

equations in the unknowns w = w(x, t) and z = z(x, t) on Q = Ω× [0, T ]:

wtt = ∆w + q(x)zt, ztt = ∆z + p(x)wt, in Q,

w
(
· , T

2

)
= w0(x), wt

(
· , T

2

)
= w1(x), in Ω,

z
(
· , T

2

)
= z0(x), zt

(
· , T

2

)
= z1(x), in Ω,

∂w

∂ν

∣∣∣
Σ
= µ1(x, t),

∂z

∂ν

∣∣∣
Σ
= µ2(x, t), in Σ.

(1.4a)

(1.4b)

(1.4c)

(1.4d)

Here q(x), p(x) are time-independent unknown damping coefficients. Instead, [w0, w1, z0, z1] are

the given initial conditions and µ1, µ2 are the given Neumann boundary conditions. We shall

denote by {w(q, p), z(q, p)} the solution to problem (1.4a)–(1.4d) due to the damping coefficients
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{q, p} (and fixed data {w0, w1, z0, z1, µ1, µ2}). A sharp interior and boundary regularity theory

of the corresponding coupled mixed problem (1.4a)–(1.4d) under a variety of classes of data

may be given, following the single-equation case in [10, 11] (see also [12], [15, Chapter 8, Section

8A, p. 755]) and [24]. To this theory, we shall critically appeal in Section 6.

Remark 1.2 We could, in effect, add the term r1(x) ·∇w(x, t) on the RHS of the w-

equation in (1.4a) and similarly r2(x) ·∇z(x, t) on the RHS of the z-equation in (1.4a), with

known coefficients ri(x) satisfying |ri(x)| ∈ L∞(Ω), i = 1, 2. The proofs remain essentially

unchanged, as [16] covers this case as well.

We note that the map {q, p} → {w, z} is nonlinear and hence consider the following nonlinear

inverse problem.

(I) Nonlinear inverse problem for system (1.4)

Let {w = w(q, p), z = z(q, p)} be a solution to system (1.4). Under geometrical conditions

on Γ0, is it possible to retrieve q(x) and p(x), x ∈ Ω, from measurement of the Dirichlet traces

of w(q, p) and z(q, p) on the observed part of the boundary Γ1 × [0, T ] over a sufficiently large

time interval T? This problem comprises two basic issues: uniqueness and stability. More

precisely, we consider

(I1) Uniqueness in the nonlinear inverse problem for system {w, z} in (1.4)

Let {w = w(q, p), z = z(q, p)} be the solution to system (1.4). Under geometrical conditions

on Γ0, do the Dirichlet boundary traces w|Γ1×[0,T ] and z|Γ1×[0,T ] determine q(x) and p(x)

uniquely? In other words,

does

{
w(q1, p1)|Γ1×[0,T ] = w(q2, p2)|Γ1×[0,T ],

z(q1, p1)|Γ1×[0,T ] = z(q2, p2)|Γ1×[0,T ]

imply

{
q1(x) = q2(x),

p1(x) = p2(x)
a.e. in Ω? (1.5)

Remark 1.3 As in exact controllability/uniform stabilization theories in [5], one expects

that geometrical conditions are needed only in the complementary part Γ0 of that part Γ1 of

the boundary where measurement takes place.

Assuming that the answer to the aforementioned uniqueness question (1.5) is in the affir-

mative, we then ask the following more demanding, quantitative estimate.

(I2) Stability in the nonlinear inverse problem for system {w, z} in (1.4)

In the above setting, let {w(q1, p1), z(q1, p1)}, {w(q2, p2), z(q2, p2)} be solutions to (1.4)

due to corresponding damping coefficients {q1, p1}, {q2, p2} and fixed common data {w0, w1,

z0, z1, µ0, µ1}. Under geometric conditions on the complimentary unobserved part of the

boundary Γ0 = Γ \ Γ1, is it possible to estimate the norms ∥q1 − q2∥L2(Ω), ∥p1 − p2∥L2(Ω)

in terms of suitable norms of the Dirichlet traces (w(q1, p1)−w(q2, p2))|Γ1×[0,T ] and (z(q1, p1)−
z(q2, p2))|Γ1×[0,T ]?

(II) The corresponding homogeneous linear inverse problem

As usual, the nonlinear inverse problem is converted into a linear inverse problem for an

auxiliary, corresponding problem. Let

f(x) = q1(x)− q2(x), g(x) = p1(x)− p2(x),

R1(x, t) = zt(q2, p2)(x, t), R2(x, t) = wt(q2, p2)(x, t),
(1.6a)
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u(x, t) = w(q1, p1)(x, t)− w(q2, p2)(x, t), v(x, t) = z(q1, p1)(x, t)− z(q2, p2)(x, t). (1.6b)

Then {u(x, t), v(x, t)} satisfies the following homogeneous system:

utt(x, t)−∆u(x, t)− q(x)vt(x, t) = f(x)R1(x, t), in Q,

vtt(x, t)−∆v(x, t)− p(x)ut(x, t) = g(x)R2(x, t), in Q,

u
(
· , T

2

)
= 0, ut

(
· , T

2

)
= 0; v

(
· , T

2

)
= 0, vt

(
· , T

2

)
= 0, in Ω,

∂u

∂ν

∣∣∣
Σ
= 0;

∂v

∂ν

∣∣∣
Σ
= 0, in Σ.

(1.7a)

(1.7b)

(1.7c)

(1.7d)

The above serves only as a motivation. Henceforth, we shall consider the {u, v}-problem, with

damping coefficients q, p ∈ L∞(Ω) as given, and terms R1(x, t), R2(x, t) fixed and suitable while

the terms f(x), g(x) are unknown time-independent coefficients. The {u, v}-problem has the

advantage over the original {w, z}-problem in (1.4) that the map {f, g} → {u, v} is linear.

(II1) Uniqueness in the linear inverse problem for system {u, v} in (1.7)

Let {u = u(f, g), v = v(f, g)} be the solution to system (1.7). Under geometrical conditions

on Γ0, do the Dirichlet traces u|Γ1×[0,T ] and v|Γ1×[0,T ] determine f(x) and g(x) uniquely? In

other words, by linearity,

does

{
u(f, g)|Γ1×[0,T ] = 0,

v(f, g)|Γ1×[0,T ] = 0
imply

{
f(x) = 0,

g(x) = 0
a.e. in Ω? (1.8)

Assuming that the answer to the aforementioned uniqueness question (1.8) is in the affirmative,

we then ask the following more demanding, quantitative estimate.

(II2) Stability in the linear inverse problem for system {u, v} in (1.7)

In the above setting, let {u(f, g), v(f, g)} be solution to (1.7). Under geometric conditions

on the complimentary unobserved part of the boundary Γ0 = Γ \ Γ1, is it possible to estimate

the norms ∥f∥L2(Ω), ∥g∥L2(Ω) in terms of suitable norms of the Dirichlet traces u(f, g)|Γ1×[0,T ]

and v(f, g)|Γ1×[0,T ]?

The goal of the present paper is to give affirmative and quantitative answer to the above

uniqueness and stability questions for the linear and nonlinear inverse problems.

Remark 1.4 In models (1.4) and (1.7), we regard t = T
2 as the initial time. This is not

essential, as the change of variable t→ t− T
2 transforms t = T

2 to t = 0. However, this present

choice is convenient in order to apply the Carleman estimate established in [16], which uses the

pseudo-convex function φ(x, t) in (3.1a) centered around T
2 .

2 Main Results on Uniqueness and Stability

We begin with a uniqueness result for the linear inverse problem (1.8) involving the {u, v}-
system (1.7).

Theorem 2.1 (Uniqueness of Linear Inverse Problem) Assume the preliminary geometric

assumptions (A.1) and (A.2). Let

T > T0 ≡ 2
√
max
x∈Ω

d(x). (2.1)
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With reference to the {u, v}-system (1.7), let the fixed data {q, p}, {R1, R2} and unknown terms

f and g satisfy the following regularity properties:

q, p ∈ L∞(Ω); Ri, Rit, Ritt ∈ L∞(Q), Rixj

(
· , T

2

)
∈ L∞(Ω); f, g ∈ L2(Ω), (2.2)

i = 1, 2, j = 1, · · · , n, as well as the following positivity conditions:∣∣∣R1

(
x,
T

2

)∣∣∣ ≥ r1 > 0,
∣∣∣R2

(
x,
T

2

)∣∣∣ ≥ r2 > 0, x ∈ Ω (2.3)

for some positive constants r1, r2. If the solution {u = u(f, g), v = v(f, g)} to system (1.7)

satisfies the additional homogeneous Dirichlet boundary trace condition

u(f, g)(x, t) = v(f, g)(x, t) = 0, x ∈ Γ1, t ∈ [0, T ], (2.4)

over the observed part Γ1 of the boundary Γ and over the time interval T as in (2.1), then, in

fact

f(x) = g(x) ≡ 0, a.e. x ∈ Ω. (2.5)

Next, we provide the stability result for the linear inverse problem involving the {u, v}-
system (1.7a)–(1.7c), and the determination of the terms f( · ), g( · ) in (1.7a)–(1.7b). We shall

seek f and g in L2(Ω). We first state the stability of the linear inverse problem.

Theorem 2.2 (Stability of the Linear Inverse Problem) Assume the preliminary geometric

assumptions (A.1) and (A.2). Consider problem (1.7a)–(1.7d) on [0, T ] with T > T0, as in (2.1)

and data satisfying properties (2.2) where, moreover, R1, R2 satisfy the positivity condition (2.3)

at the initial time t = T
2 . Then there exists a constant C = C(Ω, T,Γ1, φ, q, p,R1, R2) > 0, i.e.,

depending on the data of problem (1.7a)–(1.7d), but not on the unknown coefficients f and g,

such that

∥f∥L2(Ω) + ∥g∥L2(Ω)

≤ C(∥ut(f)∥L2(Σ1) + ∥utt(f)∥L2(Σ1) + ∥vt(f)∥L2(Σ1) + ∥vtt(f)∥L2(Σ1)) (2.6)

for all f, g ∈ L2(Ω).

Next we give the corresponding uniqueness and stability results to the nonlinear inverse

problem invoking the {w, z}-system (1.4).

Theorem 2.3 (Uniqueness of Nonlinear Inverse Problem) Assume the preliminary geomet-

ric assumptions (A.1) and (A.2). Let T be as in (2.1). Assume further the following a-priori

regularity of the unknown coefficients for (1.4):

q1, q2, p1, p2 ∈ L∞(Ω). (2.7)

Assume further that the initial conditions of (1.4) satisfy the following regularity and positivity

conditions:

{w0, w1}, {z0, z1} ∈ D(A
k+ 1

2

N )×D(Ak
N ), k >

dimΩ

4
+ 1,

w1xj , z1xj ∈ L∞(Ω), j = 1, · · · , n,
(2.8)
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|w1(x)| ≥ w1 > 0, |z1(x)| ≥ z1 > 0, x ∈ Ω (2.9)

for some positive constants w1, z1, and the nonhomogemeous boundary conditions satisfy the

following 

µi ∈ Hm(0, T ;L2(Γ)) ∩ C([0, T ];Hα− 1
2+(m−1)(Γ)),

α =
2

3
for a general domain; α =

3

4
for a parallelepiped,

with Compatibility Relations,

µi

(T
2

)
= µ̇i

(T
2

)
= · · · = µ

(m−1)
i

(T
2

)
= 0, i = 1, 2

(2.10)

for

m >
dimΩ

2
+ 3− α. (2.11)

Finally, if the solutions {w(q1, p1), z(q1, p1)} and {w(q2, p2), z(q2, p2)} to system (1.4) have the

same Dirichlet boundary traces on Σ1 = Γ1 × [0, T ] :

w(q1, p1)(x, t) = w(q2, p2)(x, t), z(q1, p1)(x, t) = z(q2, p2)(x, t), x ∈ Γ1, t ∈ [0, T ], (2.12)

then, in fact, the respective damping coefficients coincide

q1(x) = q2(x), p1(x) = p2(x), a.e. x ∈ Ω. (2.13)

Finally, we state the stability result for the nonlinear inverse problem involving the {w, z}-
problem (1.4a)–(1.4c) with damping coefficients q( · ) and p( · ).

