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Abstract The authors discuss the normality concerning holomorphic functions and get
the following result. Let F be a family of holomorphic functions on a domain D ⊂ C, all
of whose zeros have multiplicity at least k, where k ≥ 2 is an integer. And let h(z) ̸≡ 0
be a holomorphic function on D. Assume also that the following two conditions hold for
every f ∈ F : (a) f(z) = 0 =⇒ |f (k)(z)| < |h(z)|; (b) f (k)(z) ̸= h(z). Then F is normal on
D.
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1 Introduction

In [5], X. C. Pang, D. G. Yang and L. Zalcman proved the following theorem.

Theorem 1.1 (see [5]) Let F be a family of meromorphic functions on a domain D ⊂ C,
all of whose zeros have multiplicity at least k+3, where k ≥ 1 is an integer, and let h(z) ( ̸≡ 0)

be a holomorphic function on D. Suppose that for every f ∈ F , f (k)(z) ̸= h(z), z ∈ D, then F
is a normal family on D.

Also in [5], they considered reducing the multiplicity for the zeros of f and proved the

following result.

Theorem 1.2 (see [5]) Let F be a family of meromorphic functions on a domain D ⊂ C,
all of whose zeros have multiplicity at least k + 2, where k ≥ 1 is an integer. Let h(z) ( ̸≡ 0) be

a holomorphic function on D, all of whose zeros have multiplicity at least 2. Suppose that for

every f ∈ F , f (k)(z) ̸= h(z), z ∈ D, then F is a normal family on D.

The question is that can the restriction for the zeros of f(z) with multiplicity at least k+2

be reduced to k? In this paper, we continue to study the above problem and get the confirmed

result.

Theorem 1.3 Let F be a family of functions holomorphic on a domain D ⊂ C, all of whose
zeros have multiplicity at least k, where k ≥ 2 is an integer. And let h(z) ̸≡ 0 be a holomorphic
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function on D. Assume also that the following two conditions hold for every f ∈ F :

(a) f(z) = 0 =⇒ |f (k)(z)| < |h(z)|;
(b) f (k)(z) ̸= h(z).

Then F is normal on D.

The following counterexample shows that Theorem 1.3 does not hold for meromorphic func-

tions when k = 2.

Example 1.1 Let D = ∆ = {z : |z| < 1} be a unit disc,

fn(z) =

(
z + 1

n

)2(
z + 2

n

)2
6
(
z + 6

n

) and h(z) = z.

It is easy to check that fn are meromorphic on ∆ and have only two zeros z
(n)
1 = − 1

n and

z
(n)
2 = − 2

n with multiplicity 2. By calculation, we have

f ′′
n (z) = z +

400

3n4
(
z + 6

n

)3 .
So

fn = 0 =⇒ z
(n)
1 = − 1

n
, z

(n)
2 = − 2

n

=⇒ |f ′′
n (z

(n)
1,2 )| = |z(n)1,2 |

∣∣∣1 + 400

3n4z
(n)
1,2

(
z
(n)
1,2 + 6

n

)3 ∣∣∣ < |z(n)1,2 | = |h(z(n)1,2 )|

=⇒ |f ′′
n | < |h| and f ′′

n (z) = z +
400

3n4
(
z + 6

n

)3 ̸= z = h(z).

But, F = {fn} is not normal on ∆.

So, the question is what about the case k ≥ 3?

Question 1.1 Let F be a family of functions meromorphic on a domain D ⊂ C, all

of whose zeros have multiplicity at least k, where k ≥ 3 is an integer. And let h(z) ̸≡ 0 be

a holomorphic function on D. Assume also that the following two conditions hold for every

f ∈ F :

(a) f(z) = 0 =⇒ |f (k)(z)| < |h(z)|;
(b) f (k)(z) ̸= h(z).

Then is F normal on D?

Let us set some notations. Throughout this paper, D is a domain in C. For z0 ∈ C and

r > 0, ∆(z0, r) = {z : |z − z0| < r} and ∆′(z0, r) = {z : 0 < |z − z0| < r}. The unit disc is

denoted by ∆ and C∗ = C \ {0}. We write fn(z)
χ

=⇒ f(z) on D to indicate that the sequence

{fn} converges to f in the spherical metric, uniformly on compact subsets of D, and fn =⇒ f

on D if the convergence is in the Euclidean metric. The spherical derivative of the meromorphic

function f at the point z is denoted by f ♯(z).

