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Abstract The author gives a characterization of counterexamples to the Kodaira-Ramanu-
jam vanishing theorem on smooth projective surfaces in positive characteristic. More pre-
cisely, it is reproved that if there is a counterexample to the Kodaira-Ramanujam vanishing
theorem on a smooth projective surface X in positive characteristic, then X is either a
quasi-elliptic surface of Kodaira dimension 1 or a surface of general type. Furthermore, it
is proved that up to blow-ups, X admits a fibration to a smooth projective curve, such
that each fiber is a singular curve.
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1 Introduction

The Kodaira vanishing theorem claims that for an ample line bundle L on a smooth projec-

tive complex variety X, Hi(X,L−1) = 0 holds for any i < dimX. However, this statement fails

in positive characteristic. Raynaud [11] gave counterexamples to the Kodaira vanishing theorem

on smooth projective surfaces over an algebraically closed field k of characteristic p > 0. More

precisely, the counterexample constructed in [11] is either a quasi-elliptic surface of Kodaira

dimension 1 or a surface of general type, which has a fibration to a smooth projective curve,

such that each fiber is a singular rational curve.

In this paper, we shall prove the following main theorem, which is almost the converse

to the above result, and in fact, gives a characterization of counterexamples to the Kodaira-

Ramanujam vanishing theorem in [10] on smooth projective surfaces in positive characteristic.

Theorem 1.1 Let X be a smooth projective surface over an algebraically closed field k of

characteristic p > 0, L a nef and big line bundle on X. If H1(X,L−1) ̸= 0, then

( i ) X is either a quasi-elliptic surface of Kodaira dimension 1 or a surface of general type,

(ii) up to blow-ups, X admits a fibration to a smooth projective curve, such that each fiber

is a singular curve.

Manuscript received September 12, 2010. Revised March 24, 2011.
1School of Mathematical Sciences, Fudan University, Shanghai 200433, China.
E-mail: qhxie@fudan.edu.cn

∗Project supported by the National Natural Science Foundation of China (No. 10901037), the Doctoral
Program Foundation of the Ministry of Education of China (No. 20090071120004) and the Scientific
Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.



742 Q. H. Xie

We shall prove Theorem 1.1 by using two methods together. One is Tango’s criterion, which

is deduced from the Cartier isomorphism and was firstly used in [14] to treat vanishing problems.

Another is Raynaud’s criterion (see [3, Corollaire 2.8]), which claims that if a smooth projective

surface X can be lifted over W2(k), then the Kodaira-Ramanujam vanishing theorem holds on

X. The main idea of the proof of Theorem 1.1 consists of two key points. The first one is to

prove that blow-ups of a liftable surface are also liftable over W2(k). The second one is to use

Bombieri-Mumford’s classification of algebraic surfaces in positive characteristic.

It should be mentioned that Theorem 1.1 is a slight improvement of one of the main results

in [8], which dealt with the counterexamples to the Kodaira vanishing theorem on smooth

projective surfaces. Although Theorem 1.1(i) was proved in [4, Theorem II.1.6] via the foliation

argument and in [15, Theorem 1.6] via the d-very ampleness argument, the methods used

here are more intuitive from the geometric point of view, while Theorem 1.1(ii) is fresh and

seems more interesting. Furthermore, it should be mentioned that the Kodaira-Ramanujam

vanishing theorem fails for the canonical sheaf on a minimal surface of general type in positive

characteristic (see [4, Main Theorem] for more details).

We shall give the proof of Theorem 1.1 in Section 2 and some remarks in Section 3. In

what follows, we always work over an algebraically closed field k of characteristic p > 0, unless

otherwise stated.

2 Proof of the Main Theorem

Let X be a smooth projective surface throughout this section, and F : X → X the absolute

Frobenius morphism. We have the absolute Cartier isomorphism, i.e., the following isomorphism

of OX -modules for any i ≥ 0 (see [13, Propositions 1–3]):

C : Hi(F∗Ω
•
X)

∼−→ ΩiX ,

which induces the following commutative diagram with an exact row:

0 // OX
// F∗OX

//

F∗(d) ##H
HH

HH
HH

HH
B1
X

//
� _

��

0

F∗Ω
1
X

where B1
X = im(F∗(d) : F∗OX → F∗Ω

1
X).

Definition 2.1 Let L be a line bundle on X. We say that X satisfies the T1 condition for

L, if H0(X,Ω1
X ⊗ L−1) = 0 holds.

