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Abstract The authors investigate the influence of a harmonic potential and random
perturbations on the nonlinear Schrödinger equations. The local and global well-posedness
are proved with values in the space Σ(Rn) = {f ∈ H1(Rn), | · |f ∈ L2(Rn)}. When the
nonlinearity is focusing and L2-supercritical, the authors give sufficient conditions for the
solutions to blow up in finite time for both confining and repulsive potential. Especially for
the repulsive case, the solution to the deterministic equation with the initial data satisfying
the stochastic blow-up condition will also blow up in finite time. Thus, compared with the
deterministic equation for the repulsive case, the blow-up condition is stronger on average,
and depends on the regularity of the noise. If ϕ = 0, our results coincide with the ones for
the deterministic equation.
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1 Introduction

In this paper, we are concerned with the stochastic Schrödinger equation with harmonic

potential

iut +∆u+ θ|x|2u+ λ|u|2σu = ξ̇, (t, x) ∈ R+ × Rn. (1.1)

This type of equations rises from both physical and mathematical considerations. When

θ < 0, the equation models Bose-Einstein condensations and the sign of λ stands for different

chemical elements (see [5, 7]). The nonlinearity describes the interactions between the particles.

The additive noise ξ̇ expresses the random perturbations. It is a basic generalization to the

stochastic case which is more natural in physics because of the effects of the random media.

Mathematically, we are familiar with the properties of the solution to the classical NLS without

potential (see [8])

i∂tu+∆u+ λ|u|2σu = 0. (1.2)
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The local well-posedness (LWP) is well-known within the energy space H1(Rn). And the

global well-posedness (GWP) holds for the defocusing (λ < 0) or L2-subcritical (σ < 2
n )

nonlinearities. However, when λ > 0 and σ ≥ 2
n , there exist solutions to (1.2) which blow up in

finite time. We also know from the work of R. Carles (see [5–6]) that a harmonic potential may

strongly enhance or prevent the blow-up phenomenon according to the sign and the strength of

the potential. On the other hand, A. de Bouard and A. Debussche studied in [1–3] the equation

(1.2) with an additive noise or a multiplicative noise. We are interested in the problem that

how it will affect the long-time behavior of the solution when an additive noise acts on the

classical NLS with harmonic potential, i.e., (1.1).

We study the Cauchy problem{
i∂tu+∆u+ θ|x|2u+ λ|u|2σu = ξ̇, (t, x) ∈ R+ × Rn,
u(0) = u0,

(1.3)

where λ, θ ∈ R \ {0}, σ ≥ 0 and σ < 2
n−2 if n ≥ 3. The noise ξ̇ is white in time and colored in

space. As in [1–3], we mention that we could not deal with the space-time white noise because

of the lack of smoothing effects of the Schrödinger operators. In this paper, we first prove a local

existence of the solutions with values in Σ on a stopping time interval, where the maximality

of the existence time is relative to the Σ-norm of the initial data. There is no conservation of

energy for the stochastic system (1.3). But we can study the evolution of the energy or part

of the energy to get the global existence for the defocusing or the L2-subcritical nonlinearities.

To study the blow-up phenomenon, we use “the variance identity” method but in a stochastic

version. In the case of a repulsive potential (θ > 0), we prove for a class of initial data in Σ

that the solution to (1.3) will blow up in finite time. (However, in a weaker sense, see Theorem

4.1.) We mention that compared with the deterministic equation, this condition is stronger on

average, and depends on the regularity of the noise. If ϕ = 0, our results coincide with the ones

for the deterministic equation. In the case of a confining potential (θ < 0), we give a sufficient

condition for u0 under which the solution u will blow up before T = π
4
√
−θ

.

This paper is organized as follows. In Section 2, we set some notations and some properties

with respect to the operators which play an important role in our proof. In Section 3, we

prove the local well-posedness and global existence for equation (1.3) in space Σ(Rn). The

results are analogues to the deterministic equation but the proof is more complicate because

of the random perturbations. Section 4 is devoted to the blow-up phenomenon. We derive the

sufficient conditions for the solution to blow up in finite time for both confining (resp. θ < 0)

and repulsive (resp. θ > 0) potential.

2 Notations and Preliminaries

Throughout this paper, we consider the probability space (Ω,F , P ) endowed with a normal

filtration (Ft)t≥0. Let (βk)k∈N be a sequence of independent real valued Brownian motion on

R+ and (ek)k∈N be an orthogonormal basis of some Hilbert space U . Then the process

W (t, x, ω) =
∞∑
k=0

βk(t, ω)ϕek(x), t ≥ 0, x ∈ Rn, ω ∈ Ω

is an H-valued Wiener process, where ϕ is a Hilbert-Schmidt operator from U to some Hilbert

space H. We denote the space of all the Hilbert-Schmidt operators from U to H by L2(U,H),
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with the norm

∥ϕ∥L2(U,H)2 =
∑
l∈N

∥ϕel∥2H .

Set ξ̇ = ∂W
∂t . Then (1.1) can be rewritten as

idu+ (∆u+ θ|x|2u+ λ|u|2σu)dt = dW. (2.1)

Denote Uθ(t) = exp{it(∆ + θ|x|2)}. Then (2.1) can be expressed by Duhamel’s principle as

u(t) = Uθ(t)u0 + iλ

∫ t

0

Uθ(t− s)(|u|2σu)(s)ds− i

∫ t

0

Uθ(t− s)dW (s). (2.2)

We will consider the equation of this mild form. Recall that Uθ(t) has the following properties

(see [5–6]).

Lemma 2.1 (Strichartz Estimates for Uθ)

(1) If θ > 0, then for any admissible pair (q, r), (q1, r1), (q2, r2) and any interval I, there

exist Cr, Cr1,r2 independent of θ and I, such that

∥Uθ(·)φ∥Lq(I,Lr) ≤ Cr∥φ∥L2

for every φ ∈ L2(Rn), and∥∥∥ ∫
I∩{s≤t}

Uθ(t− s)F (s)ds
∥∥∥
Lq1 (I,Lr1 )

≤ Cr1,r2∥F∥
Lq′2 (I,Lr′2 )

for every F ∈ Lq′2(I, Lr′2).

(2) If θ < 0, then for any interval I contained in [0, π
4ν ], where ν =

√
−θ, the inequalities

stated in (1) also hold.