Frequently, given a sequence {fn}∞1 of functions, we need to extract an appropriate subse-

quence. This necessity may recur within a single proof. To avoid the awkwardness of multiple

indices, we again denote the extracted subsequence by {fn} (rather than, say, {fnk
}) and signal
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this operation by writing “taking a subsequence and renumbering” or simply “renumbering”.

The same convention applies to the sequences of constants.

The plan of this paper is as follows. In Section 2, we state a number of preliminary results.

Then, in Section 3, we prove Theorem 1.3.

2 Preliminary Results

The following lemma is taken from [2, p. 145], [5, p. 259] and [10, pp. 216–217].

Lemma 2.1 Let F be a family of functions meromorphic on a domain D, all of whose zeros

have multiplicity at least k, and suppose that there exists an A ≥ 1, such that |f (k)(z)| ≤ A

whenever f(z) = 0. Then if F is not normal at z0 ∈ D, for each 0 ≤ α ≤ k, there exist

(a) points zn → z0;

(b) functions fn ∈ F ;

(c) positive numbers ρn → 0+,

such that gn(ζ) := ρ−α
n fn(zn + fnζ)

χ
=⇒ g(ζ) on C, where g is a nonconstant meromorphic

function on C, such that for every ζ ∈ C, g#(ζ) ≤ g#(0) = kA+ 1.

Lemma 2.2 (see [1, pp. 118–119, 122–123]) Let f be a meromorphic function on C. If f#

is uniformly bounded on C, then the order of f is at most 2. If f is an entire function, then

the order of f is at most 1.

Lemma 2.3 Let f be an entire function of finite order ρ(f) on C, all of whose zeros have

multiplicity at least k, where k ≥ 2 is an integer and a ̸= 0 is a constant. Suppose that ρ(f) ≤ 1

and f(z) satisfies the following two conditions:

(a) f(z) = 0 =⇒ |f (k)(z)| < |a|;
(b) f (k)(z) ̸= a.

Then

f(z) =
b(z − z0)

k

k!
,

where b ̸= a and z0 are constants.

Proof We separate it into two cases.

Case 1 f is a transcendental entire function on C.
By ρ(f (k)) = ρ(f) ≤ 1 and f (k) ̸= a, we have f (k)(z) = a+B exp(Aζ), where A,B ∈ C∗ are

two constants.

By calculation,

f(z) =
azk

k!
+ ak−1z

k−1 + · · ·+ a0 +BA−k exp(Aζ),

where ak−1, · · · , a0 are constants.

So there exist zm, zm → ∞, such that f(zm) = 0, m = 1, 2, · · · . By the condition that all

zeros of f have multiplicity at least k (≥ 2), we have f ′(zm) = 0. Set

P (z) = A−1f ′(z)− f(z).
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It is obvious to see that P is a polynomial and P (zm) = 0, m = 1, 2, · · · . Then we have

P (z) ≡ 0, f(z) = C exp(Az), where C ̸= 0 is a constant, a contradiction.

Case 2 f is a polynomial.

Then by f (k) ̸= a, we have f (k)(z) = b, where b ̸= a is a constant. Since all zeros of f have

multiplicity at least k (≥ 2),

f(z) =
b(z − z0)

k

k!
,

where z0 is a constant.

Lemma 2.4 Let {fn} be a sequence of functions holomorphic on a domain D ⊂ C, all of
whose zeros have multiplicity at least k and {hn} be a sequence of functions analytic on D such

that hn(z) =⇒ h(z) on D, where h(z) ̸= 0 for z ∈ D and k ≥ 2 is an integer. Suppose that, for

each n, fn(z) = 0 =⇒ |f (k)
n (z)| < |hn(z)| and f

(k)
n (z) ̸= hn(z). Then {fn} is normal on D.

