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Abstract The quantile estimation methods are proposed for functional-coefficient partial-
ly linear regression (FCPLR) model by combining nonparametric and functional-coeffici-ent
regression (FCR) model. The local linear scheme and the integrated method are used to
obtain local quantile estimators of all unknown functions in the FCPLR model. These
resulting estimators are asymptotically normal, but each of them has big variance. To
reduce variances of these quantile estimators, the one-step backfitting technique is used
to obtain the efficient quantile estimators of all unknown functions, and their asymptotic
normalities are derived. Two simulated examples are carried out to illustrate the proposed
estimation methodology.
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1 Introduction

Consider the following functional-coefficient partially linear regression (FCPLR) model:

Yi = a0(Xi) + ZT
i a(Ui) + εi, (1.1)

where {Yi, Xi, Ui, Zi}ni=1 are observations, Xi and Ui are scalar, Zi = (Zi1, · · · , Ziq)
T is a q× 1

vector, and {εi}ni=1 denote the random errors. a( · ) is a q-variate vector of unknown smooth
functions, a0( · ) is called the constant part function, and a( · ) the coefficient function.

Model (1.1) is flexible enough to include many well-studied important parametric, semi-
parametric and nonparametric regression models. For example, when a( · ) is a q × 1 unknown
vector, model (1.1) becomes partially linear regression model, which was first introduced by
Engle et al. [3], and was systematically studied in [5]. When a0 = 0, model (1.1) is reduced to
the varying-coefficient regression model proposed by Hastie and Tibshirani [6], and further was
investigated by Cai et al. [1] and Zhang et al. [14] among others. When a( · ) is a q-variate vec-
tor of unknown functions, model (1.1) becomes functional-coefficient partially linear regression
(FCPLR) model proposed by Wong et al. [13]. By using local linear methods and the one-step
backfitting technique, they obtained the improved estimators (called the efficient estimator) of
a0( · ) and a( · ), and it is shown that the resulting estimators are asymptotically normal.
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The existing estimators of the unknown functions in model (1.1) are obtained by the least
squares method. The least squares estimates certainly have some nice properties, in particular
when the random error follows the normal distribution. As is well-known in the robustness
literature, estimation and inference based on least squares are highly sensitive to outliers in the
data. Hence, more robust estimation methods are required. To this end, the quantile estimation
technique was widely implemented with nonparametric methods to overcome the limitation
of the least squares. For example, a varying-coefficient model for the conditional quantile
regression was considered recently by several authors. Honda [7] and Kim [8] studied varying-
coefficient models for independent data by using local polynomials and splines, respectively.
Cai and Xu [2] considered local polynomial estimators for time series data. Mu and Wei [11]
studied a dynamic quantile regression transformation model for longitudinal data. Wang et al.
[12] developed theory and methodology for analyzing longitudinal data in the quantile partially
linear varying coefficient models by using splines. This motivates us to apply the quantile
regression method to FCPLR model (1.1).

In this paper, we propose the quantile estimators of the unknown functions in FCPLR model
(1.1), and assume that P (εi ≤ 0 | Xi, Ui, Zi) = τ for 0 < τ < 1. The local linear scheme and
the integrated method are used to obtain local quantile estimators of all functions in model
(1.1). Under some regularity conditions, these resulting estimators are asymptotically normal,
but have big variance. With the aim to reduce variance of the local quantile estimators, the
one-step backfitting technique proposed by Linton [10] is adopted to obtain the efficient quantile
estimators of all functions. Furthermore, it is shown that the efficient quantile estimator of the
constant part function has the same asymptotic normality property as the local linear estimator
for univariate nonparametric quantile regression model and these efficient quantile estimators of
coefficient functions share the same asymptotic normality properties as local linear estimators
for the varying-coefficient quantile regression model (see [2]).

The rest of this paper is organized as follows. The quantile estimation methods for the con-
stant part function and the coefficient functions are proposed in Section 2, and some assumptions
and the asymptotic properties of the proposed estimators are presented in this section. In Sec-
tion 3, some simulations are conducted to demonstrate the proposed estimation methodology.
Proofs of the theorems are presented in Section 4.

2 Estimation

Suppose that {Yi, Xi, Ui, Zi}ni=1 is a random sample from model (1.1). Throughout the arti-
cle, Kα( · ) is a bounded, compactly supported symmetric about zero and Lipschitz continuous
density function, and hα > 0 is a bandwidth, α = 1, 2, 3, 4. We also assume that a0( · ) and
a( · ) have Lipschitz continuous second derivatives.