Here a pair (q, r) is said to be admissible if 2 ≤ r < 2n
n−2 (resp., 2 ≤ r ≤ ∞ if n = 1,

2 ≤ r < ∞ if n = 2) and

2

q
= δ(r) = n

(1
2
− 1

r

)
.

The following operators which were introduced by R. Carles in [5] and [6] will be used in

our paper. In the case θ > 0, setting µ =
√
θ, we use

J+(t) = µx sinh(2µt) + i cosh(2µt)∇x, K+(t) = x cosh(2µt) +
i

µ
sinh(2µt)∇x. (2.3)

In the case θ < 0, setting ν =
√
−θ, we use

J−(t) = νx sin(2νt)− i cos(2νt)∇x, K−(t) = x cos(2νt) +
i

ν
sin(2νt)∇x. (2.4)

Recall that J±(t), K±(t) have some nice properties (see [5–6]).

Lemma 2.2 J±(t), K±(t) satisfy the following properties:

(1)

J±(t) = ±Uθ(t)i∇xUθ(−t), K±(t) = Uθ(t)xUθ(−t), (2.5)
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and they commute with the linear part of (1.1), that is,

[i∂t +∆+ θ|x|2, J±(t)] = [i∂t +∆+ θ|x|2,K±(t)] = 0.

(2) If θ > 0, the modified Gagliardo-Nirenberg inequalities hold. For r ≥ 2 and r < 2n
n−2 if

n ≥ 3, there exists a Cr such that for any f ∈ Σ,

∥f∥Lr ≤ Cr

(cosh(2µt))δ(r)
∥f∥1−δ(r)

L2 ∥J+(t)f∥δ(r)L2 , ∀t ∈ R, (2.6)

∥f∥Lr ≤ Cr

(sinh(2µt))δ(r)
∥f∥1−δ(r)

L2 ∥K+(t)f∥δ(r)L2 , ∀t ̸= 0. (2.7)

(3) If θ < 0, with r, f defined as in (2), we have

∥f∥Lr ≤ Cr∥f∥1−δ(r)
L2 (∥J−(t)f∥L2 + ∥K−(t)f∥L2)δ(r). (2.8)

(4) If F ∈ C1(C,C) is of the form F (z) = zG(|z|2), then they act like derivatives on F, that

is,

J±(t)F (u) = ∂zF (u)J±(t)u− ∂zF (u)J±(t)u, if θ < 0, t /∈ π

2ν
Z, (2.9)

K±(t)F (u) = ∂zF (u)K±(t)u− ∂zF (u)K±(t)u, if θ < 0, t /∈ π

4ν
+

π

2ν
Z. (2.10)

Remark 2.1 When we discuss the local well-posedness in Section 3.1, we will not distin-

guish the proof according to the sign of θ, since it does not change our proof essentially. So for

simplicity, we will use J , K to denote J+ (resp. J−), K+ (resp. K−) when θ > 0 (resp. θ < 0).

We will use some quantities relative to ϕ several times throughout this paper, so we set the

following notations for simplicity:

cΣϕ =
∑
l

∫
Rn

|x|2|ϕel|2dx, c1ϕ =
∑
l

∥∇ϕel∥2L2 , c2ϕ =
∑
l

Im

∫
Rn

ϕelx · ∇(ϕel)dx.

We also use C to denote different constants, and C(·) to emphasize the dependence. ε will

denote different quantities which can be chosen arbitrarily small.

3 Some Well-posedness Results

3.1 Local well-posedness

In this section, we prove the local existence and uniqueness of the solution to (2.2) with

paths in the following set:

Yr(T,M) ={f ∈ C([0, T ],Σ) : A(·)f ∈ Lq(0, T ;Lr) ∩ C([0, T ], L2),

and ∥A(·)u∥Lq
TLr + ∥A(·)u∥L∞

T L2 ≤ M, ∀A(t) ∈ {J(t),K(t), Id}} (3.1)

equipped with the distance

dr(T )(u, v) = ∥u− v∥L∞
T L2 + ∥u− v∥Lq

TLr , (3.2)

where r = 2σ + 2 and (q, r) is an admissible pair. T,M > 0 will be fixed later. We claim that

(Yr(T,M), dr(T )) is a complete metric space. Let Y (T,M) be the intersection of the spaces

Yr(T,M) where (q, r) takes values of all admissible pairs. The LWP result is as follows.
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Theorem 3.1 Assume σ ≥ 0 and σ < 2
n−2 if n ≥ 3, ϕ is a Hilbert-Schmidt operator from

L2(Rn) into Σ. For any F0-measurable random variable u0 with values in Σ, there exists a

τ∗ and for any τ < τ∗ a.s., there exists a unique solution u to (2.1) in Yr(τ,M) such that

u(0) = u0 a.s.. Moreover, u belongs to Y (τ,M) a.s.. Here, τ∗(u0) is a stopping time and is

maximal in the following sense:

τ∗(u0, ω) = +∞ or lim
t↗τ∗(u0,ω)

∥u(t, ω)∥Σ = +∞. (3.3)

We prove this theorem pathwise, that is, for fixed ω, we prove an existence result in Yr(T,M),

where M and the existence time T depend on ω.

Proof Recall that u satisfing (2.1) is equivalent to that u being the solution to the integral

equation (2.2),

u(t) = Uθ(t)u0 + iλ

∫ t

0

Uθ(t− s)(|u|2σu)(s)ds− i

∫ t

0

Uθ(t− s)dW (s).

Set v(t) = u(t) + z(t), where z(t) = i
∫ t

0
Uθ(t − s)dW (s). Then v(t) satisfies the integral

equation

v(t) = Uθ(t)u0 + iλ

∫ t

0

Uθ(t− s)(|v − z|2σ(v − z))(s)ds. (3.4)

It is reduced to proving that for almost all ω, there exists a unique solution to (3.4) with

paths in Yr(T,M) and initial value u0. We need the following lemma, which will be proved

later.

Lemma 3.1 Under the assumptions of Theorem 3.1, A(·)z ∈ C([0,∞), L2)∩Lq
loc([0,∞), Lr)

almost surely.