Proof Suppose to the contrary that there exists a z0 ∈ D such that {fn} is not normal at

z0. The convergence of {hn} to h implies that, in some neighborhood of z0, we have fn(z) =

0 =⇒ |f (k)
n (z)| ≤ |h(z0)| + 1 (for large enough n). Thus we can apply Lemma 2.1 with α = k

and A = |h(z0)|+1. So we can take an appropriate subsequence of {fn} (denoted also by {fn}
after renumbering), together with points zn → z0 and positive numbers ρn → 0+ such that

gn(ζ) =
fn(zn + ρnζ)

ρkn

χ
=⇒ g(ζ), on C,

where g is a nonconstant entire function, all of whose zeros have multiplicity at least k and

g♯(ζ) ≤ g♯(0) = k(|h(z0)|+ 1) + 1.

We claim that g = 0 =⇒ |g(k)| ≤ |h(z0)| and g(k) ̸= h(z0).

In fact, if there exists a ζ0 ∈ C, such that g(ζ0) = 0, then since g(ζ) ̸≡ 0, there exist ζn,

ζn → ζ0, such that if n is sufficiently large,

gn(ζn) =
fn(zn + ρnζn)

ρkn
= 0.

Thus fn(zn + ρnζn) = 0, so that |f (k)
n (zn + ρnζn)| < |hn(zn + ρnζn)|, i.e., |g(k)n (ζn)| < |hn(zn +

ρnζn)|. Since |g(k)(ζ0)| = lim
n→∞

|g(k)n (ζn)| ≤ |h(z0)|, we have established the first part of the

claim.

Now, suppose that there exists a ζ0 ∈ C, such that g(k)(ζ0) = h(z0). If g(k)(ζ) ≡ h(z0),

then we have g♯(0) ≤ k|h(z0)|, which contradicts g♯(0) = k(|h(z0)| + 1) + 1. Thus g(k) is not

constant. So by Hurwitz’s theorem, there exist ζn, ζn → ζ0, such that

f (k)
n (zn + ρnζn)− hn(zn + ρnζn) = g(k)n (ζn)− hn(zn + ρnζn) = 0,

which contradicts f
(k)
n ̸= hn. This completes the proof of the claim.

By Lemma 2.3,

g(ζ) =
b

k!
(ζ − ζ0)

k,

where ζ0 ∈ C and b ̸= h(z0) are constants. Since g(ζ0) = 0, |g(k)(ζ0)| = |b| ≤ |h(z0)|. We have

g♯(0) ≤ k|b| ≤ k|h(z0)|, a contradiction. The lemma is proved.
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Lemma 2.5 Let h be a holomorphic function on D with a zero of order ℓ (≥ 1) at z0 ∈ D,

{fn}∞1 be a sequence of functions such that {fn} and h satisfy conditions (a) and (b) of Theorem

1.3. Let {αn}∞n=1 be a sequence of nonzero numbers such that αn → 0 as n → ∞. Then

(a)
{ fn(z0+αnζ)

αk+ℓ
n

}∞
n=1

is normal in C∗.

In addition, if
fn(z0 + αnζ)

αk+ℓ
n

=⇒ G(ζ), on C∗ (or on C),

where G(ζ) ̸≡ 0, then

(b)

( i ) G(ζ0) = 0 =⇒ |G(k)(ζ0)| ≤ |ζℓ0| for every ζ0 ∈ C∗ (or for every ζ0 ∈ C);
(ii) If G(k)(ζ) ̸≡ ζℓ, then G(k)(ζ) ̸= ζℓ.

Proof Without loss of generality, we may assume that z0 = 0. In a neighborhood of the

origin, we have h(z) = zℓb(z), where b(z) is analytic, b(0) ̸= 0. Without loss of generality, we

can assume that b(0) = 1. Define rn(ζ) = ζℓb(αnζ). We will show that the assumptions of

Lemma 2.4 hold in C∗ for the sequence {Gn(ζ)}∞n=1, Gn(ζ) :=
fn(αnζ)

αk+ℓ
n

and {rn(ζ)}∞n=1. First,

we have that rn(ζ) =⇒ ζℓ on C and ζℓ ̸= 0 in C∗. Assume that Gn(ζ) = 0. Hence fn(αnζ) = 0

and |f (k)
n (αnζ)| < |(αnζ)

ℓb(αnζ)|, and we get |G(k)
n (ζ)| < |rn(ζ)|. Obviously, we have

G(k)
n (ζ) =

f
(k)
n (αnζ)

αℓ
n

̸= h(αnζ)

αℓ
n

= rn(ζ),

which means that the assumptions of Lemma 2.4 hold. Hence we deduce that {Gn(ζ)} is normal

in C∗, and (a) is proved.