2.1 Local quantile estimator

We estimate a0( · ) and a( · ) by using the local linear method (see [4]) based on observations
{Yi, Xi, Ui, Zi}ni=1. Approximate a0( · ) and a( · ) in the neighbors of x0 and u0 by a0(x0) +
a′0(x0)(x−x0) and a(u0)+a′(u0)(u−u0), respectively. We minimize the weighted loss function

n∑
i=1

ρτ (Yi − α0 − ZT
i β0 − α1(Xi − x0)− ZT

i β1(Ui − u0))K1

(Xi − x0
h1

)
K2

(Ui − u0
h2

)
(2.1)

with respect to αj and βj for j = 0, 1, where ρτ (u) = u(τ − I(u < 0)) is the quantile loss
function for 0 < τ < 1. Solving the minimization problem in (2.1) gives the initial estimator

(α̂0(x0, u0), α̂1(x0, u0), β̂
T
0 (x0, u0), β̂

T
1 (x0, u0))

T for (a0(x0), a
′
0(x0), a

T(u0), a
′T(u0))

T.
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By the integrated method, local quantile estimator of the constant part function a0(x0) is
defined as

â0(x0) =
1

n

n∑
j=1

α̂0(x0, Uj). (2.2)

Local quantile estimator of the coefficient part function a(u0) is defined as

â(u0) =
1

n

n∑
k=1

β̂0(Xk, u0). (2.3)

In what follows, define

vl = E(fε |X1,U1,Z1
(0)Zl

1 | X1 = x0, U1 = u0) for l = 0, 1,

v2 = E(fε |X1,U1,Z1
(0)Z1Z

T
1 | X1 = x0, U1 = u0),

w1 = E(Z1 | X1 = x0, U1 = u0),

w2 = E(Z1Z
T
1 | X1 = x0, U1 = u0),

µ
(j)
2 =

∫
u2Kj(u)du, ν

(j)
l =

∫
ulK2

j (u)du,

where fε | x,u,z( · ) is the conditional density of ε given X, U and Z. Also, set

Σ1(x0, u0) =


v0 vT1 0 0
v1 v2 0 0

0 0 µ
(1)
2 v0 0

0 0 0 µ
(2)
2 v2

 ,

Σ2(x0, u0) =


ν
(1)
0 ν

(2)
0 ν

(1)
0 ν

(2)
0 wT

1 ν
(1)
1 ν

(2)
0 ν

(1)
0 ν

(2)
1 wT

1

ν
(1)
0 ν

(2)
0 w1 ν

(1)
1 ν

(2)
0 w2 ν

(1)
1 ν

(2)
1 w1 ν

(1)
0 ν

(2)
1 wT

2

ν
(1)
1 ν

(2)
0 ν

(1)
1 ν

(2)
1 wT

1 ν
(1)
2 ν

(2)
0 ν

(1)
1 ν

(2)
1 wT

1

ν
(1)
0 ν

(2)
1 w1 ν

(1)
0 ν

(2)
1 w2 ν

(1)
1 ν

(2)
1 w1 ν

(1)
0 ν

(2)
2 w2

 ,

(
v0 vT1
v1 v2

)−1

=

(
γ11(x0, u0) γ12(x0, u0)
γ21(x0, u0) γ22(x0, u0)

)
and Ω(x0, u0) =

(
1 wT

1

w1 w2

)
.

Let fx(x), fu(u) and fxu(x, u) be the density of X, U and (X,U), respectively. Throughout
this section, we use c > 0 generically to represent any constant which may take a different value
for each appearance. To obtain our results, the following assumptions are needed:

(C1) fε |x,u,z( · ) is bounded, Lipschitz continuous and fε |x,u,z(0) ≥ c > 0.
(C2) Σ1(x0, u0) is positive-definite and continuous in the neighborhood of (x0, u0).
(C3) Ω(x0, u0) is positive-definite and continuous in the neighborhood of (x0, u0).
(C4) There is an s > 2 such that E∥Z1∥2s <∞.
Write ψτ (x) = τ − I{x<0}, Xih1

= Xi−x0

h1
, Uih2

= Ui−u0

h2
, Vi = (1, ZT

i , Xih1
, Uih2

ZT
i )

T,

ri ≡ r(Xi, Ui) = a0(Xi) − a0(x0) − a′0(x0)(Xi − x0) + ZT
i [a(Ui) − a(u0) − a′(u0)(Ui − u0)],