Theorem 2.4 (Stability of Nonlinear Inverse Problem) Assume preliminary geometric as-

sumptions (A.1) and (A.2). Consider problem (1.4a)–(1.4d) on [0, T ], with T > T0 as in (2.1),

one time with damping coefficients q1, p1 ∈ L∞(Ω), and one time with damping coefficients

q2, p2 ∈ L∞(Ω), and let w(q1, p1), w(q2, p2) denote the corresponding solutions. Assume the

regularity and positivity conditions (2.8)–(2.9) on the initial data and regularity property (2.10)

on the boundary data. Then, the following stability result holds true for the w-problem (1.4a)–

(1.4d): there exists a constant C = C(Ω, T,Γ1, φ,M,w0, w1, z0, z1, µ1, µ2) > 0, i.e., depending

on the data of problem (1.4a)–(1.4d) and on the L∞(Ω)-norm of the damping coefficients, such

that

∥q1 − q2∥L2(Ω) + ∥p1 − p2∥L2(Ω)

≤ C(∥wt(q1, p1)− wt(q2, p2)∥L2(Σ1) + ∥wtt(q1, p1)− wtt(q2, p2)∥L2(Σ1)

+ ∥zt(q1, p1)− zt(q2, p2)∥L2(Σ1) + ∥ztt(q1, p1)− ztt(q2, p2)∥L2(Σ1)) (2.14)

for all coefficients q1, p1, q2, p2 ∈ {q ∈ L∞(Ω) | ∥q∥L∞ ≤M}.

The uniqueness of the multidimensional inverse problem with a single boundary observa-

tion, was pioneered by Bukhgeim and Klibanov in [1], where the authors provide a methodology

based on a type of exponential weighted estimates, which is usually referred to as the Carleman

estimates, initiated by Carleman [3] for a problem with two variables. After [1], several papers
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concerning inverse problems by using Carleman estimates were published, most of which fo-

cused on the Dirichlet problem, however. In [20], we gave an extensive review of the literature in

multidimensional inverse problems for hyperbolic PDEs. For single equations, see [7, 8, 26] and

the references therein for recovering the potential coefficient and [2] for recovering the damping

coefficient. Reference [19] recovered two coefficients—damping and source— for a single equa-

tion. Instead, reference [21] treated an inverse problem for two coupled Schrödinger equations.

Finally, our geometrical conditions—even for the uniqueness problem of the damping coefficient

(energy level term) of a single hyperbolic equation with Neumann boundary conditions—are

sharper/optimal with respect to those in the literature, where, instead, uniqueness of the po-

tential coefficient (lower order term) is generally claimed. For example, for Ω = 2D-disk, we

need measurement of the Dirichlet trace only on ϵ-more than 1
2 circumference, not ϵ-more than

3
4 circumference (see [8]). We have already noted that our present treatment can readily treat

also very strongly coupled systems with gradient terms even time- and space-dependent.

3 First Basic Step of Proofs: A Carleman Estimate and a Continuous
Observability Inequality at the H1 × L2-Level

In this section, we recall from [16] a Carleman estimate at the H1 × L2-level for a single

hyperbolic equation, that plays a key role in the proof of Theorem 2.1. The Carleman estimate

in [16], inspired by [17], is “pointwise” and removes lower order terms. The prior Carleman

estimates in [14] or in [23] are in an “integral” form and contain lower order terms which can

then be eliminated by appealing to [16] via a compactness-uniqueness argument.

3.1 Pseudo-convex function (see [16, p. 230])

Choosing the strictly convex potential function d(x) satisfying (A.1)–(A.2) and d(x) ≥ m >

0, we next introduce the pseudo-convex function φ(x, t) defined by

φ(x, t) = d(x)− c
(
t− T

2

)2

, x ∈ Ω, t ∈ [0, T ], (3.1)

where T > T0, as in (2.1) and 0 < c < 1 is selected as follows: By (2.1), there exists a δ > 0,

such that

T 2 > 4max
x∈Ω

d(x) + 4δ. (3.2)

For this δ > 0, there exists a constant c, 0 < c < 1, such that

cT 2 > 4max
x∈Ω

d(x) + 4δ. (3.3)

This function φ(x, t) has the following properties:

(a) For the constant δ > 0 fixed in (3.2) and for any t > 0,

φ(x, 0) ≡ φ(x, T ) = d(x)− c
T 2

4
≤ max

x∈Ω
d(x)− c

T 2

4
≤ −δ, uniformly in x ∈ Ω, (3.4a)

φ(x, t) ≤ φ
(
x,
T

2

)
for any t > 0 and any x ∈ Ω. (3.4b)
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(b) There are t0 and t1, with 0 < t0 <
T
2 < t1 < T , such that

min
x∈Ω

t∈[t0,t1]

φ(x, t) ≥ σ, where 0 < σ < m = min
x∈Ω

d(x). (3.5)

Moreover, we recall the subset Q(σ) of Ω× [0, T ] defined by [16, (1.1.19), p. 232]:

Q(σ) = {(x, t) | x ∈ Ω, 0 ≤ t ≤ T, φ(x, t) ≥ σ > 0}. (3.6)

An important property of Q(σ) [16, (1.1.20), p. 232] is

[t0, t1]× Ω ⊂ Q(σ) ⊂ [0, T ]× Ω. (3.7)

3.2 Carleman estimate at the H1 × L2-level

We consider the wave equation of the form

ytt(x, t)−∆y(x, t) = F (x, t), x ∈ Ω, t ∈ [0, T ] (3.8)

at first without imposing boundary conditions. We shall consider initially solutions y(x, t) to

(3.8) in the class

y ∈ H2,2(Q) ≡ L2(0, T ;H2(Ω)) ∩H2(0, T ;L2(Ω)). (3.9)

For such solutions to (even to a far more general equation than) (3.8), the following Carleman

estimate holds true.

Theorem 3.1 (see [16, p. 255]) Assume (A.1) and (A.2). Let φ(x, t) be defined as in

(3.1). Let y ∈ H2(Q) be a solution to equation (3.8) where F ∈ L2(Q). Then the following one

parameter family of estimates holds true, with ρ > 0, β > 0 (by (A.2) = (1.3)), for all τ > 0

sufficiently large and ϵ > 0 small:

BT |Σ(y) + 2

∫
Q

e2τφ|F |2dQ+ C1,T e
2τσ

∫
Q

y2dQ

≥ C1,τ

∫
Q

e2τφ[y2t + |∇y|2]dQ+ C2,τ

∫
Q(σ)

e2τφy2dxdt− cT τ
3e−2τδ[Ey(0) + Ey(T )], (3.10)

C1,τ = τϵρ, C2,τ = 2τ3β +O(τ2). (3.11)

Here δ > 0, σ > 0 are the constants in (3.2) and (3.5), while cT and C1,T are positive constants

depending on T , but not on τ . In addition, the boundary terms BT |Σ(y), Σ = Γ × [0, T ], are

given explicitly by, recalling also (A.1):

BT |Σ(y) = 2τ

∫ T

0

∫
Γ1

e2τφ(y2t − |∇y|2)h · νdΓdt+ 8cτ

∫ T

0

∫
Γ

e2τφ
(
t− T

2

)
yt

∂y

∂ν
dΓdt

+ 4τ

∫ T

0

∫
Γ

e2τφ(h · ∇y)∂y
∂ν

dΓdt

+ 4τ2
∫ T

0

∫
Γ

e2τφ
[
|h|2 − 4c2

(
t− T

2

)2

+
α

2τ

]
y
∂y

∂ν
dΓdt

+ 2τ

∫ T

0

∫
Γ1

e2τφ
[
2τ2

(
|h|2 − 4c2

(
t− T

2

)2)
+ τ(α−∆d− 2c)

]
y2h · νdΓdt, (3.12)
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where h(x) = ∇d(x), α(x) = ∆d(x)−2c−1+k for 0 < k < 1 a constant. Moreover, the energy

function Ey(t) is defined as

Ey(t) =

∫
Ω

[y2(x, t) + y2t (x, t) + |∇y(x, t)|2]dΩ. (3.13)

For what follows, it is relevant to recall also the following extension of the Carleman estimate

(3.10) to finite energy solutions. To this end, we introduce the following class of solutions to

(3.8) with F ∈ L2(Q):
y ∈ H1,1(Q) = L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)), (3.14a)

yt ∈ L2(0, T ;L2(Γ)),
∂y

∂ν
∈ L2(Σ) ≡ L2(0, T ;L2(Γ)). (3.14b)

Theorem 3.2 (see [16, Theorem8.2, p. 266]) Assume F ∈ L2(Q). Let y ∈ H2,2(Q) be a

solution to (3.8) for which inequality (3.10) holds true, at least as guaranteed by Theorem 3.1.

Let y be a solution to (3.8) in the class defined by (3.14a)–(3.14b). Then, estimate (3.10) is

satisfied by such solution y as well.

3.3 A continuous observability estimate at the H1 × L2-level

An additional result that is needed in the proof of Lipschitz stability in Section 6 is the

following continuous observability estimate. It is a consequence of the Carleman estimate

above. Consider the following initial/boundary value problem:

ytt = ∆y + q(x)ψt, ψtt = ∆ψ + p(x)yt, in Q, (3.15a)

y
(
· , T

2

)
= y0(x), yt

(
· , T

2

)
= y1(x), in Ω, (3.15b)

ψ
(
· , T

2

)
= ψ0(x), ψt

(
· , T

2

)
= ψ1(x), in Ω, (3.15c)

∂y

∂ν

∣∣∣
Σ
= 0,

∂ψ

∂ν

∣∣∣
Σ
= 0, in Σ (3.15d)

with initial conditions and damping coefficients

{y0, y1}, {ψ0, ψ1} ∈ H1(Ω)× L2(Ω) and q, p ∈ L∞(Ω). (3.16)

Then, its solution satisfies

{y, yt, ψ, ψt} ∈ C([0, T ];H1(Ω)× L2(Ω)×H1(Ω)× L2(Ω)), (3.17)

a-fortiori {y, ψ} ∈ H1,1(Q)×H1,1(Q), continuously.