Suppose now that G(ζ0) = 0. Then there exist ζn → ζ0 such that Gn(ζn) = 0, i.e.,

fn(αnζn) = 0. It then follows that |f (k)
n (αnζn)| < |αℓ

nζ
ℓ
nb(αnζn)|, and this implies |G(k)

n (ζn)| <
|ζℓnb(αnζn)|. Letting n → ∞, |G(k)(ζ0)| ≤ |ζℓ0|, so (i) of (b) is proved.

For the proof of (ii), observe first that

f
(k)
n (αnζ)

αℓ
nb(αnζ)

= G(k)
n (αnζ)b(αnζ)

χ
=⇒ G(k)(ζ), on C . (2.1)

If G(k)(ζ0) = ζℓ0, then by (2.1) we have ζn → ζ0 such that

f (k)
n (αnζn) =

[
αℓ
nb(αnζn)

]
ζℓn = h(αnζn),

which contradicts the condition (b) of Theorem 1.3. This completes the proof of the lemma.

3 Proof of Theorem 1.3

By Lemma 2.4, F is normal at every point z0 ∈ D at which h(z0) ̸= 0 (so that F is

quasinormal in D). Consider z0 ∈ D such that h(z0) = 0. Without loss of generality, we can

assume z0 = 0. Then

h(z) = zℓb(z), (3.1)
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where ℓ (≥ 1) is an integer, b(z) ̸= 0 is an analytic function in ∆(0, δ) and we can assume

also that b(0) = 1. We take a subsequence {fn}∞1 ⊂ F , and we want to prove that {fn} is

normal at z = 0. Suppose by negation that {fn} is not normal at z = 0. Since {fn} is normal

in ∆′(0, δ), we can assume (after renumbering) that fn =⇒ F on ∆′(0, δ). If F (z) ̸≡ ∞, then

it is a holomorphic function. Hence by the maximum principle, F extends to be analytic also

at z = 0. So fn =⇒ F on ∆(0, δ), and we are done. Hence we assume that

fn(z) =⇒ ∞, on ∆′(0, δ). (3.2)

Define F1 =
{
Fn = fn

h : n ∈ N
}
. It is enough to prove that F1 is normal in ∆(0, δ). Indeed,

if (after renumbering) fn(z)
h =⇒ H(z) on ∆(0, δ), then since h ̸= 0 in ∆′(0, δ), it follows from

(3.2) that H(z) ≡ ∞ in ∆′(0, δ), and thus H(z) ≡ ∞ also in ∆(0, δ). In particular, fn
h (z) ̸= 0

on each compact subset of ∆(0, δ) for large enough n. Since h ̸= 0 on ∆′(0, δ) and fn(0) ̸= 0

for every n ≥ 1, by the assumptions of the theorem, we obtain fn(z) ̸= 0 on each compact

subset of ∆(0, δ) for large enough n. Then by the minimum principle, it follows from (3.2) that

fn(z) =⇒ ∞ on ∆(0, δ), and this implies the normality of F . So suppose to the contrary that

F1 is not normal at z = 0. By Lemma 2.1 and the assumptions of Theorem 1.3, there exist

(after renumbering) points zn → 0, ρn → 0+ and a nonconstant meromorphic function on C,
g(ζ) such that

gn(ζ) =
Fn(zn + ρnζ)

ρkn
=

fn(zn + ρnζ)

ρknh(zn + ρnζ)

χ
=⇒ g(ζ), on C, (3.3)

all of whose zeros have multiplicity at least k and

for every ζ ∈ C, g♯(ζ) ≤ g♯(0) = kA+ 1, (3.4)

where A > 1 is a constant. Here we have used Lemma 2.1 with α = k. Observe that gn(ζ) = 0

implies |g(k)n (ζ)| < 1 and so A can be chosen to be any number such that A ≥ 1. After

renumbering, we can assume that
{

zn
ρn

}∞
n=1

converges. We separate it now into two cases.