Θ =
√
nh1h2(α0−a0(x0), βT

0 −aT(u0), h1(α1−a′0(x0)), h2(β1−a′(u0))T)T. Denote an estimator

for Θ by Θ̂.
The following result states the asymptotic normality of the initial estimator.
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Theorem 2.1 Under assumptions (C1)–(C4), if nh1h2 → ∞, h1 → 0 and h2 → 0, we have

√
nh1h2




α̂0 − a0(x0)

β̂0 − a(u0)
h1(α̂1 − a′0(x0))

h2(β̂1 − a′(u0))

− 1

2


µ
(1)
2 h21a

′′
0(x0)

µ
(2)
2 h22a

′′(u0)
0
0

 (1 + op(1))

 d−−→ N(0,Σ),

where Σ = τ(1− τ)Σ−1
1 Σ2Σ

−1
1

1
f(x0,u0)

and
d−−→ stands for convergence in distribution.

The following two theorems give the asymptotic normalities of the local quantile estimators.

Theorem 2.2 Under assumptions (C1)–(C4), and with nh1h2 → ∞, h1 = c1n
− 1

5 , nh52 → 0,
where c1 is a positive constant, we have√

nh1

(
â0(x0)− a0(x0)−

1

2
h21µ

(1)
2 a′′0(x0)

)
d−−→ N(0, τ(1− τ)ν

(1)
0 ω0(x0)), (2.4)

where ω0(x0) =
∫ f2

u(u)
fxu(x0,u)

γT1 (x0, u)Ω(x0, u)γ1(x0, u)du and γT1 (x0, u) = (γ11(x0, u), γ12(x0, u)).

Theorem 2.3 Under assumptions (C1)–(C4), and with nh1h2 → ∞, h2 = c2n
− 1

5 , nh51 → 0,
where c2 is a positive constant, we have√

nh2

(
â(u0)− a(u0)−

1

2
h22µ

(2)
2 a′′(u0)

)
d−−→ N(0, τ(1− τ)ν

(2)
0 ω(u0)), (2.5)

where ω(u0) =
∫ f2

x(x)
fxu(x,u0)

γT2 (x, u0)Ω(x, u0)γ2(x, u0)dx and γT2 (x, u0) = (γ21(x, u0), γ22(x, u0)).

Remark 2.1 To discuss how the local quantile estimator â(u0) works, we consider the
functional-coefficient regression model as Yi = ZT

i a(Ui) + εi, where P (εi ≤ 0 | Xi, Ui, Zi) = τ
for 0 < τ < 1. Under fairly standard assumptions used in [2], the local quantile estimator a(u0)
for a( · ) satisfies√

nh2

(
a(u0)− a(u0)−

h22
2
µ
(2)
2 a′′(u0)

)
d−−→ N(0, τ(1− τ)ν

(2)
0 Σa(u0)), (2.6)

where Σa(u0) = [Σ∗
0(u0)]

−1Σ0(u0)[Σ
∗
0(u0)]

−1 1
fu(u0)

with Σ0(u0) = E[Z1Z
T
1 | U1 = u0] and

Σ∗
0(u0) = E[fε|U1,Z1

(0)Z1Z
T
1 | U1 = u0].

From (2.5) and (2.6), we can see that â(u0) has the same bias as a(u0). To compare their
variance, for simplicity, we suppose that E(Z) = 0, and X, Z and U are independent of each
other, which implies γ22(x0, u0) = Σ∗−1

0 (u0) and w2 = Σ0(u0) by simple calculation. Hence,

ω(u0) = γT2 (x, u0)Ω(x, u0)γ2(x, u0)
1

fu(u0)
≥ γ22(x0, u0)w2γ22(x0, u0)

1

fu(u0)
= Σa(u0),

so that the variance of â(u0) is bigger than that of a(u0). Similarly, we can discuss the local
quantile estimator â0(x0).

2.2 Efficient quantile estimator

To deal with the asymptotic variances for the proposed local quantile estimators, we adopt
the local linear smoothing and one-step backfitting technique to obtain the efficient quantile
estimators for all unknown functions.

The efficient quantile estimator for a(u0) is defined as âe(u0) = (Iq 0q)β̂
e, where the vector

β̂e = (̂bT0 , b̂
T
1 )

T minimizes

n∑
i=1

ρτ
(
Yi − ZT

i [b0 + b1(Ui − u0)]− â0(Xi)
)
K3

(Ui − u0
h3

)
(2.7)
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with respect to b0 and b1.