Lemma 2.1 (i) H0(X,B1
X(−L)) = {dh | h ∈ K(X), (dh) ≥ pL}, where L is a divisor on

X, K(X) is the rational function field of X and (dh) =
∑
E

vE(dh), where the sum runs over all

prime divisors E on X, and vE is the associated discrete valuation.

(ii) If X satisfies the T1 condition for any nef and big line bundle L on X, then H1(X,L−1)

= 0 holds for any nef and big line bundle L on X.

Proof (i) Since H0(X,B1
X(−L)) ↪→ H0(X,F∗Ω

1
X(−L)) = H0(X,Ω1

X(−pL)) and B1
X is the

image of F∗(d) : F∗OX → F∗Ω
1
X , we have H0(X,B1

X(−L)) = {dh ∈ Ω1
X(−pL) | h ∈ K(X)} =

{dh | h ∈ K(X), (dh) ≥ pL}.
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(ii) Since L is nef and big, we have the following exact sequences:

0 → H0(X,B1
X ⊗ L−1) → H1(X,L−1)

F∗

→ H1(X,L−p), (2.1)

0 → H0(X,B1
X ⊗ L−1) → H0(X,F∗Ω

1
X ⊗ L−1) = H0(X,Ω1

X ⊗ L−p). (2.2)

If X satisfies the T1 condition for any nef and big line bundle L, then H0(X,B1
X ⊗L−1) = 0

holds for any nef and big line bundle L. Hence, F ∗ : H1(X,L−1) → H1(X,L−p) is injective for

any nef and big line bundle L. For a given nef and big line bundle L, we have H1(X,L−n) = 0

for all n ≫ 0 by [7, Proposition 2]. Hence, we obtain H1(X,L−1) = 0 for any nef and big line

bundle L on X.

Proposition 2.1 Let f : X → C be a ruled or elliptic fibration to a smooth projective

curve C, i.e., the general fiber of f is a smooth rational or smooth elliptic curve. Then the T1
condition holds for any nef and big line bundle L on X.

Proof Assume on the contrary that H0(X,Ω1
X ⊗ L−1) ̸= 0 holds for a nef and big line

bundle L. Then we can take a section 0 ̸= s ∈ H0(X,Ω1
X ⊗ L−1) and a general fiber F of f ,

such that 0 ̸= s|F ∈ H0(F, (Ω1
X ⊗ L−1)|F ). Since F is smooth, we have the following exact

sequence:

0 → IF /I2
F → Ω1

X |F → ωF → 0,

where IF /I2
F = OF (−F ) ∼= OF . Tensoring the above exact sequence with L−1, we obtain the

exact sequence:

0 → L−1|F → (Ω1
X ⊗ L−1)|F → ωF ⊗ L−1|F → 0. (2.3)

Since F is smooth rational or smooth elliptic and L is nef and big, we have deg(L−1|F ) < 0

and deg(ωF ⊗ L−1|F ) < 0. Taking the exact sequence of cohomology groups of (2.3), we have

H0(F, (Ω1
X ⊗ L−1)|F ) = 0, which yields a contradiction.

Definition 2.2 Let W2(k) be the ring of Witt vectors of length two of k. Then W2(k) is

flat over Z/p2Z, and W2(k)⊗Z/p2Z Fp = k. For the explicit construction and further properties

of W2(k), we refer the reader to [12, II.6]. The following definition generalizes slightly the

definition in [3, 1.6] of liftings of smooth schemes over W2(k).

Let Z be a smooth scheme over k, and V a closed subscheme of Z smooth over k of codi-

mension s ≥ 2. A lifting of (Z, V ) over W2(k) consists of a smooth scheme Z̃ over W2(k)

and a closed subscheme Ṽ ⊂ Z̃ smooth over W2(k), such that Z = Z̃ ×SpecW2(k) Spec k, and

V = Ṽ ×SpecW2(k) Spec k. We say that (Z̃, Ṽ ) is a lifting of (Z, V ) over W2(k), if no confusion

is possible.

We need the following standard results.

Lemma 2.2 Let Z be a smooth scheme over k, V a closed subscheme of Z smooth over k

of codimension s ≥ 2, and π : Z ′ → Z the blow-up of Z along V . Assume that (Z, V ) admits a

lifting over W2(k). Then Z ′ admits a lifting over W2(k).