Theorem 3.3 Assume hypothesis (A.1)–(A.2). For problem (3.15) with data as assumed

in (3.16), the following continuous observability inequality holds true:

∥y0∥2H1(Ω) + ∥y1∥2L2(Ω) + ∥ψ0∥2H1(Ω) + ∥ψ1∥2L2(Ω)

≤ CT

∫ T

0

∫
Γ1

[y2 + y2t + ψ2 + ψ2
t ]dΓ1 dt, (3.18)
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whenever the right-hand side is finite. Here, T > T0, with T0 defined by (2.1); Γ1, is the

controlled or observed portion of the boundary, with Γ0 = Γ\Γ1 satisfying (1.1), and CT > 0 is

a positive constant depending on T and on the L∞(Ω)-norm of the data q and p.

Proof The continuous observability inequality for a single wave equation was proved in

[16] by using the Carleman estimate above. For the case of coupled system (3.15), a similar

estimate of (3.18) was established in [14, Theorem 1.3, Case 2] by using a different Carleman

estimate (with lower order terms). However, we can still invoke the methodology provided in

[14, Section 3] for proving the estimate (3.18) by using the Carleman estimate (without lower

order terms) Theorem 3.1 above, and hence we omit the proof here for the sake of simplicity.

In addition, as noted in both [14, p. 217] and [16, Theorem 9.2, p. 269], Theorem 3.3 is also

critically based on [13, Section 7.2] for a sharp trace theory result that expresses the tangential

derivative in terms of the normal derivative and the boundary velocity, modulo interior lower

order terms. Its proof is by microlocal analysis. A counterpart with an energy level term (rather

than a lower order term), is given in [16, Lemma 8.1, p. 265].

4 Uniqueness of Linear Inverse Problem for the {u, v}-System (1.4):
Proof of Theorem 2.1

Step 1 We obtain the following proposition.

Proposition 4.1 Assume (A.1)–(A.2), (2.1), q, p ∈ L∞(Ω), Ri ∈ L∞(Q), i = 1, 2, f, g ∈
L2(Ω). Then, the following one-parameter family of energy estimates holds true for the {u, v}-
system (1.4) satisfying also the Dirichlet boundary conditions (2.4), for all τ > 0 sufficiently

large:

C1,τ

∫
Q

e2τφ[|∇u|2 + u2t + |∇v|2 + v2t ]dQ+ C2,τ

∫
Q(σ)

e2τφ[u2 + v2]dxdt

≤ Cp,q

∫
Q

e2τφ[u2t + v2t ]dQ+ C1,T e
2τσ

∫
Q

[u2 + v2]dQ+ 4

∫
Q

e2τφ[|fR1|2 + |gR2|2]dQ

+ cT τ
3e−2τδ{[Eu(0) + Eu(T ) + Ev(0) + Ev(T )]}. (4.1)

Proof Under present assumptions on p, q, f, g, Ri, system (2.2), rewritten here as[
utt
vtt

]
=

[
∆ 0
0 ∆

] [
u
v

]
+

[
0 q(x)

p(x) 0

] [
ut
vt

]
+

[
f(x)R1(x, t)
g(x)R2(x, t)

]
(4.2)

with zero initial conditions as in (1.7c) and homogeneous boundary conditions (1.7d) possesses

a-fortiori the regularity {u, v} ∈ H1(Q)×H1(Q). Moreover, also because of (2.4) and h · ν = 0

on Γ0 in (1.1), we have that, in view of Theorem 3.2, we can apply the Carleman estimate

(3.10) of Theorem 3.1 to the u-equation (1.4a) and the v-equation (1.4b) separately, where— to

fit model (3.8)—we have

Fu(x, t) = q(x)vt(x, t) + f(x)R1(x, t)

and

F v(x, t) = p(x)ut(x, t) + g(x)R2(x, t)
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respectively. We then obtain

BT |Σ(u) + 2

∫
Q

e2τφ|qvt + fR1|2dQ+ C1,T e
2τσ

∫
Q

u2dQ

≥ C1,τ

∫
Q

e2τφ[u2t + |∇u|2]dQ+ C2,τ

∫
Q(σ)

e2τφu2dxdt− cT τ
3e−2τδ[Eu(0) + Eu(T )], (4.3)

BT |Σ(v) + 2

∫
Q

e2τφ|put + gR2|2dQ+ C1,T e
2τσ

∫
Q

v2dQ

≥ C1,τ

∫
Q

e2τφ[v2t + |∇v|2]dQ+ C2,τ

∫
Q(σ)

e2τφv2dxdt− cT τ
3e−2τδ[Ev(0) + Ev(T )] (4.4)

respectively, with boundary terms defined by (3.12), which, in fact, now vanish by (1.7d), (2.4)

and h · ν = 0 on Γ0. We obtain, recalling q, p ∈ L∞(Ω),

BT |Σ(u) ≡ 0,

∫
Q

e2τφ|qvt + fR1|2dQ ≤ Cq

∫
Q

e2τφ|vt|2dQ+ 2

∫
Q

e2τφ|fR1|2dQ, (4.5)

BT |Σ(v) ≡ 0,

∫
Q

e2τφ|put + gR2|2dQ ≤ Cp

∫
Q

e2τφ|ut|2dQ+ 2

∫
Q

e2τφ|gR2|2dQ. (4.6)

Adding (4.3) and (4.4), and taking into account (4.5)–(4.6) yields (4.1).

Step 2 We differentiate system (1.7) in t, supplemented by the over-determined boundary

conditions (2.4) and obtain, invoking also the initial conditions (1.7c):

(ut)tt(x, t)−∆(ut)(x, t)− q(x)(vt)t(x, t) = f(x)R1t(x, t), in Q, (4.7a)

(vt)tt(x, t)−∆(vt)(x, t)− p(x)(ut)t(x, t) = g(x)R2t(x, t), in Q, (4.7b)

(ut)
(
· , T

2

)
= 0, (ut)t

(
· , T

2

)
= f(x)R1

(
x,
T

2

)
∈ L2(Ω), in Ω, (4.7c)

(vt)
(
· , T

2

)
= 0, (vt)t

(
· , T

2

)
= g(x)R2

(
x,
T

2

)
∈ L2(Ω), in Ω, (4.7d)

∂

∂ν
(ut)(x, t) = 0,

∂

∂ν
(vt)(x, t) = 0, ut = 0, vt = 0, in Σ,Σ1. (4.7e)

Proposition 4.2 Assume the hypotheses of Proposition 4.1 with Ri ∈ L∞(Q) replaced now

by Rit ∈ L∞(Q), i = 1, 2. Then, the following one-parameter family of energy estimates holds

true for the {ut, vt}-system (4.7), for all τ > 0 sufficiently large:

C1,τ

∫
Q

e2τφ[|∇ut|2 + u2tt + |∇vt|2 + v2tt]dQ+ C2,τ

∫
Q(σ)

e2τφ[u2t + v2t ]dxdt

≤ Cp,q

∫
Q

e2τφ[u2tt + v2tt]dQ+ C1,T e
2τσ

∫
Q

[u2t + v2t ]dQ+ 4

∫
Q

e2τφ[|fR1t|2 + |gR2t|2]dQ

+ cT τ
3e−2τδ{[Eut(0) + Eut(T ) + Evt(0) + Evt(T )]}. (4.8)

Proof We now have {ut, vt} ∈ H1(Q) ×H1(Q), since f(x)R1(x, t), g(x)R2(x, t) ∈ L2(Ω)

under present assumptions. Thus the same proof of Proposition 4.1 applies, based on Theo-

rem 3.2, as ut and vt both vanish on Γ1 × [0, T ] as in (4.7e).
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Step 3 We differentiate system (4.7) in t one more time and obtain, invoking also the

initial conditions (4.7c)–(4.7d):

(utt)tt(x, t)−∆(utt)(x, t)− q(x)(vtt)t(x, t) = f(x)R1tt(x, t), in Q, (4.9a)

(vtt)tt(x, t)−∆(vtt)(x, t)− p(x)(utt)t(x, t) = g(x)R2tt(x, t), in Q, (4.9b)

(utt)
(
· , T

2

)
= f(x)R1

(
x,
T

2

)
, in Ω,

(4.9c)

(utt)t

(
· , T

2

)
= f(x)R1t

(
x,
T

2

)
+ q(x)g(x)R2

(
x,
T

2

)
, in Ω,

(vtt)
(
· , T

2

)
= g(x)R2

(
x,
T

2

)
, in Ω,

(4.9d)

(vtt)t

(
· , T

2

)
= g(x)R2t

(
x,
T

2

)
+ p(x)f(x)R1

(
x,
T

2

)
, in Ω,

∂

∂ν
(utt)(x, t) = 0,

∂

∂ν
(vtt)(x, t) = 0, utt = 0, vtt = 0, in Σ,Σ1. (4.9e)

We note that, under present assumptions f, g ∈ L2(Ω) and p, q, R1( · , T2 ), R2( · , T2 ) ∈ L∞(Ω),

we have

(utt)t

(
· , T

2

)
∈ L2(Ω), (vtt)t

(
· , T

2

)
∈ L2(Ω) (4.10)

as desired; however, (utt)( · , T2 ) and (vtt)( · , T2 ) are only in L2(Ω) (see (4.7c)–(4.7d)), and not

in H1(Ω), as needed to invoke Theorem 3.1.

Orientation Henceforth, we shall proceed with the proof under the following provisional

restrictions on the data:

f(x)R1

(
x,
T

2

)
∈ H1(Ω), so that (utt)

(
· , T

2

)
∈ H1(Ω), (4.11)

g(x)R2

(
x,
T

2

)
∈ H1(Ω), so that (vtt)

(
· , T

2

)
∈ H1(Ω). (4.12)

The regularity properties in (4.11) and (4.12) hold true provided that, respectively

f(x) ∈ H1(Ω), and R1

(
x,
T

2

)
is a multiplier H1(Ω) → H1(Ω), (4.13)

g(x) ∈ H1(Ω), and R2

(
x,
T

2

)
is a multiplier H1(Ω) → H1(Ω) (4.14)

for which a characterization is given in [22, Theorem 1 with m = l = 1, p = 2, p. 243]. More

direct sufficient conditions for (4.13), respectively (4.14), to hold are

f(x) ∈ H1(Ω), g(x) ∈ H1(Ω), Rixj

(
x,
T

2

)
∈ L∞(Ω), i = 1, 2, j = 1, · · · , n. (4.15)

We shall first prove the uniqueness property (2.5): f(x) = g(x) ≡ 0 of the present Theorem 2.1

under the provisional restrictions (4.11)–(4.12) and in particular (4.15). Then, we shall extend

the result to all f(x), g(x) ∈ L2(Ω), with Rixj as in (4.15) as assumed in (2.2), by using (i)

the continuity of the map {f, g} → {u(f, g)|Σ1 , v(f, g)|Σ1} and (ii) the denseness of H1(Ω) in

L2(Ω).
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Thus, under the provisional restrictions (4.11)–(4.12) and by virtue also of (4.10), we have

the following regularity for problem (4.9):

{utt, vtt} ∈ H1(Q)×H1(Q) (4.16)

so that we can apply Theorem 3.1 to problem (4.9). We obtain the result below.