As to a0( · ), the efficient quantile estimator can be defined as âe0(x0) = (1, 0)θ̂e, where the

vector θ̂e = (θ̂0, θ̂1)
T minimizes

n∑
i=1

ρτ
(
Yi − θ0 − θ1(Xi − x0)− ZT

i â(Ui)
)
K4

(Xi − x0
h4

)
(2.8)

with respect to θ0 and θ1.

To derive our results, the following assumptions are also needed:

(C5) The conditional density fε |u,z( · ) of ε given U and Z is bounded, Lipschitz continuous
and fε |u,z(0) ≥ c > 0.

(C6) Σ0(u0) = E[Z1Z
T
1 | U1 = u0] and Σ∗

0(u0) = E[fε |U1,Z1
(0)Z1Z

T
1 | U1 = u0] are positive

definite and continuous in neighborhood of u0.

(C7) The conditional density fε|x( · ) of ε given X is bounded, Lipschitz continuous and
fε |x(0) ≥ c > 0.

The following results state the asymptotic normalities of the efficient quantile estimators.

Theorem 2.4 Under assumptions (C1)–(C6), if nh1h2 → ∞, h1

h3
→ 0, h2

h3
→ 0 and h3 =

c3n
− 1

5 , where c3 is a positive constant, we have

√
nh3

(
âe(u0)− a(u0)−

h23
2
µ
(3)
2 a′′(u0)

)
d−−→ N(0, τ(1− τ)ν

(3)
0 Σa(u0)), (2.9)

where Σa(u0) = [Σ∗
0(u0)]

−1Σ0(u0)[Σ
∗
0(u0)]

−1 1
fu(u0)

.

Theorem 2.5 Under assumptions (C1)–(C4) and (C7), if nh1h2 → ∞, h1

h4
→ 0, h2

h4
→ 0

and h4 = c4n
− 1

5 , where c4 is a positive constant, we have

√
nh4

(
âe0(x0)− a0(x0)−

h24
2
µ
(4)
2 a′′0(x0)

)
d−−→ N(0, σ2

0(x0)), (2.10)

where σ2
0(x0) =

τ(1−τ)ν
(4)
0

f2
ε|x0

(0)fx(x0)
.

Remark 2.2 From Theorems 2.4–2.5, we can see that the efficient quantile estimator of the
constant part function has the same asymptotic normality property as the local linear estimator
for univariate nonparametric quantile regression model and these efficient quantile estimators of
coefficient functions share the same asymptotic normality properties as local linear estimators
for the varying-coefficient quantile regression model (see [2]). Moreover, our proposed estimation
method will also apply if the data are strictly α-mixing and stationary.

3 Simulations

To illustrate the advantage of the quantile estimators in this section, we present Monte Carlo
simulations to compare the proposed estimation methods with the least squares (LS) method
in [13].

The efficient quantile estimators {âj( · )}qj=0 are computed via the mean absolute deviation

errors (MADE), defined as MADEj = n−1
j

nj∑
k=1

|âj(vk)− aj(vk)|, and {vk = 0.05k − 1 : 1 ≤ k ≤

nj = 38} are the grid points. We use the Epanechnikov kernel K(u) = 0.75(1− u2I(|u|<1)) for
every Kα( · ), α = 1, 2, 3, 4. For each replication, sample size and τ, bandwidths h1 and h2 can
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be selected by minimizing the following cross-validation score:

CV (h1, h2) =
n∑

i=1

ρτ (Yi − â
(−i)
0 (Xi)− ZT

i â
(−i)(Ui)),

where â
(−i)
0 and â(−i) are local quantile estimates after deleting the i-th subject. Similarly,

bandwidths h3 and h4 are also selected by this method.

Example 3.1 The data are generated from the functional-coefficient partially linear regres-
sion model Y = a0(X) + a1(U)Z1 + a2(U)Z2 + (ε − F−1(τ)), where a0(x) = x exp(−16x2),
a1(u) = u exp(−3u2), a2(u) = u2, (X,U,Z1, Z2)

T ∼ U([−1, 1]4), ε ∼ t(3) and F−1(τ) is the
τ -th quantile of t(3), where t(3) is a t-distribution with 3 degrees of freedom.