Case 1

zn
ρn

→ ∞. (3.5)

Claim (1) g(ζ) = 0 =⇒ |g(k)(ζ)| ≤ 1; (2) g(k)(ζ) ̸= 1.

Proof of the Claim From (3.3) and the fact that h(z) ̸= 0 in ∆′(0, δ), we have that

g is an entire function. Suppose g(ζ0) = 0. Since g(ζ) ̸≡ 0, there exist ζn → ζ0, such that

gn(ζn) = 0. Thus fn(zn + ρnζn) = 0. By assumption, we then have f
(j)
n (zn + ρnζn) = 0 and

|f (k)
n (zn + ρnζn)| < |h(zn + ρnζn)|, where j = 2, 3, · · · , k − 1. Thus |g(k)n (ζn)| < 1. Letting

n → ∞, we obtain |g(k)(ζ0)| ≤ 1.

If there exists a ζ0 ∈ C such that g(k)(ζ0) = 1, then there exists a neighborhood U = U(ζ0)

of ζ0, such that the functions g
(j)
n are analytic on U for sufficiently large n, j = 0, 1, · · · , k + 1.
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Obviously,

g(k)n (ζ) = F (k)
n (zn + ρnζ) =

(fn(z)
h(z)

)(k)∣∣∣
z=zn+ρnζ

=
[f (k)

n (z)

h(z)
+

k∑
j=1

(
k

j

)
f (k−j)
n (z)

( 1

h(z)

)(j)]∣∣∣
z=zn+ρnζ

.

By Leibniz’s formula, we have that

f (k−j)
n (z) = [Fn(z)h(z)]

(k−j)
=

k−j∑
s=0

(
k − j

s

)
ρj+s
n g(k−j−s)

n

(z − zn
ρn

)
h(s)(z)

and ( 1

h(z)

)(j)

= [z−ℓb̃(z)](j) = z−ℓ−j [(−1)jℓ(ℓ+ 1) · · · (ℓ+ j − 1)̃b(z) + P (z)],

where b̃(z) = 1
b(z) , and P (z) is holomorphic on ∆(0, δ) with P (0) = 0.

Since

ρj+s
n h(s)(z)z−ℓ−j |z=zn+ρnζ = ρj+s

n zℓ−sQ(z)z−ℓ−j |z=zn+ρnζ

=
ρj+s
n

(zn + ρnζ)j+s
Q(zn + ρnζ) =⇒ 0

on C, where Q(z) is holomorphic on ∆(0, δ) and Q(0) = ℓ(ℓ− 1) · · · (ℓ− s+ 1) ̸= 0, we have

f (k−j)
n (z)

( 1

h(z)

)(j)∣∣∣
z=zn+ρnζ

=

k−j∑
s=0

(
k − j

s

)
ρj+s
n g(k−j−s)

n

(z − zn
ρn

)
h(s)(z)

× z−ℓ−j [(−1)jℓ(ℓ+ 1) · · · (ℓ+ j − 1)̃b(z) + P (z)]
∣∣∣
z=zn+ρnζ

=⇒ 0, on C \ {the poles of g}. (3.6)

Now
f
(k)
n (zn + ρnζ)

h(zn + ρnζ)
=⇒ g(k)(ζ), on C \ {the poles of g}.

So
f(k)
n (zn+ρnζ)
h(zn+ρnζ)

converges locally uniformly to g(k)(ζ) on U . By (3.4) we deduce that

g(k)(ζ) ̸≡ 1. Thus there exist ζn → ζ0, such that
f(k)
n (zn+ρnζn)
h(zn+ρnζn)

= 1. So

f (k)
n (zn + ρnζn) = h(zn + ρnζn), (3.7)

which contradicts the condition (b) of Theorem 1.3. Then the claim is proved.

Also by Lemma 2.3, we have

g(ζ) =
b

k!
(ζ − ζ0)

k,

where ζ0 ∈ C and b ̸= 1 are constants. Since g(ζ0) = 0, |g(k)(ζ0)| = |b| ≤ 1. We have

g♯(0) ≤ k|b| ≤ k, a contradiction.

Case 2

zn
ρn

→ α ∈ C. (3.8)
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As before, we have g(ζ0) = 0 =⇒ |g(k)(ζ0)| ≤ 1. Now set

Gn(ζ) =
fn(ρnζ)

ρk+ℓ
n

.