Proposition 4.3 Assume (A.1)–(A.2), q, p ∈ L∞(Ω), as well as (4.15) and R1tt, R2tt ∈
L∞(Q). Then, the following one-parameter family of energy estimates holds true for the

{utt, vtt}-system (4.9), for all τ > 0 sufficiently large:

C1,τ

∫
Q

e2τφ[|∇utt|2 + u2ttt + |∇vtt|2 + v2ttt]dQ+ C2,τ

∫
Q(σ)

e2τφ[u2tt + v2tt]dxdt

≤ Cp,q

∫
Q

e2τφ[u2ttt + v2ttt]dQ+ C1,T e
2τσ

∫
Q

[u2tt + v2tt]dQ+ 4

∫
Q

e2τφ[|fR1tt |2 + |gR2tt |2]dQ

+ cT τ
3e−2τδ{[Eutt(0) + Eutt(T ) + Evtt(0) + Evtt(T )]}. (4.17)

Step 4 Under the assumptions of Proposition 4.1 through 4.3 cumulatively, that is, (2.2)

and f, g ∈ H1(Ω), we sum up (4.1), (4.8) and (4.17) to obtain the next proposition.

Proposition 4.4 Assume (A.1)–(A.2), (2.1)–(2.2) and f, g ∈ H1(Ω), as in (4.13)–(4.14).

Then the following one-parameter family of energy estimates holds true for the {u, v}-system
(1.4), for all τ > 0 sufficiently large:

C1,τ

∫
Q

e2τφ[|∇utt|2 + |∇ut|2 + |∇u|2 + u2ttt + u2tt + u2t + |∇vtt|2 + |∇vt|2

+ |∇v|2 + v2ttt + v2tt + v2t ]dQ+ C2,τ

∫
Q(σ)

e2τφ{[u2tt + u2t + u2] + [v2tt + v2t + v2]}dxdt

≤ Cp,q

∫
Q

e2τφ{[u2ttt + u2tt + u2t ] + [v2ttt + v2tt + v2t ]}dQ+ C1,T e
2τσ

∫
Q

{[u2tt + u2t + u2]

+ [v2tt + v2t + v2]}dQ+ 4

∫
Q

e2τφ{[|fR1tt|2 + |fR1t|2 + |fR1|2]

+ [|gR2tt|2 + |gR2t|2 + |gR2|2]}dQ+ cT τ
3e−2τδ[Eu,v]T0 , (4.18)

[Eu,v]T0 = {[Eutt(0) + Eutt(T )] + [Evtt(0) + Evtt(T )] + [Eut(0) + Eut(T )]

+ [Evt(0) + Evt(T )] + [Eu(0) + Eu(T )] + [Ev(0) + Ev(T )]}. (4.19)

Step 5 In this step, we follow an idea of [8, Theorem 8.2.2, p. 231] (see points (2)–(3)

below).

Proposition 4.5 With reference to the third integral term on the RHS of estimate (4.18),

assume (2.2) as well as (2.3). Then we have

(1)

∫
Q

e2τφ[|fR1|2 + |gR2|2 + |fR1t|2 + |gR2t|2 + |fR1tt|2 + |gR2tt|2]dQ

≤ CR

∫
Q

e2τφ[|f |2 + |g|2]dQ; (4.20)

(2)

∫
Q

e2τφ|f |2dQ ≤
{( T

r21

)
(2cTτ + 1)

}∫
Ω

∫ T
2

0

e2τφ(x,s)|utt(x, s)|2dsdΩ
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+
T

r21

∫
Ω

∫ T
2

0

e2τφ(x,s)|uttt(x, s)|2dsdΩ +
T

r21

∫
Ω

|utt(x, 0)|2dΩ; (4.21)

(3)

∫
Q

e2τφ|g|2dQ ≤
{( T

r22

)
(2cTτ + 1)

}∫
Ω

∫ T
2

0

e2τφ(x,s)|vtt(x, s)|2dsdΩ

+
T

r22

∫
Ω

∫ T
2

0

e2τφ(x,s)|vttt(x, s)|2dsdΩ +
T

r22

∫
Ω

|vtt(x, 0)|2dΩ. (4.22)

Proof (1) is obvious, recalling assumption (2.2) on Ri, Rit, Ritt ∈ L∞(Q), i = 1, 2. For (2),

we return to (1.7a)–(1.7b), evaluate at the initial time T
2 , use (1.7c) and obtain

utt

(
x,
T

2

)
= f(x)R1

(
x,
T

2

)
, vtt

(
x,
T

2

)
= g(x)R2

(
x,
T

2

)
. (4.23)

Recalling assumption (2.3), we have

|f(x)| ≤ 1

r1

∣∣∣utt(x, T
2

)∣∣∣, |g(x)| ≤ 1

r2

∣∣∣vtt(x, T
2

)∣∣∣, x ∈ Ω. (4.24)

By virtue of (4.24), we compute, recalling also property (3.4b) and d
dsφ(x, s) = 2c

(
T
2 − s

)
:∫

Q

e2τφ|f |2dQ =

∫ T

0

∫
Ω

e2τφ(x,t)|f(x)|2dΩdt ≤ 1

r21

∫ T

0

∫
Ω

e2τφ(x,t)
∣∣∣utt(x, T

2

)∣∣∣2dΩdt
≤ T

r21

∫
Ω

e
2τφ

(
x,T2

)∣∣∣utt(x, T
2

)∣∣∣2dΩ (by (3.4b))

=
T

r21

(∫
Ω

∫ T
2

0

d

ds
(e2τφ(x,s)|utt(x, s)|2)dsdΩ +

∫
Ω

e2τφ(x,0)|utt(x, 0)|2dΩ
)

≤ T

r21

(
4cτ

∫
Ω

∫ T
2

0

(T
2
− s

)
e2τφ(x,s)|utt(x, s)|2dsdΩ

+ 2

∫
Ω

∫ T
2

0

e2τφ|utt(x, s)||uttt(x, s)|dsdΩ +

∫
Ω

e2τφ(x,0)|utt(x, 0)|2dΩ
)

≤ T

r21

(
(2cTτ)

∫
Ω

∫ T
2

0

e2τφ|utt|2dtdΩ +

∫
Ω

∫ T
2

0

e2τφ(|utt|2 + |uttt|)2dtdΩ

+

∫
Ω

|utt(x, 0)|2dΩ
)
, (4.25)

by using in the last step φ(x, 0) ≤ −δ by (3.4a), so that e2τφ(x,0) ≤ 1. Then (4.21) follows from

(4.25). The proof of (3) is similar by using (4.24) on g.

Step 6 By substituting estimates (4.20)–(4.22) on the RHS of (4.18), we obtain the following

result.

Proposition 4.6 Assume the hypotheses of Theorem 2.1 and moreover f, g ∈ H1(Ω), as

in (4.13)–(4.14). Then, the following one-parameter family of energy estimates holds true for

the {u, v}-system (1.4), for all τ > 0 sufficiently large:

C1,τ

∫
Q

e2τφ{[|∇utt|2 + |∇ut|2 + |∇u|2] + [|∇vtt|2 + |∇vt|2 + |∇v|2]}dQ
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+
[
C1,τ − CRT

r20
− Cp,q

] ∫
Q

e2τφ[u2ttt + v2ttt]dQ

+ [C1,τ − Cp,q]

∫
Q

e2τφ[u2tt + u2t + v2tt + v2t ]dQ

+ C2,τ

∫
Q(σ)

e2τφ{[u2tt + u2t + u2] + [v2tt + v2t + v2]}dQ

≤ C̃RT (2cTτ + 1)

∫
Q

e2τφ[u2tt + v2tt]dQ+ C1,T e
2τσku,v + autt,vtt + cT τ

3e−2τδ[Eu,v]T0 , (4.26)

ku,v = ku,v;ut,vt;utt,vtt ≡
∫
Q

[(u2tt + u2t + u2) + (v2tt + v2t + v2)]dQ, (4.27)

C̃R = CR

( 1

r21
+

1

r22

)
, autt,vtt =

T

r21

∫
Ω

|utt(x, 0)|2dΩ +
T

r22

∫
Ω

|vtt(x, 0)|2dΩ, (4.28)

with constants depending on the solution {u, v}, r0 = min{r1, r2}.

Step 7 Recalling now e2τφ < e2τσ on Q \Q(σ) by (3.6), we obtain the following estimate

for the integral terms on the RHS of inequality (4.26):∫
Q

e2τφ[u2tt + v2tt]dQ =

∫
Q(σ)

e2τφ[u2tt + v2tt]dtdx+

∫
Q\Q(σ)

e2τφ[u2tt + v2tt]dxdt

≤
∫
Q(σ)

e2τφ[u2tt + v2tt]dtdx+ e2τσ
∫
Q\Q(σ)

[u2tt + v2tt]dxdt. (4.29)

Substituting inequality (4.29) in the integral term on the RHS of estimate (4.26) and recalling

(4.27), we thus obtain the final sought-after estimate.

Theorem 4.7 Assume the hypotheses of Theorem 2.1 and moreover f, g ∈ H1(Ω) as in

(4.13)–(4.14). Then, the following one-parameter family of energy estimates holds true for the

{u, v}-system (1.4), for all τ > 0 sufficiently large:

C1,τ

∫
Q

e2τφ{[|∇utt|2 + |∇ut|2 + |∇u|2] + [|∇vtt|2 + |∇vt|2 + |∇v|2]}dQ

+
[
C1,τ − CRT

r20
− Cp,q

] ∫
Q

e2τφ[u2ttt + v2ttt]dQ

+ [C1,τ − Cp,q]

∫
Q

e2τφ[u2tt + u2t + v2tt + v2t ]dQ

+ [C2,τ − C̃RT (2cTτ + 1)− Cp,q]

∫
Q(σ)

e2τφ{[u2tt + u2t + u2] + [v2tt + v2t + v2]}dQ

≤ [C1,T + C̃RT ]e
2τσ(2cTτ + 1) ·

∫
Q\Q(σ)

[u2tt + u2t + u2 + v2tt + v2t + v2]dQ

+ cT τ
3e−2τδ[Eu,v]T0 . (4.30)

Step 8 The “final” estimate (4.30) is more than we need to conclude the argument. First,

as all coefficients of the integral terms on the LHS of estimate (4.30) are positive for τ > 0

sufficiently large, we can drop all these terms save the term
∫
Q(σ)

and obtain

[C2,τ − C̃RT (2cTτ + 1)− Cp,q]

∫
Q(σ)

e2τφ{[u2tt + u2t + u2] + [v2tt + v2t + v2]}dQ
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≤ (2cTτ + 1)e2τσk̃u,v + cT τ
3e−2τδ[Eu,v]T0 , (4.31)

k̃u,v = constant depending on solution {u, v} and data. (4.32)

But on Q(σ), we have e2τφ ≥ e2τσ by (3.6). Using this, in the LHS integral of (4.31) and

dividing (4.31) across by (2cTτ + 1)e2τσ, we obtain for all τ > 0 sufficiently large:

1

2cTτ + 1
[C2,τ − C̃RT (2cTτ + 1)− Cp,q]

∫
Q(σ)

{[u2tt + u2t + u2] + [v2tt + v2t + v2]}dQ

≤ k̃u,v +
cT τ

3e−2τδ

(2cTτ + 1)e2τσ
[Eu,v]T0 ≤ Constu,v,data. (4.33)

Letting τ → +∞ in (4.33), and recalling that C2,τ grows as τ3, we obtain

u(x, t) ≡ 0, v(x, t) ≡ 0, (x, t) ∈ Q(σ). (4.34)

Then (4.34) implies utt ≡ 0, ∆u ≡ 0, vtt ≡ 0, ∆v ≡ 0 all in Q(σ). Thus, returning to