Example 3.2 The data are generated from the functional-coefficient partially linear re-
gression model Yt = a0(Xt) + a1(Zt−1)Zt + a2(Zt−1)Zt−2 + (ϵt − F−1

ϵ (τ)), where a0(x), a1(u)
and a2(u) are the same as those in Example 3.1; Xt = 1.1Xt−1 − 0.3Xt−2 + et, et are i.i.d.,
N(0, 0.22), Zt = −0.6Zt−1−0.3Zt−2+ ζt, ζt are i.i.d., N(0, 0.32), ϵt ∼ U(−0.5, 0.5) and F−1

ϵ (τ)
is the τ -th quantile of U(−0.5, 0.5).

The Monte Carlo simulation is repeated 500 times for each sample size n = 200, 300 and
400, and for each τ = 0.05, 0.5 and 0.95. We compute the median and standard deviation of
500 MADE values for each scenario and summarize the results in Table 1. In addition, Figure
1 presents the quantile estimates of a0( · ), a1( · ) and a2( · ), which are drawn from Example 3.1
with τ = 0.05, 0.5, 0.95 and a sample size 200.

Table 1 The median and standard deviation of 500 MADE values

Example 1

n 200 300 400

LS MADE0 0.1156 (0.0927) 0.0978 (0.0632) 0.0706 (0.0526)
MADE1 0.1073 (0.0325) 0.0936 (0.0338) 0.0684 (0.0342)
MADE2 0.1042 (0.0382) 0.0955 (0.0366) 0.0691 (0.0388)

τ = 0.05 MADE0 0.1082 (0.0912) 0.0922 (0.0621) 0.0646 (0.0508)
MADE1 0.1022 (0.0320) 0.0903 (0.0310) 0.0621 (0.0312)
MADE2 0.1002 (0.0342) 0.0925 (0.0328) 0.0646 (0.0356)

τ = 0.5 MADE0 0.0592 (0.0216) 0.0461 (0.0205) 0.0432 (0.0188)
MADE1 0.0518 (0.0261) 0.0398 (0.0256) 0.0356 (0.0246)
MADE2 0.0520 (0.0272) 0.0384 (0.0266) 0.0371 (0.0252)

τ = 0.95 MADE0 0.1068 (0.0910) 0.0918 (0.0614) 0.0637 (0.0513)
MADE1 0.1013 (0.0318) 0.0898 (0.0308) 0.0619 (0.0314)
MADE2 0.0098 (0.0339) 0.0916 (0.0314) 0.0639 (0.0349)

Example 2

LS MADE0 0.1190 (0.0936) 0.1066 (0.0622) 0.0828 (0.0530)
MADE1 0.1108 (0.0538) 0.1102 (0.0425) 0.0880 (0.0432)
MADE2 0.1072 (0.0568) 0.1090 (0.0416) 0.0836 (0.0428)

τ = 0.05 MADE0 0.1102 (0.0920) 0.1002 (0.0634) 0.0716 (0.0528)
MADE1 0.1056 (0.0562) 0.1041 (0.0412) 0.0813 (0.0425)
MADE2 0.1038 (0.0480) 0.0983 (0.0407) 0.0722 (0.0402)

τ = 0.5 MADE0 0.0752 (0.0430) 0.0602 (0.0346) 0.0596 (0.0292)
MADE1 0.0718 (0.0469) 0.0669 (0.0351) 0.0558 (0.0360)
MADE2 0.0716 (0.0420) 0.0586 (0.0378) 0.0550 (0.0298)

τ = 0.95 MADE0 0.1093 (0.0860) 0.0938 (0.0623) 0.0710 (0.0462)
MADE1 0.1049 (0.0540) 0.0913 (0.0415) 0.0812 (0.0409)
MADE2 0.1012 (0.0500) 0.0972 (0.0406) 0.0718 (0.0398)
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Figure 1 (a), (b) and (c) present the quantile estimates of a0( · ), a1( · ) and a2( · ), respectively.
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From Table 1, we can observe that under non-normal model errors and the different data,
the MADE values for the efficient quantile estimates decrease as n increases for all three values
of τ , and our estimators are better than the ones based on the least squares method, which
imply that the proposed method is very efficient. Also, the performance for the median quantile
estimate is slightly better than that for two tails (τ = 0.05 and 0.95).

Figure 1 also implies that the proposed estimators â0( · ), â1( · ) and â2( · ) work well, because
the four lines are very close to each other. Overall speaking, the proposed procedure is reliable
and performs fairly well.

4 Proofs of the Main Results

To prove the main results, we need the following two lemmas whose proofs can be found in
[9].