From (3.3) and (3.8) we have

Gn(ζ) =⇒ G(ζ) = g(ζ − α)ζℓ, on C.

Indeed,
fn(ρnζ)

ρk+ℓ
n

=
fn(ρnζ)

ρknh(ρnζ)
· h(ρnζ)

ρℓn
=

fn(zn + ρn(ζ − zn
ρn

))

ρknh
(
zn + ρn(ζ − zn

ρn
))

(ρnζ)
ℓb(ρnζ)

ρℓn

(see [10, p. 7]). Since g has a pole of order ℓ at ζ = −α,

G(0) ̸= 0, ∞. (3.9)

We now consider several subcases, depending on the nature of G.

Case 2.1 G is a polynomial.

Since {fn} is not normal at z = 0, there exists (after renumbering) a sequence z∗n → 0 such

that

fn(z
∗
n) = 0. (3.10)

Otherwise, there is some δ′, 0 < δ′ < δ such that (before renumbering) fn(z) ̸= 0 in ∆(0, δ′).

Since fn(z) =⇒ ∞ on ∆′(0, δ), by the minimum principle, we would have that fn(z) =⇒ ∞ on

∆(0, δ), a contradiction to the non-normality of {fn} at z = 0. If G is a polynomial of degree

ℓ ≥ 1, then by Lemma 2.5 and (3.9), all zeros of G(ζ) have multiplicity exactly k. We consider

now two kinds of possibilities.

Case 2.1.1 G(k) ≡ ζℓ.

Since k ≥ 2, we have G(k−1)(ζ) = ζℓ+1

ℓ+1 + C and G(k−2)(ζ) = ζℓ+2

(ℓ+1)(ℓ+2) + Cζ +D, where C

and D are two constants. Since all zeros of G have multiplicity at least k, for any zero ζj of G,

we have G(k−2)(ζj) = G(k−1)(ζj) = 0. So

ζℓ+1
j

ℓ+ 1
+ C = 0 and

ζℓ+2
j

(ℓ+ 1)(ℓ+ 2)
+ Cζj +D = 0. (3.11)

By calculation, we have (ℓ+1)C
ℓ+2 ζj = −D. If CD = 0, then by (3.11), ζj = 0, a contradiction.

So CD ̸= 0 and ζj = − (ℓ+2)D
(ℓ+1)C , which implies that G has only one zero ζ0. Thus

G =
ℓ!(ζ − ζ0)

k+ℓ

(k + ℓ)!
. (3.12)

Since G(k) ≡ ζℓ, ζ0 = 0, a contradiction.

Case 2.1.2 G(k) ̸≡ ζℓ.

By Lemma 2.5, we have G(ζ) = 0 =⇒ |G(k)(ζ)| ≤ |ζℓ| and G(k) ̸= ζℓ. So G is a nonconstant

polynomial and G(k) = ζℓ+B, where B ̸= 0 is a constant. Since all zeros of G have multiplicity
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at least k, for any zero ζj of G, we have G(k−2)(ζj) = G(k−1)(ζj) = 0. So

ζℓ+1
j

ℓ+ 1
+Bζj + C = 0 and

ζℓ+2
j

(ℓ+ 1)(ℓ+ 2)
+

Bζ2j
2

+ Cζj +D = 0. (3.13)

By calculation, we have ℓB
2(ℓ+2)ζ

2
j + C(ℓ+1)

ℓ+2 ζj + D = 0, which implies that G has at most two

zeros ζ1, ζ2. Then we divide it into two subcases.

Case 2.1.2(a) G has only one zero ζ1.

Set

G(ζ) =
ℓ!

(k + ℓ)!
(ζ − ζ1)

k+ℓ. (3.14)

Since G(k) = ζℓ +B, we have ℓ = 1 and ζ1 = −B. So

G(ζ) =
(ζ +B)k+1

(k + 1)!
. (3.15)

By Hurwitz’s theorem, there exists a sequence ζn,0 → −B, such that Gn(ζn,0) = 0. If there

exists a δ′, 0 < δ′ < δ, such that for every n (after renumbering), fn(z) has only one zero

zn,0 = ρnζn,0 in ∆(0, δ′).