(1.7a)–(1.7b), we then obtain

f(x)R1(x, t) ≡ 0, g(x)R2(x, t) ≡ 0, in Q(σ). (4.35)

Recalling now from (3.7) that [t0, t1]×Ω ⊂ Q(σ) and from (3.4b) that t0 <
T
2 < t1, we see that

(4.35) in particular implies

f(x)R1

(
x,
T

2

)
≡ 0, g(x)R2

(
x,
T

2

)
≡ 0, x ∈ Ω. (4.36)

Thus by use of assumption (2.3), (4.36) implies

f(x) ≡ 0, g(x) ≡ 0, a.e. x ∈ Ω. (4.37)

Step 9 Problem (1.7) = (4.2), with R1(x, t), R2(x, t) ∈ L∞(Q) as assumed, yields the

standard results:

map {f, g} → {u, v} :

continuous L2(Ω)× L2(Ω) → C([0, T ];H1(Ω)×H1(Ω)), (4.38)

map T : {f, g} → T {f, g} = {u|Σ, v|Σ} :

continuous L2(Ω)× L2(Ω) → C([0, T ];H
1
2 (Γ)×H

1
2 (Γ)). (4.39)

The interior regularity (4.38) follows at once by using the variation of the parameter formula

in (4.2) with the solution “sine” operator; trace theory yields then (4.39). Finally, since H1(Ω)

is dense in L2(Ω), the conclusion of (4.37) that T {f, g} = 0 for f, g ∈ H1(Ω) can be extended

to T {f, g} = 0 for all f, g ∈ L2(Ω) (and Rixj (x,
T
2 ) ∈ L∞(Ω), i = 1, 2, j = 1 · · · , n). The proof

of Theorem 2.1 is completed.

5 Stability of Linear Inverse Problem for the {u, v}-System (1.7):
Proof of Theorem 2.2

Step 1 Let {u = u(f, g), v = v(f, g)} be the solution to problem (1.7a)–(1.7d), with data
q, p ∈ L∞(Ω), f, g ∈ L2(Ω), Ri, Rit, Ritt ∈ L∞(Q), (5.1a)∣∣∣Ri

(
x,
T

2

)∣∣∣ ≥ ri > 0, x ∈ Ω, Rixj

(
x,
T

2

)
∈ L∞(Ω), i = 1, 2, j = 1, · · · , n (5.1b)
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from assumptions (2.2) and (2.3). Consider again the {ut, vt}-system (4.7), which we rewrite

here for convenience

(ut)tt(x, t)−∆(ut)(x, t)− q(x)(vt)t(x, t) = f(x)R1t(x, t), in Q, (5.2a)

(vt)tt(x, t)−∆(vt)(x, t)− p(x)(ut)t(x, t) = g(x)R2t(x, t), in Q, (5.2b)

(ut)
(
· , T

2

)
= 0, (ut)t

(
· , T

2

)
= f(x)R1

(
x,
T

2

)
∈ L2(Ω), in Ω, (5.2c)

(vt)
(
· , T

2

)
= 0, (vt)t

(
· , T

2

)
= g(x)R2

(
x,
T

2

)
∈ L2(Ω), in Ω, (5.2d)

∂

∂ν
(ut)(x, t) = 0,

∂

∂ν
(vt)(x, t) = 0, in Σ, (5.2e)

so that f(x)R1(x,
T
2 ), g(x)R2

(
x, T2

)
∈ L2(Ω). Accordingly, by linearity, we split the problem

{ut, vt} into two components

ut = ut + ũt, vt = vt + ṽt, (5.3)

where {ut, vt} satisfies problem (4.7), however, with homogeneous forcing terms

(ut)tt(x, t)−∆(ut)(x, t)− q(x)(vt)t(x, t) = 0, in Q, (5.4a)

(vt)tt(x, t)−∆(vt)(x, t)− p(x)(ut)t(x, t) = 0, in Q, (5.4b)

(ut)
(
· , T

2

)
= 0, (ut)t

(
· , T

2

)
= f(x)R1

(
x,
T

2

)
, in Ω, (5.4c)

(vt)
(
· , T

2

)
= 0, (vt)t

(
· , T

2

)
= g(x)R2

(
x,
T

2

)
, in Ω, (5.4d)

∂

∂ν
(ut)(x, t) = 0,

∂

∂ν
(vt)(x, t) = 0, in Σ, (5.4e)

while {ũt, ṽt} satisfies the same problem (4.7), however, with homogeneous initial conditions

(ũt)tt(x, t)−∆(ũt)(x, t)− q(x)(ṽt)t(x, t) = f(x)R1t(x, t), in Q, (5.5a)

(ṽt)tt(x, t)−∆(ṽt)(x, t)− p(x)(ũt)t(x, t) = g(x)R2t(x, t), in Q, (5.5b)

(ũt)
(
· , T

2

)
= 0, (ũt)t

(
· , T

2

)
= 0, in Ω, (5.5c)

(ṽt)
(
· , T

2

)
= 0, (ṽt)t

(
· , T

2

)
= 0, in Ω, (5.5d)

∂

∂ν
(ũt)(x, t) = 0,

∂

∂ν
(ṽt)(x, t) = 0, in Σ. (5.5e)

Step 2 Here we apply the continuous observability inequality, Theorem 3.3, (3.18), to

the {ut, vt}-problem (5.4a)–(5.4c), as assumptions (3.16) are satisfied. Accordingly, there is a

constant CT,q,p > 0 depending on T and on the L∞(Ω)-norm of the data q and p but not on f

and g, such that ∥∥∥f( · )R1

(
· , T

2

)∥∥∥2
L2(Ω)

+
∥∥∥g( · )R2

(
· , T

2

)∥∥∥2
L2(Ω)
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≤ C2
T,q,p

∫ T

0

∫
Γ1

[u2t + u2tt + v2t + v2tt]dΓ1 dt, (5.6)

whenever the RHS is finite, where T > T0 (see (2.1)), as assumed. Since
∣∣Ri

(
x, T2

)∣∣ ≥ ri > 0,

x ∈ Ω, i = 1, 2, by assumption (2.3), we then obtain from (5.6) by use of (5.3), the triangle

inequality, with constant C = CT,q,p,r1,r2 :

∥f∥L2(Ω) + ∥g∥L2(Ω)

≤ C(∥ut∥L2(Γ1×[0,T ]) + ∥utt∥L2(Γ1×[0,T ]) + ∥vt∥L2(Γ1×[0,T ]) + ∥vtt∥L2(Γ1×[0,T ]))

≤ C(∥ut − ũt∥L2(Γ1×[0,T ]) + ∥utt − ũtt∥L2(Γ1×[0,T ])

+ ∥vt − ṽt∥L2(Γ1×[0,T ]) + ∥vtt − ṽtt∥L2(Γ1×[0,T ]))

≤ C(∥ut∥L2(Γ1×[0,T ]) + ∥utt∥L2(Γ1×[0,T ]) + ∥vt∥L2(Γ1×[0,T ]) + ∥vtt∥L2(Γ1×[0,T ]))

+ C(∥ũt∥L2(Γ1×[0,T ]) + ∥ũtt∥L2(Γ1×[0,T ]) + ∥ṽt∥L2(Γ1×[0,T ]) + ∥ṽtt∥L2(Γ1×[0,T ])). (5.7)

Inequality (5.7) is the desired, sought-after estimate (2.6) of Theorem 2.2, modulo (polluted by)

the ũt, ũtt- and ṽt, ṽtt-terms. Such terms will be next absorbed by a compactness-uniqueness

argument.

Step 3 To carry this through, we need the following lemma.

Lemma 5.1 Consider the {ũt, ṽt}-system (5.5a)–(5.5c) with data

q, p ∈ L∞(Ω), f, g ∈ L2(Ω), Rit, Ritt ∈ L∞(Q), i = 1, 2. (5.8)

Define the following operators K, K1, L and L1 :

(K{f, g})(x, t) = ũt(x, t)|Σ1
: L2(Ω) → L2(Γ1 × [0, T ]), (5.9a)

(K1{f, g})(x, t) = ũtt(x, t)|Σ1
: L2(Ω) → L2(Γ1 × [0, T ]), (5.9b)

(L{f, g})(x, t) = ṽt(x, t)|Σ1
: L2(Ω) → L2(Γ1 × [0, T ]), (5.9c)

(L1{f, g})(x, t) = ṽtt(x, t)|Σ1
: L2(Ω) → L2(Γ1 × [0, T ]), (5.9d)

where {ũt, ṽt} is the unique solution to problem (5.5a)–(5.5d). Then,

K, K1, L and L1 are compact operators. (5.10)

Proof First, under present assumptions (5.8) with zero initial conditions (5.5c)–(5.5d)

and homogeneous boundary conditions (5.5e), system (5.5) (= (4.2)) possesses a-fortiori the

regularity,

{ũt, ṽt} ∈ H1(Q)×H1(Q). (5.11)

Moreover, differentiate the system (5.5) in time: we obtain the {ũtt, ṽtt}-system which contains

forcing terms f(x)R1tt(x, t), g(x)R2tt(x, t) ∈ L2(Q) and non-zero initial velocity f(x)R1t(x,
T
2 ),

g(x)R2t(x,
T
2 ) ∈ L2(Ω) under the present assumptions (5.8). Therefore a-fortiori we obtain also

{ũtt, ṽtt} ∈ H1(Q)×H1(Q). (5.12)
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Preliminaries We shall invoke sharp (Dirichlet) trace theory results for the Neumann

hyperbolic problem (5.5a)–(5.5d) from [11]. More precisely, regarding the {ũt, ṽt}-problem
(5.5) (= (4.2)), the following Dirichlet trace results hold true:

(a) Assumptions f(x), g(x) ∈ L2(Ω), Rit ∈ L∞(Q), i = 1, 2 as in (5.8) and properties

(5.11)–(5.12) imply

f(x)R1t(x, t) + q(x)ṽtt(x, t) ∈ L2(Q), g(x)R2t(x, t) + p(x)ũtt(x, t) ∈ L2(Q), (5.13)

and then from [11], see below

f(x)R1t(x, t) + q(x)ṽtt(x, t) ∈ L2(Q) ⇒ ũt|Σ ∈ Hβ(Σ) continuously, (5.14)

g(x)R2t(x, t) + p(x)ũtt(x, t) ∈ L2(Q) ⇒ ṽt|Σ ∈ Hβ(Σ) continuously. (5.15)

(b) Assumption (5.8) as well as the regularity properties (5.11) and (5.12) imply

f(x)R1t(x, t) + q(x)ṽtt(x, t) ∈ H1(0, T ;L2(Ω)),

g(x)R2t(x, t) + p(x)ũtt(x, t) ∈ H1(0, T ;L2(Ω)),
(5.16)

and then

f(x)R1t(x, t) + q(x)ṽtt(x, t) ∈ H1(0, T ;L2(Ω)) ⇒ D1
t ũt|Σ = ũtt|Σ ∈ Hβ(Σ), (5.17)

g(x)R2t(x, t) + p(x)ũtt(x, t) ∈ H1(0, T ;L2(Ω)) ⇒ D1
t ṽt|Σ = ṽtt|Σ ∈ Hβ(Σ), (5.18)

continuously with β the following constant:

β =
3

5
for a general Ω; β =

2

3
, if Ω is a sphere,

β =
3

4
− ϵ, if Ω is a parallelepiped.