Now we are ready to prove the theorem by using the fixed point argument. Set

Hv(t) = Uθ(t)u0 + iλ

∫ t

0

Uθ(t− s)(|v − z|2σ(v − z))(s)ds. (3.5)

Then we need to prove that H is a strict contraction on (Yr(T,M), dr(T )), which leads us

to estimate the L∞
T L2 and the Lq

TL
r-norm of A(·)Hv. Take the operator J(t) for example. By

(1) of Lemma 2.2, we have

J(t)Hv(t) = Uθ(t)i∇xu0 + iλ

∫ t

0

Uθ(t− s)J(s)(|v − z|2σ(v − z))(s)ds. (3.6)

From (4) of Lemma 2.2 we know that J(t) acts on the nonlinearities like derivatives. Then

we can estimate with the help of the Strichartz estimate as follows:

∥J(·)Hv∥L∞
T L2 + ∥J(·)Hv∥Lq

TLr

≤ C∥∇u0∥L2 + CT 1−δ(r)∥v − z∥2σL∞
T Lr∥J(·)(v − z)∥Lq

TLr . (3.7)

Similar estimates also hold for K(t) and Id. For the contraction we have

Hw(t)−Hv(t) = iλ

∫ t

0

Uθ(t− s)(|w − z|2σ(w − z)− |v − z|2σ(v − z))(s)ds (3.8)
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and

∥Hw −Hv∥L∞
T L2 + ∥Hw −Hv∥Lq

TLr

≤ CT 1−δ(r)(∥w − z∥2σL∞
T Lr + ∥v − z∥2σL∞

T Lr )∥w − v∥Lq
TLr . (3.9)

From (3.7) and (3.9), it is not hard to choose the proper T and M with respect to the

Σ-norm of u0, the L
∞
T L2 and the Lq

TL
r-norm of A(·)z for almost all ω ∈ Ω to make sure that H

is a strict contraction on Yr(T,M). And by the fixed point theorem, we get a unique solution

v to (3.4). In fact, by the Strichartz estimate, v is in Y (T,M).

It remains to demonstrate the blow up alternative. From the existence part, we know that

M is chosen only depending on the Σ-norm of the initial data and some constants (depending

on z). We choose Tω = Tω(M) small enough to get a unique solution u ∈ Yr(Tω,M). In

particular, u is in C([0, Tω],Σ). Now we define

τ∗ω = sup{Tω > 0, there exists a solution u on [0, Tω]}. (3.10)

Then we have u ∈ C([0, τ∗ω),Σ).

Assume that there exists a sequence tk ↗ τ∗ω as k → ∞ and ∥u(tk, ω)∥Σ ≤ M̃ . We can

choose k large enough such that tk+Tω(M̃) > τ∗ω. Then by the local existence argument one can

extend the solution u starting from tk to tk + Tω(M̃) > τ∗ω, which contradicts the maximality

of τ∗ω.

Remark 3.1 One can also solve the Cauchy problem pathwise under the L2-scheme by the

Strichartz estimate without using the operators J(t) and K(t), and get the uniqueness in the

space C([0, Tω], L
2) ∩ Lq(0, Tω;L

r) for any Tω < τ̃∗ω, where τ̃∗ω ≥ τ∗ω a.s.. This implies that the

uniqueness showed in Theorem 3.1 holds in the larger space C([0, Tω], L
2) ∩ Lq(0, Tω;L

r) for

any Tω < τ̃∗ω. Considering the stochastic nonlinear Schrödinger equation with multiplicative

noise, de Bouard and Debussche [4] obtained the global existence and uniqueness of solution in

the L2-scheme.

As the end of this section we prove Lemma 3.1 to complete the proof of Theorem 3.1.

Proof of Lemma 3.1 It is a standard result that A(·)z has paths in C([0,∞), L2) with

ϕ ∈ L2(L
2,Σ) (see [9, Theorem 6.10]). We only need to show that A(·)z is in Lq([0, T ], Lr)

almost surely. Set m ≥ q, r. We estimate the m-th moment for ∥A(t)z∥Lq
TLr ,

∥A(t)z∥Lm
ω Lq

TLr ≤ ∥A(t)z∥Lq
TLrLm

ω

= ∥(E|A(t)z|m)
1
m ∥Lq

TLr

≤ C
∥∥∥(∑

l

∫ t

0

|Uθ(t− s)A(s)ϕel|2ds
) 1

2
∥∥∥
Lq

TLr

≤ C
∥∥∥∑

l

∫ t

0

∥Uθ(t− s)A(s)ϕel∥2Lrds
∥∥∥ 1

2

L
q
2
T

≤ C(T )
∥∥∥∑

l

(∫ t

0

∥Uθ(t− s)A(s)ϕel∥qLrds
) 2

q
∥∥∥ 1

2

L
q
2
T

≤ C(T )
(∑

l∈N

(
∥Uθxϕel∥Lq

TLr + ∥Uθ∇ϕel∥Lq
TLr + ∥Uθϕel∥Lq

TLr

)2) 1
2
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≤ C(T )∥ϕ∥L2(L2,Σ).

We have used Burkholder-Davis-Gundy inequality in the third line and the Strichartz estimates

in the last one.

3.2 Global well-posedness

In this section, we consider the GWP for (2.1).

For the classical NLS

iut +∆u+ λ|u|2σu = 0, (3.11)

it is well-known that if we define the energy Hc(u(t)) = 1
2∥∇u∥2L2 − λ

2σ+2∥u∥
2σ+2
L2σ+2 , there is

conservation of energy, i.e., Hc(u(t)) = Hc(u0), ∀t < Tmax. When λ < 0, ∥∇u(t)∥L2 can

be controlled uniformly by Hc(u0), and we get GWP. When λ > 0, by Gagliardo-Nirenberg

inequality, we know that if σ < 2
n , ∥∇u∥2L2 is the main part of energy and can also be controlled

uniformly.

For the NLS with harmonic potential, the energy reads

H(u(t)) =
1

2
∥∇u∥2L2 −

θ

2

∫
Rn

|xu(x)|2dx− λ

2σ + 2
∥u∥2σ+2

L2σ+2 , (3.12)

and there is conservation of energy H(u(t)) = H(u0). It is not obvious that λ < 0 indicates

a uniform control of ∥u∥Σ since θ may be larger than 0. In this case, R. Carles introduced

the operators J+(t) and K+(t) and split the energy into two parts relative to the operators

accordingly,

H1(u(t)) =
1

2
∥J+u(t)∥2L2 −

λ

2σ + 2
cosh2(2µt)∥u(t)∥2σ+2

2σ+2, (3.13)

H2(u(t)) = −µ2

2
∥K+u(t)∥2L2 +

λ

2σ + 2
sinh2(2µt)∥u(t)∥2σ+2

2σ+2, (3.14)

such that H(u(t)) = H1(u(t)) + H2(u(t)). And the analysis for H1 gives the control for the

Σ-norm of the solution.