Lemma 4.1 Let Vn(θ) be a vector function that satisfies
(1) − θTVn(λθ) ≥ −θTVn(θ) for λ ≥ 1;
(2) sup

∥θ∥≤M

∥Vn(θ) +Dθ −An∥ = op(1),

where ∥An∥ = Op(1), 0 < M < ∞, and D is a positive-definite matrix. Suppose that θn is a
vector such that ∥Vn(θn)∥ = op(1). Then ∥θn∥ = Op(1) and θn = D−1An + op(1).

Lemma 4.2 Let β̂ be the minimizer of the function

n∑
i=1

ωiρτ (Yi − V T
i β),

where ωi > 0. Then

n∑
i=1

ωiψτ (Yi − V T
i β̂) ≤ dim(V1) max

1≤i≤n
∥ωiVi∥.

By the definition of Θ in Section 2.1, we have
α0

β0
α1

β1

 =


a0(x0)
a(u0)
a′0(x0)
a′(u0)

+ δnΘ,

where δn = (nh1h2)
− 1

2 . Thus, Yi−α0−α1(Xi−x0)−ZT
i {β0+β1(Ui−u0)} = εi+ri−δnΘTVi.

Therefore,

Θ̂ = argmin
Θ

n∑
i=1

ρτ (εi + ri − δnΘ
TVi)K1(Xih1)K2(Uih2).

Now, define Vn(Θ) = δn
n∑

i=1

ψτ (εi + ri − δnΘ
TVi)ViK1(Xih1)K2(Uih2) and BM = {∥Θ∥ ≤ M}

for any 0 < M <∞.

Lemma 4.3 Under the assumptions of Theorem 2.1, we have
(1) sup

Θ∈BM

∥Vn(Θ)− Vn(0)− E[Vn(Θ)− Vn(0)]∥ = op(1);

(2) sup
Θ∈BM

∥E[Vn(Θ)− Vn(0)] + fxu(x0, u0)Σ1(x0, u0)Θ∥ = o(1);

(3) ∥Vn(0)∥ = Op(1),
where Σ1(x0, u0) is defined in Section 2.1.
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Proof By using the arguments similar to [2, Theorem 1], we can prove Lemma 4.3. Here,
we omit the process of the proof.

Proof of Theorem 2.1 By using Lemmas 4.1–4.3 and the arguments similar to [2, Theorem
1], we have

Θ̂ =
Σ−1

1 (x0, u0)√
nh1h2fxu(x0, u0)

n∑
i=1

ψτ (εi + ri)ViK1(Xih1)K2(Uih2) + op(1)

=
Σ−1

1 (x0, u0)√
nh1h2fxu(x0, u0)

n∑
i=1

[ψτ (εi + ri)− ψτ (εi)]ViK1(Xih1)K2(Uih2)

+
Σ−1

1 (x0, u0)√
nh1h2fxu(x0, u0)

n∑
i=1

ψτ (εi)ViK1(Xih1)K2(Uih2) + op(1)

= Bn + ηn + op(1). (4.1)

Observe that Eψτ (εi) = 0 and Var[ψτ (εi)] = τ(1− τ). By using Cramér-Wold device and the
similar arguments in [1], one can show that

ηn
d−−→ N

(
0,

τ(1− τ)

fxu(x0, u0)
Σ−1

1 (x0, u0)Σ2(x0, u0)Σ
−1
1 (x0, u0)

)
. (4.2)

By Taylor expansion and simple calculation, we have

E[Bn] =

√
nh1h2
2


µ
(1)
2 h21a

′′
0(x0)

µ
(2)
2 h22a

′′(u0)
0
0

 (1 + o(1)). (4.3)

Since ψτ (εi + ri)− ψτ (εi) = I{εi<0} − I{εi<−r(Xi,Ui)}, we have

[ψτ (εi + ri)− ψτ (εi)]
2 = I{d1i<εi≤d2i},

where d1i = min(0,−ri) and d2i = max(0,−ri). Furthermore, simple calculation yields that

E[{ψτ (εi + ri)− ψτ (εi)}2ViV T
i K

2
1 (Xih1)K

2
2 (Uih2)] = O(h31h2 + h1h

3
2).

Therefore, Var(Bn) = o(1). This, together with (4.1)–(4.3) and Slutsky Theorem, completes
the proof of Theorem 2.1.