(5.19)

The regularity properties (5.14)–(5.15) are from [11, Theorem B, (1), p. 118, for problem

(2.5a)–(2.5c), p. 123], which is the same as [11, Theorem 2.0, Part II, (2.10), p. 124].

Then implications (5.17)–(5.18) are immediate consequences of implications (5.14) and

(5.15) for problem (5.5a)–(5.5d), as then one applies the regularity properties (5.14)–(5.15)

to {ũtt, ṽtt}, solution to the problem obtained from (5.5a)–(5.5d), after differentiating in time

once.

(c) By interpolation between (5.14) and (5.17), and between (5.15) and (5.18), one obtains,

for 0 ≤ θ ≤ 1, still under the hypotheses (5.8) and regularity properties (5.11)–(5.12):

fR1t + qṽtt ∈ Hθ(0, T ;L2(Ω)) ⇒ Dθ
t ũt|Σ ∈ Hβ(Σ) ⇒ Dθ

t ũtt|Σ ∈ Hβ−1(Σ), (5.20)

gR2t + pũtt ∈ Hθ(0, T ;L2(Ω)) ⇒ Dθ
t ṽt|Σ ∈ Hβ(Σ) ⇒ Dθ

t ṽtt|Σ ∈ Hβ−1(Σ), (5.21)

equivalently,

f(x)R1t(x, t) + q(x)ṽtt(x, t) ∈ Hθ(0, T ;L2(Ω)) ⇒ ũtt|Σ ∈ Hβ+θ−1(Σ), (5.22)

g(x)R2t(x, t) + p(x)ũtt(x, t) ∈ Hθ(0, T ;L2(Ω)) ⇒ ṽtt|Σ ∈ Hβ+θ−1(Σ), (5.23)
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continuously. In particular, for θ = 1− β + ϵ,

f(x)R1t(x, t) + q(x)ṽtt(x, t) ∈ H1−β+ϵ(0, T ;L2(Ω)) ⇒ ũtt|Σ ∈ Hϵ(Σ), (5.24)

g(x)R2t(x, t) + p(x)ũtt(x, t) ∈ H1−β+ϵ(0, T ;L2(Ω)) ⇒ ṽtt|Σ ∈ Hϵ(Σ), (5.25)

continuously, for any ϵ > 0.

After these preliminaries, we can now draw the desired conclusions on the compactness of

the operators K, K1, L and L1 in (5.9a)–(5.9d).

Compactness of K, L According to (5.14) and (5.15), it suffices to have Rit, Ritt ∈
L∞(Q), i = 1, 2, in order to have that the map

f, g ∈ L2(Ω) → K{f, g} = ũt|Σ ∈ Hβ−ϵ(Σ), L{f, g} = ṽt|Σ ∈ Hβ−ϵ(Σ) are compact, (5.26)

∀ ϵ > 0 sufficiently small, for then f(x)R1t(x, t) + q(x)ṽtt(x, t), g(x)R2t(x, t) + p(x)ũtt(x, t) ∈
L2(Q) as required, by (5.14) and (5.15).

Compactness of K1, L1 We have seen in (c) above that, under the hypotheses Rit, Ritt ∈
L∞(Q), i = 1, 2 in (5.8), (5.24) and (5.25) imply that the maps in (5.9),

f, g ∈ L2(Ω) → K1{f, g}= ũtt ∈ Hϵ(Σ) are continuous

⇒ K1{f, g}= ũtt ∈ L2(Σ) are compact, (5.27)

f, g ∈ L2(Ω) → L1{f, g}= ṽtt ∈ Hϵ(Σ) are continuous

⇒ L1{f, g}= ṽtt ∈ L2(Σ) are compact (5.28)

for then f(x)R1t(x, t) + q(x)ṽtt(x, t), g(x)R2t(x, t) + p(x)ũtt(x, t) ∈ H1−β+ϵ(0, T ;L2(Ω)), as

required by (5.24) and (5.25). This completes the proof of Lemma 5.1.

Step 4 Lemma 5.1 will allow us to absorb the terms

∥Kf = ũt∥L2(Γ1×[0,T ]), ∥K1f = ũtt∥L2(Γ1×[0,T ]),

∥Lf = ṽt∥L2(Γ1×[0,T ]), ∥L1f = ṽtt∥L2(Γ1×[0,T ]) (5.29)

on the RHS of estimate (5.7), by a compactness-uniqueness argument, as usual.

Proposition 5.2 Consider the {u, v}-problem (1.7a)–(1.7d) with T > T0 in (2.1) under

assumption (2.2) = (5.8) for its data q( · ), p( · ), f( · ), g( · ) and Ri( · , · ), with Ri satisfying

also (2.3), so that both estimate (5.7) and Lemma 5.1 hold true. Then, the terms Kf = ũt|Σ1 ,

K1f = ũtt|Σ1 , Lf = ṽt|Σ1 and L1f = ṽtt|Σ1 measured in the L2(Γ1×[0, T ])-norm can be omitted

from the RHS of inequality (6.7) (for a suitable constant CT,ri,··· independent of the solution

{u, v}), so that the desired conclusion, (2.6), of Theorem 2.2 holds true:

∥f∥2L2(Ω) + ∥g∥2L2(Ω) ≤ CT,data

{∫ T

0

∫
Γ1

[u2t + u2tt + v2t + v2tt]dΓ1 dt
}

(5.30)

for all f, g ∈ L2(Ω), with CT,data independent of f and g.
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Proof Step (i) Suppose, by contradiction, that inequality (5.30) is false. Then, there

exist sequences {fn}∞n=1, {gn}∞n=1, fn, gn ∈ L2(Ω), such that∥fn∥L2(Ω) = ∥gn∥L2(Ω) ≡ 1, n = 1, 2, · · · ,

lim
n→∞

(∥ut(fn)∥L2(Σ1) + ∥utt(fn)∥L2(Σ1) + ∥vt(fn)∥L2(Σ1) + ∥vtt(fn)∥L2(Σ1)) = 0,

(5.31a)

(5.31b)

where {u(fn, gn), v(fn, gn)} solves problem (1.7a)–(1.7d) with f = fn, g = gn:

u(fn, gn)tt(x, t)−∆u(fn, gn)(x, t)− q(x)v(fn, gn)t(x, t) = fn(x)R1(x, t), in Q, (5.32a)

v(fn, gn)tt(x, t)−∆v(fn, gn)(x, t)− p(x)u(fn, gn)t(x, t) = gn(x)R2(x, t), in Q, (5.32b)

u(fn, gn)
(
· , T

2

)
= u(fn, gn)t

(
· , T

2

)
= 0, in Ω;

(5.32c)

v(fn, gn)
(
· , T

2

)
= vt(fn, gn)

(
· , T

2

)
= 0, in Ω,

∂

∂ν
u(fn, gn)

∣∣∣
Σ
= 0,

∂

∂ν
v(fn, gn)

∣∣∣
Σ
= 0, in Σ. (5.32d)

In view of (5.31a), there exist subsequences, still denoted by fn and gn, such that

{fn, gn} converges weakly in L2(Ω) to some {f0, g0} ∈ L2(Ω). (5.33)

Moreover, since the operators K, K1, L and L1 are all compact (see Lemma 5.1), it then

follows by (5.33) that we have strong convergence

lim
m,n→+∞

∥K{fn, gn} −K{fm, gm}∥L2(Σ1) = ∥K1{fn, gn} −K1{fm, gm}∥L2(Σ1) = 0, (5.34a)

lim
m,n→+∞

∥L{fn, gn} − L{fm, gm}∥L2(Σ1) = ∥L1{fn, gn} − L1{fm, gm}∥L2(Σ1) = 0. (5.34b)

Step (ii) On the other hand, since the map {f, g} → {u(f, g), v(f, g)} is linear, and

recalling the definition of the operators K, K1, L and L1 in (5.9), it follows from estimate (5.7)

that

∥fn − fm∥L2(Ω) + ∥gn − gm∥L2(Ω)

≤ C(∥ut(fn, gn)− ut(fm, gm)∥L2(Γ1) + ∥utt(fn, gn)− utt(fm, gm)∥L2(Σ1)

+ ∥vt(fn, gn)− vt(fm, gm)∥L2(Σ1) + ∥vtt(fn, gn)− vtt(fm, gm)∥L2(Σ1))

+ C(∥K{fn, gn} −K{fm, gm}∥L2(Σ1) + ∥K1{fn, gn} −K1{fm, gm}∥L2(Σ1)

+ ∥L{fn, gn} − L{fm, gm}∥L2(Σ1) + ∥L1{fn, gn} − L1{fm, gm}∥L2(Σ1))

≤ C(∥ut(fn, gn)∥L2(Σ1) + ∥utt(fn, gn)∥L2(Σ1) + ∥ut(fm, gm)∥L2(Σ1) + ∥utt(fm, gm)∥L2(Σ1))

+ C(∥vt(fn, gn)∥L2(Σ1) + ∥vtt(fn, gn)∥L2(Σ1) + ∥vt(fm, gm)∥L2(Σ1) + ∥vtt(fm, gm)∥L2(Σ1))

+ C(∥K{fn, gn} −K{fm, gm}∥L2(Σ1) + ∥K1{fn, gn} −K1{fm, gm}∥L2(Σ1)

+ ∥L{fn, gn} − L{fm, gm}∥L2(Σ1) + ∥L1{fn, gn} − L1{fm, gm}∥L2(Σ1)), (5.35)
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where again the constant C = CT,q,p,r1,r2 , but is independent of f and g. It then follows from

(5.31b) and (5.34) as applied to the RHS of (5.35) that

lim
m,n→+∞

∥fn − fm∥L2(Ω) = 0, lim
m,n→+∞

∥gn − gm∥L2(Ω) = 0. (5.36)

Thus, {fn}, {gn} are Cauchy sequences in L2(Ω). By uniqueness of the limit, recalling (5.33),

it then follows that

lim
n→∞

∥fn − f0∥L2(Ω) = 0, lim
n→∞

∥gn − g0∥L2(Ω) = 0. (5.37)

Thus, in view of (5.31a), then (5.37) implies

∥f0∥L2(Ω) = ∥g0∥L2(Ω) = 1. (5.38)

Step (iii) We now apply to {u, v}-problem (1.7a)–(1.7d) the same trace theorem as [11,

Theorem B(1), p. 118] and [11, Theorem 2.0, Part II, (2.10), p. 124] that we have invoked in

(5.14) (and (5.15)) for the {ũt, ṽt}-problem (5.5a)–(5.5d)), that is, as f, g ∈ L2(Ω), Ri, Rit ∈
L∞(Q) by assumption and {u, v}, {ut, vt} ∈ H1(Q) × H1(Q) a-fortiori due to the L2 forcing

terms and initial velocities as well as the homogeneous boundary conditions:

fR1 + qvt, gR2 + put ∈ L2(Q) ⇒ {u|Σ, v|Σ} ∈ Hβ(Σ)×Hβ(Σ), (5.39)

fR1 + qvt, gR2 + put ∈ H1(0, T ;L2(Ω)) ⇒ {ut|Σ, vt|Σ} ∈ Hβ(Σ)×Hβ(Σ), (5.40)

continuously, hence by interpolation

f(x)R1(x, t) + q(x)vt(x, t) ∈ H1−β(0, T ;L2(Ω)) ⇒ ut|Σ ∈ L2(Σ), (5.41)

g(x)R2(x, t) + p(x)ut(x, t) ∈ H1−β(0, T ;L2(Ω)) ⇒ vt|Σ ∈ L2(Σ). (5.42)

Here β is defined in (5.19).