Here we use the method above but in a stochastic version, and get the next result.

Theorem 3.2 In addition to Theorem 3.1, suppose that θ > 0, and either σ < 2
n or λ ≤ 0.

Then for any F0-measurable u0, the solution u to (2.1) with u(0) = u0 given by Theorem 3.1 is

global, in the sense of τ∗(u0) = +∞, a.s..

Proof We assume first that u0 ∈ L
4σ

2−nσ+2(Ω, L2(Rn))∩L2(Ω,Σ(Rn)). To prove τ∗ = +∞
a.s., we only need to show that for any T0 > 0 and any τ < inf{T0, τ

∗(u0)} a.s., we have

E
(
sup
t≤τ

∥∇u∥2L2

)
< C(ϕ, u0, T0),

E
(
sup
t≤τ

∥| · |u∥2L2

)
< C(ϕ, u0, T0).

(3.15)

From (2.3) we know

xu = cosh(2µt)K+u(t)−
1

µ
sinh(2µt)J+u(t),

∇u = −i cosh(2µt)J+u(t) + iµ sinh(2µt)K+u(t).
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So (3.15) is equivalent to

E
(
sup
t≤τ

∥J+u(t)∥2L2

)
< C(ϕ, u0, T0),

E
(
sup
t≤τ

∥K+u(t)∥2L2

)
< C(ϕ, u0, T0).

(3.16)

We will need the next two lemmas, which can be checked by Itô’s formula and a regulariza-

tion procedure (see [1]).

Lemma 3.2 Under the hypothesis of Theorem 3.1, for any τ < τ∗(u0) a.s., we have

H(u(τ)) = H(u0) +M(τ) +R(τ), (3.17)

where

M(τ) = Im

∫
Rn

∫ τ

0

(∆u+ θ|x|2u+ λ|u|2σu)dWdx, (3.18)

R(τ) =
c1ϕτ

2
− θ

2
τcΣϕ − λ

2

∑
l∈N

∫ τ

0

∫
Rn

|u|2σ|ϕel(x)|2dxdt

− σλ
∑
l∈N

∫ τ

0

∫
Rn

|u|2σ−2(Im(uϕel(x)))
2dxdt. (3.19)

Lemma 3.3 Let σ, ϕ, u0 be as in Theorem 3.1. H1(u(t)) is defined in (3.13). For any

stopping time τ < τ∗ a.s., we have

H1(u(τ)) = H1(u0) +
(nσ − 2)µλ

2σ + 2

∫ τ

0

sinh(4µt)∥u(t)∥2σ+2
L2σ+2dt+M1(τ) +R1(τ), (3.20)

where

M1(τ) = µ2Im

∫
Rn

∫ τ

0

sinh2(2µt)|x|2udWdx− Im

∫
Rn

∫ τ

0

cosh2(2µt)∆udWdx

− µRe

∫
Rn

∫ τ

0

sinh(4µt)x · ∇udWdx

− nµ

2
Re

∫
Rn

∫ τ

0

sinh(4µt)udWdx− λIm

∫
Rn

∫ τ

0

cosh2(2µt)|u|2σudWdx, (3.21)

R1(τ) =
µ2cΣϕ
2

∫ τ

0

sinh2(2µt)dt+
c1ϕ
2

∫ τ

0

cosh2(2µt)dt−
µc2ϕ
2

∫ τ

0

sinh(4µt)dt

− λσ

∫ τ

0

cosh2(2µt)
∑
l∈N

∫
Rn

|u|2σ−2(Im(uϕel))
2dxdt

− λ

2

∫ τ

0

cosh2(2µt)
∑
l∈N

∫
Rn

|u|2σ|ϕel(x)|2dxdt. (3.22)

First assume σ < 2
n . By (3.20), we have

E
(
sup
t≤τ

∥J+u(t)∥2L2

)
= EH1(u0) + CE

(
sup
t≤τ

∫ t

0

sinh(4µs)∥u(s)∥2σ+2
L2σ+2ds

)
+ CE

(
sup
t≤τ

cosh2(2µt)∥u(t)∥2σ+2
L2σ+2

)
+ E

(
sup
t≤τ

M1(t)
)
+ E

(
sup
t≤τ

R1(t)
)
. (3.23)
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Since σ < 2
n , by Gagliardo-Nirenberg inequality (2.6) and Young inequality, ∥u(t)∥2σ+2

L2σ+2 can

be controlled by ∥J+u(t)∥2L2 with an arbitrarily small coefficient ε, and then the RHS except

the term E
(
sup
t≤τ

M1(t)
)
can be estimated as

C(T0, ϕ, EH1(u0), E(∥u0∥
4σ

2−nσ+2

L2 )) + εC(T0)E
(
sup
t≤τ

∥J+u(t)∥2L2

)
, (3.24)

where we have used the fact that E
(
sup
t≤τ

∥u(t)∥
4σ

2−nσ+2

L2

)
≤ CE(∥u0∥

4σ
2−nσ+2

L2 ) (see [1, Proposition

3.2]).

Now we estimate E
(
sup
t≤τ

M1(t)
)

by martingale inequality and Burkholder-Davis-Gundy

inequality as follows:

E
(
sup
t≤τ

M1(t)
)
≤ C(T0, ϕ, E∥u0∥2L2) + C(T0, ϕ)E

(
sup
t≤τ

∥| · |u(t)∥L2

)
+ C(T0, ϕ)E

(
sup
t≤τ

∥∇u(t)∥L2

)
+ C(T0, ϕ)E

(
sup
t≤τ

∥u(t)∥2σ+2
L2σ+2

)
≤ C(T0, ϕ, E∥u0∥2L2 , E(∥u0∥

4σ
2−nσ+2

L2 ), ε)

+ εE
(
sup
t≤τ

∥K+u(t)∥2L2

)
+ εE

(
sup
t≤τ

∥J+u(t)∥2L2

)
. (3.25)

We used Gagliardo-Nirenberg inequality again in the second inequality and ε can be chosen

arbitrarily small.