Proof of Theorem 2.2 From (4.1), we can obtain

â0(x0)− a0(x0) = (I1 + I2)(1 + op(1)), (4.4)

where

I1 =
1

n2h1h2

n∑
j=1

n∑
i=1

ψτ (εi)

fxu(x0, Uj)
γT1 (x0, Uj)

(
1
Zi

)
K1

(Xi − x0
h1

)
K2

(Ui − Uj

h2

)
,

I2 =
1

n2h1h2

n∑
j=1

n∑
i=1

ψτ (εi + ri)− ψτ (εi)

fxu(x0, Uj)
γT1 (x0, Uj)

(
1
Zi

)
K1

(Xi − x0
h1

)
K2

(Ui − Uj

h2

)
.

Similar to the proof of Theorem 1 in [13], I1 can be represented as

I1 = I11(1 + op(1)), (4.5)
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where

I11 =
1

nh1

n∑
i=1

fu(Ui)

fxu(x0, Ui)
ψτ (εi)γ

T
1 (x0, Ui)

(
1
Zi

)
K1

(Xi − x0
h1

)
.

Obviously, I11 is asymptotically normal with E(I11) = 0, and variance

E(I211) =
τ(1− τ)

nh21
E
[ fu(U1)

fxu(x0, U1)
γT1 (x0, U1)

(
1
Z1

)
K1

(X1 − x0
h1

)]2
=
τ(1− τ)

nh1
ν
(1)
0 ω0(x0)(1 + o(1)).

Therefore, √
nh1 I11

d−−→ N(0, τ(1− τ)ν
(1)
0 ω0(x0)). (4.6)

Similar to I1, I2 can be written as

I2 =
1

nh1

n∑
i=1

ψτ (εi + ri)− ψτ (εi)

fxu(x0, Ui)
fu(Ui)γ

T
1 (x0, Ui)

(
1
Zi

)
K1

(Xi − x0
h1

)
(1 + op(1)).

By the proof of Theorem 2.1, and using that γ11(x0, u0)v0+γ12(x0, u0)v1 = 1 and
∫∞
−∞ fu(u)du

= 1, we can prove that

I2 =
1

2
h21µ

(1)
2 a′′0(x0)(1 + op(1)). (4.7)

This, together with (4.4)–(4.7), completes the proof of Theorem 2.2.

Proof of Theorem 2.3 By using the similar argument as in Theorem 2.2, we can prove
Theorem 2.3. Here, we omit the process of the proof.

Proof of Theorem 2.4 Substituting model (1.1) into the expression (2.7) and using the
Taylor expansion, we have

(̂bT0 , b̂
T
1 )

T = arg min
b0,b1

n∑
i=1

ρτ

{1

2
ZT
i a

′′(ζi)(Ui − u0)
2 + a0(Xi)− â0(Xi) + εi

− [(b0 − a(u0))
T + (b1 − a′(u0))

T(Ui − u0)]Zi

}
K3

(Ui − u0
h3

)
,

where |ζi − u0| < |Ui − u0|. Write Wi =
1
2Z

T
i a

′′(ζi)(Ui − u0)
2, ϑ = (ϑT1 , ϑ

T
2 )

T =
√
nh3 ((b0 −

a(u0))
T, h3(b1 − a′(u0))

T)T, Ũi = (nh3)
− 1

2 (ZT
i , h

−1
3 (Ui − u0)Z

T
i )

T. Then we have the new
optimization problem

ϑ̂T = argmin
ϑ

n∑
i=1

{
ρτ

(
Wi − ϑTŨi −

ξ̂i√
nh1

+ εi

)
− ρτ

(
Wi −

ξ̂i√
nhi

+ εi

)}
K3

(Ui − u0
h3

)
,

where ξ̂i =
√
nh1[â0(Xi)− a0(Xi)]. Obviously,

ϑ̂1 =
√
nh3(̂b0 − a(u0)) =

√
nh3(â

e(u0)− a(u0)). (4.8)

Thus, to prove Theorem 2.4, it suffices to show that ϑ̂1 is asymptotic normal. Denote by

ϑ∗ = 1
2

√
nh

5
2
3 (µ

(3)
2 a′′(u0)

T, 0T)T and

ϑ̃ = ϑ∗ +
Σ∗(u0)

−1

fu(u0)

n∑
i=1

ψτ (εi)ŨiK3

(Ui − u0
h3

)
, (4.9)
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where Σ∗(u0) = diag(Σ∗
0(u0),Σ

∗
0(u0)µ

(3)
2 ). So to finish the proof of Theorem 2.4, it suffices to

prove that for any δ > 0,

P{∥ϑ̂− ϑ̃∥ < δ} → 1. (4.10)

Let

Gn(ϑ, ξ) =

n∑
i=1

{
ρτ

(
Wi − ϑTŨi −

ξ√
nh1

+ εi

)
− ρτ

(
Wi −

ξ√
nh1

+ εi

)}
K3

(Ui − u0
h3

)
.