Step (iv) Thus, since Ri ∈ L∞(Q), i = 1, 2, we deduce from (5.39) that

f, g ∈ L2(Ω) → u(f, g)|Σ ∈ Hβ(Σ), v(f, g)|Σ ∈ Hβ(Σ) continuously, (5.43)

i.e.,

∥u(f, g)|Σ∥Hβ(Σ), ∥v(f, g)|Σ∥Hβ(Σ) ≤ CR1,R2(∥f∥L2(Ω) + ∥g∥L2(Ω)) (5.44)

with CR1,R2 = max {∥R1∥L∞(Q), ∥R2∥L∞(Q)}.
As the map {f, g} → {u(f, g), v(f, g)}|Σ is linear, it then follows in particular from (5.44),

since fn, gn, f0, g0 ∈ L2(Ω),

∥|u(fn, gn)|Σ1 − u(f0, g0)|Σ1∥Hβ(Σ1)
≤ C̃R1,R2(∥fn − f0∥L2(Ω) + ∥gn − g0∥L2(Ω)), (5.45)

∥|v(fn, gn)|Σ1 − v(f0, g0)|Σ1∥Hβ(Σ1)
≤ C̃R1,R2(∥fn − f0∥L2(Ω) + ∥gn − g0∥L2(Ω)). (5.46)

Recalling (5.37) on the RHS of (5.45) and (5.46), we conclude first that

lim
n→∞

∥u(fn, gn)|Σ1 − u(f0, g0)|Σ1∥Hβ(Σ1)
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= lim
n→∞

∥v(fn, gn)|Σ1 − v(f0, g0)|Σ1∥Hβ(Σ1)
= 0, (5.47)

and next that

lim
n→∞

∥u(fn, gn)|Σ1 − u(f0, g0)|Σ1∥C([0,T ];L2(Γ1))

= lim
n→∞

∥v(fn, gn)|Σ1 − v(f0, g0)|Σ1∥C([0,T ];L2(Γ1))
= 0, (5.48)

since β > 1
2 , so that Hβ(0, T ) embeds in C[0, T ].

Step (v) Similarly, from (5.40) and recalling (5.37), where in addition, Rit ∈ L∞(Q),

i = 1, 2, we deduce likewise in addition that

lim
n→∞

∥ut(fn, gn)|Σ1 − ut(f0, g0)|Σ1∥C([0,T ];L2(Γ1))

= lim
n→∞

∥vt(fn, gn)|Σ1 − vt(f0, g0)|Σ1∥C([0,T ];L2(Γ1))
= 0. (5.49)

Then, by virtue of (5.31b), combined with (5.49), we obtain in t ∈ [0, T ] that

ut(f0, g0)|Σ1 = vt(f0, g0)|Σ1 ≡ 0, or

u(f0, g0)|Σ1 and v(f0, g0)|Σ1are functions of x ∈ Γ1.
(5.50)

Step (vi) We return to problem (5.32). With fn, gn ∈ L2(Ω) and data q, p ∈ L∞(Ω),

R1, R2 ∈ L∞(Q), we have the following regularity results, continuously:

{u(fn, gn), ut(fn, gn), v(fn, gn), vt(fn, gn)}∈C([0, T ];H1(Ω)× L2(Ω)×H1(Ω)× L2(Ω)), (5.51)

{u(fn, gn), v(fn, gn)}|Σ∈Hβ(Σ)×Hβ(Σ). (5.52)

Again, the sharp trace regularity (5.52) is the same result noted in (5.14)–(5.15), and quoted

from [11, Theorem B(1), p. 118] and [11, Theorem 2.0, (2.10), p. 124], with β the constant in

(5.19). As a consequence of (5.37), we also have via (5.51)–(5.52)

{u(fn, gn), ut(fn, gn)} → {u(f0, g0), ut(f0, g0)},
(5.53)

{v(fn, gn), vt(fn, gn)} → {v(f0, g0), vt(f0, g0)}, in C([0, T ;H1(Ω)× L2(Ω)),

{u(fn, gn), v(fn, gn)} → {u(f0, g0), v(f0, g0)}, in Hβ(Σ)×Hβ(Σ). (5.54)

On the other hand, recalling the initial conditions (5.32c)–(5.32d), we have u(fn, gn)(x,
T
2 ) =

v(fn, gn)(x,
T
2 ) ≡ 0, x ∈ Ω and hence

u(fn, gn)
(
x,
T

2

)
= v(fn, gn)

(
x,
T

2

)
≡ 0, x ∈ Γ1 (5.55)

in the sense of trace in H
1
2 (Γ1). Then (5.55) combined with (5.47)–(5.48) yields a-fortiori

u(f0, g0)
(
x,
T

2

)
= v(f0, g0)

(
x,
T

2

)
≡ 0, x ∈ Γ1, (5.56)

and next, by virtue of (5.50), the desired conclusion,

u(f0, g0)|Σ1 = v(f0, g0)|Σ1 ≡ 0. (5.57)
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Here, {u(f0, g0), v(f0, g0)} satisfies weakly the limit problem, via (5.37), (5.51)–(5.52) applied

to (5.32a)–(5.32d):

utt(f0, g0)(x, t)−∆u(f0, g0)(x, t)− q(x)vt(f0, g0)(x, t) = f0(x)R1(x, t), in Q, (5.58a)

vtt(f0, g0)(x, t)−∆v(f0, g0)(x, t)− p(x)ut(f0, g0)(x, t) = g0(x)R2(x, t), in Q, (5.58b)

u(f0, g0)
(
· , T

2

)
= ut(f0, g0)

(
· , T

2

)
= 0, in Ω;

(5.58c)

v(f0, g0)
(
· , T

2

)
= vt(f0, g0)

(
· , T

2

)
= 0, in Ω,

∂

∂ν
u(f0, g0)

∣∣∣
Σ
= 0,

∂

∂ν
v(f0, g0)

∣∣∣
Σ
= 0, in Σ, (5.58d)

u(f0, g0)|Σ1 = v(f0, g0)|Σ1 = 0, in Σ1, (5.58e)

via also (5.57), where f0, g0 ∈ L2(Ω) and q, p,R1, R2 satisfy the assumptions (2.2)–(2.3). By

virtue of (5.52) and assumption (6.1) = (2.2)+ (2.3), thus, the uniqueness Theorem 2.1 applies

and yields

f0(x) = g0(x) ≡ 0, a.e. x ∈ Ω. (5.59)

Then (5.59) contradicts (5.38). Thus, assumption (5.31) is false and inequality (5.30) holds

true, and Proposition 5.2 and Theorem 2.2 are then established.

6 Uniqueness and Stability of the Nonlinear Inverse Problem for the
{w, z}-system (1.4)—Proof of Theorems 2.3 and 2.4

The proof of Theorem 2.3 (uniqueness of the nonlinear inverse problem for the {w, z}-
dynamics (1.4)) is reduced to Theorem 2.1 (uniqueness of the linear inverse problem for the

{u, v}-dynamics (1.7)), and the proof of Theorem 2.4 (stability of the nonlinear inverse problem

for the {w, z}-dynamics (1.4)) is reduced to Theorem 2.2 (stability of the linear inverse problem

for the {u, v}-dynamics (1.7)). In fact, as in (1.6a)–(1.6b), set

f(x) = q1(x)− q2(x), g(x) = p1(x)− p2(x),

R1(x, t) = zt(q2, p2)(x, t), R2(x, t) = wt(q2, p2)(x, t),
(6.1a)

u(x, t) = w(q1, p1)(x, t)− w(q2, p2)(x, t),

v(x, t) = z(q1, p1)(x, t)− z(q2, p2)(x, t).
(6.1b)

Then, as noted in Section 1, the variables u(x, t), v(x, t) solve problem (1.7). By virtue of

assumption (2.6), we then have via (6.1a) that f(x), g(x) ∈ L∞(Ω).

Step 1 We rewrite the coupled problem (1.4) as in (4.2):[
wtt

ztt

]
=

[
−ÃN 0

0 −ÃN

] [
w
z

]
+

[
0 q( · )

p( · ) 0

] [
wt

zt

]
= −AN

[
w
z

]
+Π

[
wt

zt

]
, (6.2)

where ÃN = −∆ with Neumann boundary conditions, non-negative self-adjoint on L2(Ω), Π is

a bounded perturbation of −AN which will not affect the regularity of the solutions (see [4])

w(t) = C(t)w0 + S(t)w1, wt(t) = ANS(t)w0 + C(t)w1, (6.3)
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wtt(t) = ANC(t)w0 +ANS(t)w1, wttt(t) = A
3
2

NA
1
2

NS(t)w0 +ANC(t)w1 (6.4)

and similarly for z(t), zt(t), ztt(t), zttt(t). Here C(t) is the cosine operator on L2(Ω) × L2(Ω)

generated by −AN , D(AN ) = D(ÃN ) × D(ÃN ), and S(t) its corresponding sine operator (see

[4]). We have from (5.3)–(5.4) that

{w0, w1}, {z0, z1} ∈ D(A
k+ 1

2

N )×D(Ak
N ) ⊂ H2k+1(Ω)×H2k(Ω) (6.5)

implies

wttt, zttt ∈ C([0, T ];D(Ak−1
N )) ⊂ C([0, T ];H2(k−1)(Ω)), (6.6)

wttt, zttt ∈ C([0, T ];C(Ω)), provided k >
dimΩ

4
+ 1. (6.7)

Step 2 In terms of the boundary data, we have the next proposition.

Proposition 6.1 We return to the {w, z}-problem (1.4a)–(1.4d).

(a) Under the following assumptions on the data:

q( · ), p( · ) ∈ L∞(Ω); (6.8)

µi ∈ Hm(0, T ;L2(Γ)) ∩ C([0, T ];Hα− 1
2+(m−1)(Γ)),

α =
2

3
for a general domain; α =

3

4
for a parallelepiped,

with Compatibility Relations

µi

(T
2

)
= µ̇i

(T
2

)
= · · · = µ

(m−1)
i

(T
2

)
= 0, i = 1, 2.

(6.9)

The regularity in (6.7) is a-fortiori implied by

µi ∈ Hm(2α−1),m(Σ) = L2(0, T ;Hm(2α−1)(Γ)) ∩Hm(0, T ;L2(Γ)), (6.10)

via [18, Theorem 3.1, p. 19] (see [11, Remark 3.1, p. 130 for m = 1; Remark 3.4, p. 133 for

m = 2]). Then the solution {w = w(q, p), z = z(q, p)} satisfies the following regularity property:

{w,wt, wtt, wttt}, {z, zt, ztt, zttt}
∈ C([0, T ];Hα+m(Ω)×Hα+(m−1)(Ω)×Hα+(m−2)(Ω)×Hα+(m−3)(Ω), (6.11)

continuously.