On the other hand, by (3.17) and the similar estimates as above, we get

E
(
sup
t≤τ

∥K+u(t)∥2L2

)
≤ C(T0, ϕ, u0, ε) + E

(
sup
t≤τ

∥J+u(t)∥2L2

)
+ εE

(
sup
t≤τ

∥J+u(t)∥2L2

)
+ εE

(
sup
t≤τ

∥K+u(t)∥2L2

)
. (3.26)

Together with (3.24)–(3.25), we can choose a proper ε = ε(T0), such that

E
(
sup
t≤τ

∥K+u(t)∥2L2

)
≤ C(T0, ϕ, u0)

and

E
(
sup
t≤τ

∥J+u(t)∥2L2

)
≤ C(T0, ϕ, u0),

which implies τ∗ = +∞ a.s..

Now assume that σ ≥ 2
n and λ < 0. Then H1(u(t)) is the sum of two positive terms. By

Lemma 3.3 we have ∀t < τ∗ a.s.,

1

2
∥J+u(t)∥2L2 +

|λ|
2σ + 2

cosh2(2µt)∥u(t)∥2σ+2
L2σ+2

= H1(u0) +
(nσ − 2)µλ

2σ + 2

∫ t

0

sinh(4µs)∥u(s)∥2σ+2
L2σ+2ds+M1(t) +R1(t). (3.27)
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Notice that the second term of RHS is nonpositive so that we can omit it. To control the

second term of LHS, we use the martingale inequality and Burkholder-Davis-Gundy inequality

again as in (3.25) and get

|λ|
2σ + 2

E
(
sup
t≤τ

cosh2(2µt)∥u(t)∥2σ+2
L2σ+2

)
≤ C(T0, ϕ, u0, ε, ε̃) + εE

(
sup
t≤τ

∥J+u(t)∥2L2

)
+ εE

(
sup
t≤τ

∥K+u(t)∥2L2

)
+ ε̃E

(
sup
t≤τ

cosh2(2µt)∥u(t)∥2σ+2
L2σ+2

)
. (3.28)

Choosing ε̃ properly small and using (3.27) again, we have

1

2
E
(
sup
t≤τ

∥J+u(t)∥2L2

)
≤ C(T0, ϕ, u0, ε) + εE

(
sup
t≤τ

∥K+u(t)∥2L2

)
+ εE

(
sup
t≤τ

∥J+u(t)∥2L2

)
. (3.29)

Again, we estimate (3.17) in the same way and get

1

2
E
(
sup
t≤τ

∥K+u(t)∥2L2

)
≤ C(T0, ϕ, u0, ε) +

(1
2
+ ε

)
E
(
sup
t≤τ

∥J+u(t)∥2L2

)
+ εE

(
sup
t≤τ

∥K+u(t)∥2L2

)
. (3.30)

With ε = ε(T0) properly small, (3.29) and (3.30) imply (3.16), which gives the proof for

limited data u0.

A localization argument will give the conclusion for any F0-measurable u0. Indeed, we

already have the results on ΩN = {ω ∈ Ω, ∥u0(ω)∥Σ ≤ N}, where we substitute the expecta-

tion with EN (·) = E(·χΩN
)

P (ΩN ) and the measure with PN (·) = P (·χΩN
)

P (ΩN ) , respectively. Notice that

P (ΩN ) → 1 as N → ∞, a limit procedure completes the proof.

Remark 3.2 When θ < 0 and λ < 0, H(u) gives a uniform control of Σ-norm to the

solution u(t), and a priori estimate of (3.17) leads to the global well-posedness. However, if

λ > 0 and σ < 2
n , the similar argument as the first case in the proof of Theorem 3.2 implies

GWP. We use Gagliardo-Nirenberg inequality (2.8) instead of (2.6) in both cases. So we have

the next GWP result.

Corollary 3.1 Let σ, u0, ϕ be as in Theorem 3.1. Then GWP holds in either of the two

cases: (1) λ ≤ 0; (2) σ < 2
n .

4 Finite Time Blow Up

From Section 3, we know that when λ ≤ 0 or σ < 2
n , the solution is global in time. However,

it does not tell how it acts when λ > 0 and σ ≥ 2
n . In the deterministic case (see [5–6]), R.

Carles gave the sufficient condition such that u(t) blows up in finite time. In this section, we

will give a sufficient condition for the stochastic case.
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Theorem 4.1 Assume that 2
n ≤ σ < 2

n−2 if n ≥ 3 or σ ≥ 2
n for n = 1, 2, λ > 0,

ϕ ∈ L2(L
2,Σ) and the initial data u0 is an F0-measurable random variable with values in Σ,

such that

E(∥u0∥2Σ) < ∞, E(∥u0∥2σ+2
L2σ+2) < ∞. (4.1)

Then blow up phenomenon occurs in the following two cases:

(1) Case θ > 0, if u0 satisfies

E(∥| · |u0∥2L2) +
E∥∇u0∥2L2

µ2
− λ

(σ + 1)µ2
E(∥u0∥2σ+2

L2σ+2)−
2E(Im

∫
Rn u0x · ∇u0dx)

µ

< −
cΣϕ
4µ

−
c2ϕ
2µ2

−
c1ϕ
4µ3

, (4.2)

where µ =
√
θ, then there exists a T1 > 0 and either of the following happens:

E

∫ T1

0

(∥∇u∥2L2 + ∥u∥4σ+2
L2σ+2)ds = ∞

or

P (τ∗ ≤ T1) > 0.

(2) Case θ < 0, if u0 satisfies

1

2
E
(
∥∇u0∥2L2

)
− λ

2σ + 2
E
(
∥u0∥2σ+2

L2σ+2

)
+ fϕ

( π

4ν

)
≤ 0, (4.3)

where ν =
√
−θ, then we have either

E

∫ π
4ν

0

(∥∇u∥2L2 + ∥u∥4σ+2
L2σ+2)ds = ∞

or

P
(
τ∗ <

π

4ν

)
> 0.