Set

Hn(z) =
fn(z)

(z − zn,0)k+1
.

Since Hn(z) is a nonvanishing holomorphic function in ∆(0, δ′) and Hn(z) =⇒ ∞ on ∆′(0, δ),

we can deduce as before by the minimum principle that Hn(z) =⇒ ∞ on ∆(0, δ′). But

Hn(2zn,0) =
fn(2zn,0)

zk+1
n,0

=
Gn(2ζn,0)

ζk+1
n,0

→ 1

(k + 1)!
, (3.16)

a contradiction. Thus, we can assume, after renumbering, that for every δ′ > 0, fn has at

least two zeros in ∆(0, δ′) for large enough n. Thus, there exists another sequence of points

zn,1 = ρnζn,1, tending to zero, where zn,1 is also a zero of fn(z) and ζn,1 → ∞, as n → ∞. We

can also assume that zn,1 is the closest zero to the origin of fn, except zn,0. Now set cn =
zn,0

zn,1

and define Kn(ζ) =
fn(zn,1ζ)

zk+1
n,1

. By Lemma 2.5, {Kn(ζ)} is normal in C∗. Now, if {Kn} is normal

at ζ = 0, then after renumbering we can assume that

Kn(ζ) =⇒ K(ζ), on C.

Since Kn(cn) = 0 and cn → ∞, letting n → ∞, we obtain K(0) = 0. Also we have K(k)(ζ) ≡ ζ

or K(k)(ζ) ̸= ζ, by K
(k)
n (ζ) =

f(k)
n (zn,1ζ)

zn,1
̸= ζb(zn,1ζ).

If K(k)(ζ) ≡ ζ, by K(0) = 0, we have K(ζ) = zk+1

(k+1)! , which contradicts K(1) = 0.

If K(k)(ζ) ̸= ζ, by Lemma 2.5, we have K(ζ) = 0 =⇒ |K(k)(ζ)| ≤ |ζ| and then K(k)(0) = 0,

a contradiction.

Hence we can deduce that {Kn} is not normal at ζ = 0. Since Kn(ζ) is holomorphic in ∆,

we have

Kn(ζ) =⇒ ∞, on C∗.
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But Kn(1) = 0, a contradiction.

Case 2.1.2(b) G has exactly two distinct zeros ζ1, ζ2.

By G(k+1) = ℓζℓ−1, we have that none of the two zeros of G has multiplicity at least k + 2.

If both of the two zeros of G has multiplicity exactly k + 1, then we may assume that

G(ζ) =
ℓ!

(k + ℓ)!
(ζ − ζ1)

k+1(ζ − ζ2)
k+1. (3.17)

Since G(k)(ζ) = ζℓ + B, by calculation, we have ℓ = k + 2 and ζ1 + ζ2 = 0, ζ1ζ2 = 0, a

contradiction.

If only one of the two zeros of G have multiplicity exactly k + 1, then we may assume that

G(ζ) =
ℓ!

(k + ℓ)!
(ζ − ζ1)

k+1(ζ − ζ2)
k. (3.18)

By (3.18),

G(ζ) =
ℓ!

(k + ℓ)!
(ζ − ζ1)

[
ζ2k − k(ζ1 + ζ2)ζ

2k−1 +
(
kζ1ζ2 +

(
k

2

)
(ζ1 + ζ2)

2
)
ζ2k−2 + · · ·

]
.

Since G(k)(ζ) = ζℓ +B, by calculation, we have ℓ = k + 1 and

k(ζ1 + ζ2) + ζ1 = 0, k(ζ1 + ζ2)ζ1 + kζ1ζ2 +

(
k

2

)
(ζ1 + ζ2)

2 = 0, (3.19)

which means ζ1 = 0, a contradiction.

If both of the two zeros of G have multiplicity exactly k, then we may assume that

G(ζ) =
ℓ!

(k + ℓ)!
(ζ − ζ1)

k(ζ − ζ2)
k. (3.20)

Since G(k)(ζ) = ζℓ +B, by calculation, we have ℓ = k and ζ1 + ζ2 = 0.

For k ≥ 3, we also have ζ1ζ2 = 0, a contradiction.