(b) If, moreover,

m >
dimΩ

2
+ 3− α, (6.12)

then a-fortiori, properties (6.7) are fulfilled,

wt, wtt, wttt, zt, ztt, zttt ∈ L∞(Q). (6.13)

Proof (a) The result in (a) relies critically on sharp regularity results, contained in [10] in

terms of a parameter α, which was specified as follows: α = 2
5 − ϵ for a general domain, α = 2

3
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for a sphere and certain other domains; α = 3
4 for a parallelepiped (see [10, Counterexample,

p. 294] showed that α = 3
4 + ϵ is impossible). Later, Tataru [24] refined this result by obtaining

α = 2
3 for a general domain, except for α = 3

4 for a parallelepiped. More precisely,

Case m = 1

Let

µi ∈ H1(0, T ;L2(Γ)) ∩ C([0, T ];Hα− 1
2 (Γ)) with compatibility relations µi

(T
2

)
= 0. (6.14)

Then [10, Theorem A(2), p. 117], repeated as [10, Theorem 3.1, (3.6), (3.9)–(3.10), p. 129],

(7.28) implies that

{w,wt, wtt}, {z, zt, ztt} ∈ C([0, T ];Hα+1(Ω)×Hα(Ω)×Hα−1(Ω)), (6.15)

continuously. (6.15) is result (a), (6.11), for m = 1, except for wttt, zttt.

Case m = 2

Let now

µi ∈ H2(0, T ;L2(Γ)) ∩ C([0, T ];Hα+ 1
2 (Γ))

with compatibility relations µi

(T
2

)
= µ̇i

(T
2

)
= 0, (6.16)

and then [10, TheoremA(4), p. 118], repeated as [10, Theorem3.2, (3.28), (3.30), (3.32), p. 132]

implies that

{w,wt, wtt}, {z, zt, ztt} ∈ C([0, T ];Hα+2(Ω)×Hα+1(Ω)×Hα(Ω)), (6.17)

continuously. (6.17) is result (a), (6.11), for m = 2, except for wttt, zttt.

General case m

As noted in [11], the general case is similar and yields

µi as in (6.9)

⇒ {w,wt, wtt}, {z, zt, ztt} ∈ C([0, T ];Hα+m(Ω)×Hα+(m−1)(Ω)×Hα+(m−2)(Ω)), (6.18)

continuously, to which we add

wttt, zttt ∈ C([0, T ];Hα+(m−3)(Ω)), (6.19)

as the above theorems for the map µi → {w,wt, wtt, z, zt, ztt} (with zero initial conditions) can

be applied now to the map µit → {wt, wtt, wttt, zt, ztt, zttt} (still with zero initial conditions),

as q( · ), p( · ) are time-independent. Thus (6.11) is proved.

(b) If α + (m − 3) > dimΩ
2 , then from [18, Corollary 9.1, p. 96] the following embedding

holds:

Hα+(m−3)(Ω) ↪→ C(Ω) ⊂ L∞(Ω), (6.20)

which, along with properties (6.11), yields (6.13) under (6.12).
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Step 3 Thus, under assumption (6.5), with k in (6.7) on the initial conditions and assump-

tion (6.9) with m in (6.12) on the boundary conditions, we have that Ri(x, t), i = 1, 2 satisfy

assumption (2.2); moreover, so do

R1

(
x,
T

2

)
= zt(q2, p2)

(
x,
T

2

)
= z1(x), R2

(
x,
T

2

)
= wt(q2, p2)

(
x,
T

2

)
= w1(x). (6.21)

Thus, assumptions (2.8), (2.10)–(2.11) of Theorem 2.3 imply assumption (2.2) of Theorem 2.1.

Moreover, assumption (2.9) of Theorem 2.3 implies assumption (2.3) of Theorem 2.1. In addi-

tion, the present assumption (2.12) that

w(q1, p1)(x, t) = w(q2, p2)(x, t), z(q1, p1)(x, t) = z(q2, p2)(x, t), x ∈ Γ1, t ∈ [0, T ] (6.22)

implies via (6.1b) that u(f, g)(x, t) = 0, v(f, g)(x, t) = 0, x ∈ Γ1, t ∈ [0, T ]. Therefore,

Theorem 2.1 applies, and we conclude that f(x) = q1(x)−p1(x) = 0 and g(x) = q2(x)−p2(x) =
0, that is, q1(x) = p1(x), q2(x) = p2(x) a.e. x ∈ Ω. Similarly, Theorem 2.2 also applies and we

then obtain for f(x) = q1(x)−q2(x), g(x) = p1(x)−p2(x), the desired stability estimate (2.14).

References

[1] Bukhgeim, A. and Klibanov, M., Global uniqueness of a class of multidimensional inverse problem, Sov.
Math. Dokl., 24, 1981, 244–247.

[2] Bukhgeim, A., Cheng, J., Isakov, V., et al., Uniqueness in determining damping coefficients in hyperbolic
equations, Analytic Extension Formulas and Their Applications, Kluwer, Dordrecht, 2001, 27–46.
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99, Elsevier, North Holland, 1985.

[5] Gulliver, R., Lasiecka, I., Littman, W., et al., The case for differential geometry in the control of single
and coupled PDEs: The structural acoustic chamber, Geometric Methods in Inverse Problems and PDE
Control, IMA Volumes in Mathematics and Its Applications, 137, Springer-Verlag, New York, 2003, 73–
181.

[6] Isakov, V., Inverse Problems for Partial Differential Equations, Second Edition, Springer-Verlag, New York,
2006.

[7] Isakov, V. and Yamamoto, M., Carleman estimate with the Neumann boundary condition and its ap-
plication to the observability inequality and inverse hyperbolic problems, Contemp. Math., 268, 2000,
191–225.

[8] Isakov, V. and Yamamoto, M., Stability in a wave source problem by Dirichlet data on subboundary, J.
of Inverse and Ill-Posed Problems, 11, 2003, 399–409.

[9] Lasiecka, I. and Triggiani, R., Exact controllability of the wave equation with Neumann boundary control,
Appl. Math. and Optimiz., 19, 1989, 243–290.

[10] Lasiecka, I. and Triggiani, R., Sharp regularity theory for second order hyperbolic equations of Neumann
type, Part I, L2 Nonhomogeneous data, Ann. Mat. Pura. Appl. (IV ), CLVII, 1990, 285–367.

[11] Lasiecka, I. and Triggiani, R., Regularity theory of hyperbolic equations with non-homogeneous Neumann
boundary conditions, II, General boundary data, J. Diff. Eqs., 94, 1991, 112–164.

[12] Lasiecka, I. and Triggiani, R., Recent advances in regularity of second-order hyperbolic mixed problems,
and applications, invited paper for book series, Dynamics Reported, 33, Springer-Verlag, New York, 1994,
104–158.

[13] Lasiecka, I. and Triggiani, R., Uniform stabilization of the wave equation with Dirichlet or Neumann
feedback control without geometrical conditions, Appl. Math. and Optimiz., 25, 1992, 189–244.

[14] Lasiecka, I. and Triggiani, R., Carleman estimates and exact boundary controllability for a system of cou-
pled, nonconservative second order hyperbolic equations, Lecture Notes in Pure and Applied Mathematics,
188, Marcel Dekker, New York, 215–243.



696 S. Liu and R. Triggiani

[15] Lasiecka, I. and Triggiani, R., Control Theory for Partial Differential Equations: Continuous and Approx-
imation Theories, Vol. 2, Encyclopedia of Mathematics and Its Applications Series, Cambridge University
Press, Cambridge, 2000.

[16] Lasiecka, I., Triggiani, R. and Zhang, X., Nonconservative wave equations with unobserved Neumann
boundary conditions: global uniqueness and observability in one shot, Contemp. Math., 268, 2000, 227–
325.

[17] Lavrentev, M. M., Romanov, V. G. and Shishataskii, S. P., Ill-Posed Problems of Mathematical Physics
and Analysis, 64, A. M. S., Providence, RI, 1986.

[18] Lions, J. L. and Magenes, E., Non-homogeneous Boundary Value Problems and Applications, Vol. I,
Springer-Verlag, Berlin, 1972.

[19] Liu, S. and Triggiani, R., Global Uniqueness and Stability in Determining the Damping and Potential
Coefficients of an Inverse Hyperbolic Problem, Nonlinear Anal. Ser. B, 12, 2011, 1562–1590.

[20] Liu, S. and Triggiani, R., Global uniqueness and stability in determining the damping coefficient of an
inverse hyperbolic problem with non-homogeneous Neumann boundary conditions through an additional
Dirichlet boundary trace, SIAM J. of Math. Anal., to appear.

[21] Liu, S. and Triggiani, R., Global uniqueness in determining electric potentials for a system of strongly
coupled Schrödinger equations with magnetic potential terms, J. Inv. Ill-Posed Problems, to appear.

[22] Mazya, V. G. and Shaposhnikova, T. O., Theory of Multipliers in Spaces of Differentiable Functions,
Monographs and Studies in Mathematics, 23, Pitman, Boston, 1985.

[23] Tataru, D., Carleman estimates and unique continuation for solutions to boundary value problems, J.
Math. Pures et Appl., 75, 1996, 367–408.

[24] Tataru, D., On the regularity of boundary traces for the wave equation, Annali Scuola Normale di Pisa,
Classe Scienze (4), 26(1), 1998, 355–387.

[25] Triggiani, R., Exact boundary controllability of L2(Ω) × H−1(Ω) of the wave equation with Dirichlet
boundary control acting on a portion of the boundary and related problems, Appl. Math. Optim., 18,
1988, 241–277.

[26] Yamamoto, M., Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures
Appl., 78, 1999, 65–98.



Recovering of Damping Coefficients for a System of Coupled Wave Equations 697

Appendix Admissible Geometrical Configurations

Example A.1 For any dimension ≥ 2, Γ0 is flat.

• • •
1

measurement on Γ1
x Ω

x0 6
Γ0

	
Γ1

Let x0 ∈ hyperplane containing Γ0. Then

d(x) = ∥x− x0∥2, h(x) = ∇d(x) = 2(x− x0).

Example A.2 For a ball of any dimension ≥ 2, let us see d(x) in [16, Theorem A.4.1,

p. 301].

•

•

	

Γ0

-Γ1 •
x0

Measurement on Γ1 >
1
2 circumference (as in the Dirichlet case), or as for controllability · · ·

Example A.3 For the generalizing Example A.2: a domain Ω of any dimension ≥ 2 with

the unobserved portion Γ0 convex, subtended by a common point x0, let us see d(x) in [16,

Theorem. A.4.1, p. 301].

•

•

�
∇ℓ

I
Γ0 convex

�
Γ1

x0

Γ0 = ℓ(x) = level set

(x− x0) · ∇ℓ ≤ 0 on Γ0

Example A.4 For a domain Ω of any dimension ≥ 2 with the unobserved portion Γ0

concave, subtended by a common point x0, let us see d(x) in [16, Theorem A.4.1, p. 301].

•

•

	

Γ1

*
Γ0 concave

x0
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Example A.5 For dim = 2, Γ0 is neither convex or concave. Γ0 is described by graph

y =

{
f1(x), x0 ≤ x ≤ x1, y ≥ 0,

f2(x), x2 ≤ x ≤ x1, y < 0,

f1, f2 logarithmic concave on x0 < x < x1, e.g., sinx, −π
2 < x < π

2 ; cosx, 0 < x < π.

Function d(x) is given in [16, Equation (A.2.7), p. 289].