Here

fϕ(t) =
1

4
(ν2cΣϕ + c1ϕ)t+

1

16

(c1ϕ
ν

− νcΣϕ

)
sin(4νt)−

c2ϕ
8ν

cos(4νt) +
c2ϕ
8ν

. (4.4)

Remark 4.1 If ϕ = 0, conditions (4.2) and (4.3) coincide with the ones for the deterministic

equation (see [5–6]). However, for the repulsive harmonic potential, i.e., θ > 0, the existence

of the noise term makes the condition even stronger in the average sense. Indeed, notice that
|c2ϕ|
µ2 ≤ cΣϕ

2µ +
c1ϕ
2µ3 , RHS of (4.2) is no more than − |c2ϕ|

2µ2 − c2ϕ
2µ2 ≤ 0. Thus, compared with the

deterministic equation, this condition is stronger on average, and depends on the regularity of

the noise.
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4.1 Stochastic variance identity and square integrable martingales

In this section we generalize “the variance identity” for the deterministic Schrödinger equa-

tion to the stochastic case with the help of the Itô’s formula. We need the following quantities:

V (v) =

∫
Rn

|x|2|v|2dx,

G(v) = Im

∫
Rn

vx · ∇vdx,

M(v) =

∫
Rn

|v|2dx.

By using the Itô’s formula and a regularizing technique (see [1, Propositions 3.2 and 3.3]),

we can get the following lemmas.

Lemma 4.1 Let u0, σ and ϕ be as in Theorem 4.1. Then for any stopping time τ < τ∗

a.s., we have u ∈ L∞((0, τ),Σ) and

V (u(τ)) = V (u0)− 4Im

∫ τ

0

∫
Rn

ux · ∇udxdt− 2Im

∫
Rn

∫ τ

0

|x|2uϕdWdx+ τcΣϕ

= V (u0)− 4

∫ τ

0

G(u(t))dt− 2Im

∫
Rn

∫ τ

0

|x|2uϕdWdx+ τcΣϕ .

Lemma 4.2 Let u0, σ and ϕ be as in Theorem 4.1. Then for any stopping time τ < τ∗

a.s., we have

G(u(τ)) = G(u0)− 4

∫ τ

0

H(u(t))dt− 4θ

∫ τ

0

∫
Rn

|x|2|u|2dxdt

− λ(2− nσ)

σ + 1

∫ τ

0

∫
Rn

|u|2σ+2dxdt− Re

∫
Rn

∫ τ

0

(2∇u · x+ nu)dWdx− τc2ϕ.

As a consequence of Lemma 4.1 and Lemma 4.2, we have the next corollary.

Corollary 4.1 (Stochastic Variance Identity) Let u0, σ and ϕ be as in Theorem 4.1. Then

for any stopping time τ < τ∗ a.s., we have

V (u(τ)) = V (u0)− 4G(u0)τ + 8H(u0)τ
2 + 16θ

∫ τ

0

∫ t

0

V (u(s))dsdt

+
4λ(2− nσ)

σ + 1

∫ τ

0

∫ t

0

∫
Rn

|u|2σ+2dxdsdt+ cΣϕ τ + 2c2ϕτ
2 +

(4
3
c1ϕ − 4

3
θcΣϕ

)
τ3

− 8λ

∫ τ

0

∫ t

0

∫ s

0

∑
l

∫
Rn

|u|2σ|ϕel|2dxdrdsdt

− 16σλ

∫ τ

0

∫ t

0

∫ s

0

∑
l

∫
Rn

|u|2σ−2(Im(uϕel))
2dxdrdsdt

− 2Im

∫
Rn

∫ τ

0

|x|2udWdx+ 4Re

∫
Rn

∫ τ

0

∫ t

0

(2∇u · x+ nu)dWdtdx

+ 16Im

∫
Rn

∫ τ

0

∫ t

0

∫ s

0

(∆u+ θ|x|2u+ λ|u|2σu)dWdsdtdx. (4.5)
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Set

N1(t) = 2Im

∫
Rn

∫ t

0

|x|2udWdx,

N2(t) = 4Re

∫
Rn

∫ t

0

(2∇u · x+ nu)ϕ dWdx,

N3(t) = 16Im

∫
Rn

∫ t

0

(∆u+ θ|x|2u+ λ|u|2σu)dWdx.

We claim that N1(t), N2(t) and N3(t) are square integrable martingales under the assump-

tions of Theorem 4.1.

Theorem 4.2 Assume that

E(∥u0∥2H1) < ∞, E(∥u0∥2σ+2
L2σ+2) < ∞, E(V (u0)) < ∞, (4.6)

and there exists a T > 0 with T < τ∗(u0) a.s., such that

E
(∫ T

0

(∥∇u(s)∥2L2 + ∥u(s)∥4σ+2
L2σ+2)ds

)
< ∞. (4.7)

Then sup
t∈[0,T ]

E(V (u(t))) < ∞ and N1, N2, N3 are square integrable martingales.

Proof We estimate N1, N2 and N3 first. For N1(t) = 2Im
∫
Rn

∫ t

0
|x|2udWdx, we have

E(N2
1 (t)) ≤ CE

∫ t

0

∥ϕ∗(| · |2u)∥2L2ds ≤ C(ϕ)E

∫ t

0

V (u(s))ds. (4.8)

The last inequality makes sense given sup
s∈[0,t]

EV (u(s)) < ∞.

For N2(t) = 4Re
∫
Rn

∫ t

0
(2∇u · x+ nu)dWdx = −4Re

∫
Rn

∫ t

0
(2ux · ∇+ nu)dWdx, we have

E(N2
2 (t)) ≤ E

(∑
l

∫ t

0

∫
Rn

(2u(s, x)x · ∇ϕ el(x) + nu(s, x)ϕ el(x))dxdβl(s)
)2

= E
∑
l

∫ t

0

(∫
Rn

(2u(s, x)x · ∇ϕ el(x) + nu(s, x)ϕ el(x))dx
)2

ds

≤ C(ϕ)
(∫ t

0

E(V (u(s)))ds+ tE∥u0∥2L2

)
, (4.9)

where in the last inequality we have used the fact that E
(

sup
s∈[0,t]

∥u(s)∥2L2

)
can be controlled by

E(∥u0∥2L2) (see [1, Proposition 3.2]).