For k = 2, we have

G(ζ) =
1

12
(ζ − ζ1)

2(ζ + ζ1)
2. (3.21)

By Hurwitz’s theorem, there exist sequences ζn,1 → ζ1, ζn,2 → −ζ1, such that Gn(ζn,j) = 0,

j = 1, 2. If there exists a δ′, 0 < δ′ < δ, such that for every n (after renumbering), fn(z) has

only two zeros zn,j = ρnζn,j , j = 1, 2 in ∆(0, δ′).

Set

Hn(z) =
fn(z)

(z − zn,1)2(z − zn,2)2
.

Since Hn(z) is a nonvanishing holomorphic function in ∆(0, δ′) and Hn(z) =⇒ ∞ on ∆′(0, δ),

we can deduce as before by the minimum principle that Hn(z) =⇒ ∞ on ∆(0, δ′). But

Hn(2zn,1) =
fn(2zn,1)

z2n,1(2zn,1 − zn,2)2
=

Gn(2ζn,1)

ζ2n,1(2ζn,1 − ζn,2)2
→ 1

12
, (3.22)

a contradiction. Thus, we can assume, after renumbering, that for every δ′ > 0, fn has at

least two zeros in ∆(0, δ′) for large enough n. Thus, there exists another sequence of points
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zn,3 = ρnζn,3 tending to zero, where zn,3 is also a zero of fn(z) and ζn,3 → ∞, as n → ∞. We

can also assume that zn,3 is the closest zero to the origin of fn, except zn,j , j = 1, 2. Now set

cn,j =
zn,j

zn,3
, j = 1, 2 and define Kn(ζ) =

fn(zn,3ζ)

z4
n,3

. By Lemma 2.5, {Kn(ζ)} is normal in C∗.

Now, if {Kn} is normal at ζ = 0, then after renumbering we can assume that

Kn(ζ) =⇒ K(ζ), on C.

Since Kn(cn,j) = 0 and cn,j → ∞, j = 1, 2, letting n → ∞, we obtain K(0) = 0. Also we have

K ′′(ζ) ≡ ζ2 or K ′′(ζ) ̸= ζ2, by K ′′
n(ζ) =

f ′′
n (zn,3ζ)

z2
n,3

̸= ζ2b(zn,3ζ).

If K ′′(ζ) ≡ ζ2, by K(0) = 0, we have K(ζ) = ζ4

12 , which contradicts K(1) = 0.

If K ′′(ζ) ̸= ζ2, by Lemma 2.5, we have K(ζ) = 0 =⇒ |K ′′(ζ)| ≤ |ζ2| and then K ′′(0) = 0, a

contradiction.

Hence we can deduce that {Kn} is not normal at ζ = 0. Since Kn(ζ) is holomorphic in ∆,

we have

Kn(ζ) =⇒ ∞, on C∗.

But Kn(1) = 0, a contradiction.

Case 2.2 G(ζ) is a transcendental entire function.

By Lemma 2.5, we have

G(ζ) = 0 =⇒ |G(k)(ζ)| ≤ |ζℓ| and G(k)(ζ) ̸= ζℓ. (3.23)

Since G is a transcendental entire function with order at most 1, we have

G(k)(ζ) = ζℓ +B exp(Aζ), (3.24)

where A ̸= 0, B ̸= 0 are two constants. By calculation,

G(ζ) =
ℓ!

(k + ℓ)!
ζk+ℓ + ak−1ζ

k−1 + · · ·+ a0 +BA−k exp(Aζ). (3.25)

Obviously, G has infinitely many zeros ζm on C, and ζm → ∞, m → ∞. By (3.23), |G(k)(ζm)| =
|ζℓm +B exp(Aζm)| ≤ |ζℓm|, there exists an M > 0, such that, for every m,∣∣∣exp(Aζm)

ζℓm

∣∣∣ ≤ M.

But ∣∣∣G(ζm)

ζℓm

∣∣∣ = ∣∣∣ ℓ!

(k + ℓ)!
ζkn + ak−1ζ

k−1−ℓ
m + · · ·+ a0ζ

−ℓ
m +

BA−k exp(Aζm)

ζℓm

∣∣∣ → ∞,

a contradiction. The theorem is proved.
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