Write ξ̂ =
√
nh1[â0(x0) − a0(x0)]. Then, ξ̂ = Op(1) by Theorem 2.2. Thus, by using the

properties of ρτ ( · ), it suffices to show that for any sufficient large L > 0, L∗ > 0,

P
(

inf
∥ϑ−ϑ̃∥=δ
∥ξ∥≤L

[Gn(ϑ, ξ)−Gn(ϑ̃, ξ)] > 0} ∩ {∥ϑ̃∥ ≤ L∗}
)
→ 1. (4.11)

Let

Φn(ϑ, ξ) = E[Gn(ϑ, ξ)],

Ψn(ϑ, ξ) = Gn(ϑ, ξ)− Φn(ϑ, ξ) +
n∑

i=1

ψτ (εi)ϑ
TŨiK3

(Ui − u0
h3

)
.

(4.12)

By assumption (C5), it can be obtained that

E[Gn(ϑ, ξ)] =
n∑

i=1

E
{∫ Wi−ϑTŨi− ξ√

nh1

Wi− ξ√
nh1

[τ − Fε |Ui,Zi
(−s)]dsK3

(Ui − u0
h3

)}

=
1

2

n∑
i=1

E
{
fε |Ui,Zi

(0)
[
(ϑTŨi)

2 − ϑTŨiWi + ϑTŨi
ξ√
nh1

]
K3

(Ui − u0
h3

)}
+ o(1)

=
1

2
fu(u0)[ϑ

TΣ∗(u0)ϑ−
√
nh

5
2
3 µ

(3)
2 ϑT(Σ∗

0(u0)
T, 0)Ta′′(u0)] + o(1). (4.13)

From (4.9), we have

n∑
i=1

ψτ (εi)ϑ
TŨiK3

(Ui − u0
h3

)
= fu(u0)

[
ϑTΣ∗(u0)ϑ̃− 1

2

√
nh

5
2
3 µ

(3)
2 ϑT(Σ∗

0(u0)
T, 0)Ta′′(u0)

]
.

Since 2ϑTΣ∗(u0)ϑ̃ = ϑTΣ∗(u0)ϑ + ϑ̃TΣ∗(u0)ϑ̃ − (ϑ − ϑ̃)TΣ∗(u0)(ϑ − ϑ̃), and by (4.12)–(4.13)
and the above, we have

Gn(ϑ, ξ) =
1

2
fu(u0)[(ϑ− ϑ̃)TΣ∗(u0)(ϑ− ϑ̃)− ϑ̃TΣ∗(u0)ϑ̃] + Ψn(ϑ, ξ) + op(1). (4.14)

By using the above, for ϑ̃ satisfying that ∥ϑ̃∥ ≤ L∗, we have

Gn(ϑ̃, ξ) = −1

2
fu(u0)ϑ̃

TΣ∗(u0)ϑ̃+Ψn(ϑ̃, ξ) + op(1). (4.15)

Note that ∥ϑ− ϑ̃∥ = δ, and from (4.14) and (4.15), it follows that

Gn(ϑ, ξ)−Gn(ϑ̃, ξ) ≥
δ2

2
fu(u0)λmin(Σ

∗(u0))− 2 sup
∥ξ∥≤L

∥ϑ∥≤L∗+δ

∥Ψn(ϑ, ξ)∥+ op(1), (4.16)
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where λmin(Σ
∗(u0)) is the smallest eigenvalue of Σ∗(u0). Under the assumptions in Theorem

2.4, by using the argument similar to [2, Theorem 1], we can obtain

sup
∥ξ∥≤L

∥ϑ∥≤L∗+δ

∥Ψn(ϑ, ξ)∥ = op(1).

This, together with (4.16) and assumption (C6), proves that (4.11) holds, and consequently
(4.10) holds. The proof of Theorem 2.4 is completed.

Proof of Theorem 2.5 By using the similar argument as in Theorem 2.4, we can prove
Theorem 2.5. Here, we omit the process of the proof.
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