For N3(t), we have

E(N2
3 (t)) ≤ CE

(∑
l

∫
Rn

∫ t

0

(∆u+ θ|x|2u+ λ|u|2σu)ϕ eldβl(s)dx
)2

≤ CE
∑
l

∫ t

0

(∫
Rn

(∆u+ θ|x|2u+ λ|u|2σu)ϕ eldx
)2

ds

≤ CE
∑
l

∫ t

0

(∥∇u∥2L2∥∇ϕ el∥2L2 + V (u(s))∥| · |ϕel∥2L2 + ∥u∥4σ+2
L2σ+2∥ϕel∥2L2σ+2)ds.
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If E
∫ t

0
(∥∇u∥2L2 + ∥u∥4σ+2

L2σ+2)ds < ∞, then E(N2
3 (t)) could be controlled by

C(ϕ)E

∫ t

0

(∥∇u∥2L2 + ∥u∥4σ+2
L2σ+2)ds+ C(ϕ)

∫ t

0

E(V (u(s)))ds. (4.10)

Given sup
t∈[0,T ]

E(V (u(t))) < ∞, from (4.8)–(4.10) we know that N1(t), N2(t) and N3(t)

are square integrable martingales on [0, T ], where the martingale property is satisfied by the

definition of the stochastic integral. Then we only need to show sup
t∈[0,T ]

E(V (u(t))) < ∞.

Set τk = inf{s ∈ [0, T ], V (u(s)) ≥ k}. In stead of τ , in Corollary 4.1 we take the stopping

time t ∧ τk, where t is in [0, T ]. Since λ > 0, σ ≥ 2
n , the fifth, eighth and tenth terms are

nonpositive which we can omit. We also suppose θ > 0 and then control the forth term by

16θT
∫ t

0
EV (u(s∧τk))ds. The case when θ < 0 is even simpler since we can omit the forth term

directly. We estimate the last two integrals as follows:

E
∣∣∣Re∫

Rn

∫ t∧τk

0

∫ s

0

(2∇u · x+ nu)dWdsdx
∣∣∣

= E
∣∣∣Re∫

Rn

∫ t∧τk

0

∫ s

0

∑
l

(2ux · ∇ϕ+ nuϕ)eldβldsdx
∣∣∣

≤
∫ t

0

(
E

∫ s∧τk

0

∣∣∣∑
l

(2ux · ∇ϕ+ nuϕ)el

∣∣∣2
L1
dr

) 1
2

ds

≤ C

∫ t

0

(
c1ϕE

∫ s∧τk

0

∫
Rn

|x|2|u(r, x)|2dxdr + ∥ϕ∥2L2(L2,Σ)E

∫ s∧τk

0

∫
Rn

|u|2dxdr
) 1

2

ds

≤ C(ϕ)

∫ t

0

(
E

∫ s

0

V (u(r ∧ τk))dr + TE∥u0∥2L2

) 1
2

ds

≤ C(ϕ, T )
(∫ t

0

EV (u(s ∧ τk))ds
) 1

2

+ C(ϕ,E∥u0∥2L2 , T ), (4.11)

and similarly,

E
∣∣∣Im∫

Rn

∫ t

0

∫ s

0

∫ r

0

(∆u+ θ|x|2u+ λ|u|2σu)dWdrdsdx
∣∣∣

≤
∫ t

0

∫ s

0

E
∣∣∣ ∫

Rn

∫ r∧τk

0

(∆u+ θ|x|2u+ λ|u|2σu)dWdx
∣∣∣drds

≤ T

∫ t

0

(
E

∫ s∧τk

0

|ϕ∗(∆u+ θ|x|2u+ λ|u|2σu)|2L2dr
) 1

2

ds

≤ T 2
(
∥ϕ∥2L2(L2,H1)E

∫ T

0

(∥∇u∥2L2 + ∥u∥4σ+2
L2σ+2)ds+ cΣϕE

∫ t∧τk

0

V (u(s))ds
) 1

2

≤ C(ϕ, T )
(
E

∫ T

0

(∥∇u∥2L2 + ∥u∥4σ+2
L2σ+2)ds

) 1
2

+ C(ϕ, T )
(
E

∫ t

0

V (u(s ∧ τk))ds
) 1

2

. (4.12)

So we have

E(V (u(t ∧ τk)))

≤ C(T )

∫ t

0

EV (u(s ∧ τk))ds+ C
(
EV (u0), EG(u0), EH(u0), ϕ, T, EM(u0),

E

∫ T

0

(∥∇u∥2L2 + ∥u∥4σ+2
L2σ+2)ds

)
.
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Then by Gronwall’s Lemma, we have

E(V (u(t ∧ τk))) ≤ C
(
EV (u0), EG(u0), EH(u0), ϕ, T, EM(u0),

E

∫ T

0

(∥∇u∥2L2 + ∥u∥4σ+2
L2σ+2)ds

)
(4.13)

uniformly for t ∈ [0, T ] and k ∈ N.
Letting k → ∞ and taking supremum of t ∈ [0, T ], we get the conclusion that

sup
t∈[0,T ]

E(V (u(t))) < ∞,

which makes sure that N1, N2, N3 are square integrable martingales.

4.2 Case θ > 0, proof of the first part of Theorem 4.1

We prove by contradiction, i.e., assume for any T > 0, both of the following happen:

E

∫ T

0

(
∥∇u∥2L2 + ∥u∥4σ+2

L2σ+2

)
ds < ∞

and

P (τ∗ > T ) = 1.

Then for any t ∈ [0, T ] we can apply Corollary 4.1 and take expectation of (4.5). To make

the expression simpler, we denote

Y (t) = E(V (u(t))), A = cΣϕ − 4E(G(u0)),

B = 2c2ϕ + 8E(H(u0)), C =
4

3
c1ϕ − 4

3
θcΣϕ ,

P =
4λ(nσ − 2)

σ + 1

∫ t

0

∫ s

0

∫
Rn

E|u|2σ+2dxdrds

+ 8λ

∫ t

0

∫ s

0

∫ r

0

∑
l

∫
Rn

E|u|2σ|ϕel|2dxdθdrds

+ 16σλ

∫ t

0

∫ s

0

∫ r

0

∑
l

∫
Rn

E|u|2σ−2(Im(uϕel))
2dxdθdrds.

(4.14)

Hence P > 0. Notice that under the assumptions, the last three stochastic integrals are

square integrable and become zero after taking expectation, that is,

Y (t) = Y (0) +At+Bt2 + Ct3 + 16θ

∫ t

0

∫ s

0

Y (r)drds− P

= Y (0) +At+Bt2 + Ct3 + 16θ

∫ t

0

(t− s)Y (s)ds− P,
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which deduces

Y (t) ≤ Y (0) +At+Bt2 + Ct3 + 4µ

∫ t

0

sinh(4µ(t− s))(Y (0) +As+Bs2 + Cs3)ds

= Y (0) cosh(4µt) +
A

4µ
sinh(4µt)− B

8µ2
+

B

8µ2
cosh(4µt)− 3Ct

8µ2
+

3C

32µ3
sinh(4µt)

= cosh2(2µt)
(
2Y (0) +

A

2µ
tanh(2µt) +

B

4µ2
tanh2(2µt) +

3C

16µ3
tanh(2µt)

)
− 3Ct

8µ2
− Y (0), (4.15)

where µ =
√
θ.

Noticing that cosh2(2µt) increases exponentially, we only need to consider the first term in

(4.15). Since tanh(2µt) ∈ [0, 1] as t ∈ [0,+∞) and tanh(2µt) → 1 as t → +∞, if in addition

2Y (0) +
A

2µ
+

B

4µ2
+

3C

16µ3
< 0, (4.16)

then there exists a T1 large enough such that (4.15) is less than zero at t = T1.

Now we claim that (4.16) is the sufficient condition for the solution u to (2.1) to blow

up in positive time. Indeed, if (4.2) is satisfied, under the assumptions of Theorem 4.1, if

E
∫ T1

0
(∥∇u∥2L2 + ∥u∥4σ+2

L2σ+2)ds < ∞ and P (T1 < τ∗) = 1, then Y (T1) ≤ (4.15)
∣∣
t=T1

< 0, which

is a contradiction since Y (t) is nonnegative. So we conclude that either

E

∫ T1

0

(∥∇u∥2L2 + ∥u∥4σ+2
L2σ+2)ds = ∞

or

P (T1 < τ∗) < 1,

which completes the first part of the theorem.

4.3 Case θ < 0, proof of the second part of Theorem 4.1

In this part, we use the operators J− and K− defined in (2.4). Noticing that

|J−u|2 + ν2|K−u|2 = ν2|x|2|u|2 + |∇u|2,

we can split the energy into two parts,

H̃1(u(t)) =
1

2
∥J−u(t)∥2L2 −

λ

2σ + 2
cos2(2νt)∥u(t)∥2σ+2

L2σ+2 , (4.17)

H̃2(u(t)) =
ν2

2
∥K−u(t)∥2L2 −

λ

2σ + 2
sin2(2νt)∥u(t)∥2σ+2

L2σ+2 . (4.18)

Instead of E(V (u)), we estimate the evolution of E(H̃1(u)) here. We need the following lemma,

which is not hard to derive with the help of the Itô’s formula.

Lemma 4.3 For any stopping time τ < τ∗ a.s., we have

H̃1(u(τ)) = H̃1(u0) +
νλ(2− nσ)

2σ + 2

∫ τ

0

∫
Rn

sin(4νs)|u|2σ+2dxds+ M̃1(t) + R̃1(t), (4.19)
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where

M̃1(t) =
1

2
Re

∫
Rn

∫ τ

0

ν sin(4νs)(2x · ∇u+ nu)dWdx− ν2Im

∫
Rn

∫ τ

0

|x|2 sin2(2νs)udWdx

+ Im

∫
Rn

∫ τ

0

cos2(2νs)∆udWdx+ λIm

∫
Rn

∫ τ

0

cos2(2νs)|u|2σudWdx, (4.20)

R̃1(t) =
1

4
(ν2cΣϕ + c1ϕ)t+

1

16

(c1ϕ
ν

− νcΣϕ

)
sin(4νt)−

c2ϕ
8ν

cos(4νt) +
c2ϕ
8ν

− λ

2

∑
l

∫ t

0

∫
Rn

cos2(2νs)|u|2σ|ϕel|2dxds

− σλ
∑
l

∫ t

0

∫
Rn

cos2(2νs)|u|2σ−2(Im(uϕel))
2dxds. (4.21)

Notice that by (4.4), we have for any t ∈ R, R̃1(t) < fϕ(t) with probability 1.

Following the proof of Theorem 4.2, we can see, under the same assumptions, M̃1(t) are

square integrable martingales.

Corollary 4.2 Assume that

E(∥u0∥2H1) < ∞, E(∥u0∥2σ+2
L2σ+2) < ∞, E(V (u0)) < ∞,

and there exists a T > 0 with T < τ∗(u0) a.s., such that

E
(∫ T

0

(∥∇u(s)∥2L2 + ∥u(s)∥4σ+2
L2σ+2)ds

)
< ∞. (4.22)

Then sup
t∈[0,T ]

E(V (u(t))) < ∞, and M̃1(t) are square integrable martingales.

Now we can complete the proof of Theorem 4.1. Set T = π
4ν , and assume

E

∫ T

0

(∥∇u∥2L2 + ∥u∥4σ+2
L2σ+2)ds < ∞, (4.23)

P (τ∗ > T ) = 1. (4.24)

Take expectation of (4.19), where we choose τ = T . Then the stochastic integrals vanish,

and for t ∈ [0, T ], we have

E(H̃1(u(t))) = E(H̃1(u0)) +
νλ(2− nσ)

2σ + 2

∫ t

0

∫
Rn

sin(4νs)E(|u(s, x)|2σ+2)dxds+ E(R̃1). (4.25)

Since σ ≥ 2
n and sin(4νt) ≥ 0 when t ∈ [0, T ], we have

E(H̃1(u(T ))) < E(H̃1(u0)) + fϕ(T ) ≤ 0, (4.26)

which contradicts the fact that E(H̃1(u(
π
4ν ))) =

ν2

2 ∥| · |u∥2L2 ≥ 0. So we come to the conclusion

that either

E

∫ π
4ν

0

(∥∇u∥2L2 + ∥u∥4σ+2
L2σ+2)ds = ∞ (4.27)

or

P
(
τ∗(u0) <

π

4ν

)
> 0, (4.28)

which completes our proof.
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