Proof Let (Z̃, Ṽ ) be a lifting of (Z, V ) over W2(k). Then Ṽ ⊂ Z̃ is a closed subscheme

smooth over W2(k) of codimension s ≥ 2. Let Ĩ be the ideal sheaf of Ṽ in Z̃, π̃ : Z̃ ′ → Z̃ the
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blow-up of Z̃ along Ṽ . By [5, Corollary II.7.15], we have the following commutative diagram:

Z ′′

π′

��

� � // Z̃ ′

π̃
��

Z � � // Z̃

where π′ : Z ′′ → Z is the blow-up of Z with respect to the ideal sheaf Ĩ⊗W2(k)k = I, which is the

ideal sheaf of V in Z. Hence we have Z ′′ = Z ′ and π′ = π. Since Z̃ is smooth over W2(k), so is

Z̃ ′. Note that Z̃ ′×SpecW2(k) Spec k = Proj
(⊕

i

Ĩi
)
×SpecW2(k) Spec k = Proj

(⊕
i

Ĩi⊗W2(k) k
)
=

Proj
(⊕

i

Ii
)
= Z ′. So Z̃ ′ is a lifting of Z ′ over W2(k).

Lemma 2.3 Let Z be a smooth scheme over k, P ∈ Z a closed point, and π : Z ′ → Z the

blow-up of Z along P . If Z is liftable over W2(k), then so is Z ′.

Proof Let Z̃ be a lifting of Z over W2(k), Z ↪→ Z̃ the induced closed immersion, and

η : Z̃ → SpecW2(k) the structure morphism. Let Spec k ↪→ Z be the closed immersion

associated to the closed point P ∈ Z, and Spec k ↪→ SpecW2(k) the natural closed immersion.

We have the following commutative square:

Spec k� _

��

� � // Z � � // Z̃

η

��
SpecW2(k)

ξ

55jjjjjjjjjj
SpecW2(k)

Since Spec k ↪→ SpecW2(k) is a closed immersion of the ideal sheaf square zero and η :

Z̃ → SpecW2(k) is smooth, there is a morphism ξ : SpecW2(k) → Z̃, such that the induced

diagrams are commutative. Since ξ is a section of η, it defines a closed subscheme P̃ ⊂ Z̃

smooth over W2(k). It follows from the upper commutativity that P = P̃ ×SpecW2(k) Spec k

holds. Therefore, (Z̃, P̃ ) is a lifting of (Z,P ) over W2(k). By Lemma 2.2, Z ′ is liftable over

W2(k).

Proposition 2.2 Let X be a smooth projective surface, and π : X → Y a composition of

Castelnuovo contractions of (−1)-curves. If Y is liftable over W2(k), then so is X.

Proof It follows from Lemma 2.3.

Lemma 2.4 We use the same notation as in Proposition 2.2, and assume further that

KY ≡ 0, χ(OX) ≥ 1, and L = OX(L) is nef and big. Then we have h0(X,KX + L) ≥ 2.

Proof By Serre duality, h2(X,KX + L) = h0(X,−L) = 0, we have h0(X,KX + L) ≥
χ(X,KX + L) = 1

2 (KX + L) · L + χ(OX). Note that KX = π∗KY + E ≡ E, where E is an

effective divisor supported by the exceptional locus of f . Therefore, we have h0(X,KX +L) ≥
1
2L

2 + χ(OX) > 1, i.e., h0(X,KX + L) ≥ 2.

We fix some notations. Let X be a smooth projective surface, L = OX(L) a nef and big line

bundle on X, Y a relatively minimal model of X, and κ = κ(X) = κ(Y ) the Kodaira dimension

of both X and Y .
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Proof of Theorem 1.1 (i) We proceed to exclude all possibilities except for quasi-elliptic

surfaces of Kodaira dimension 1 and surfaces of general type by means of Bombieri-Mumford’s

classification of algebraic surfaces in characteristic p (see [2, 1]).

First of all, it is easy to see that we can exclude the case X ∼= P2
k. If κ < 0, then X admits

a ruled fibration. If κ = 1 and Y is an elliptic surface, then X admits an elliptic fibration.

If κ = 0 and Y is a hyperelliptic or quasi-hyperelliptic surface, then X also admits an elliptic

fibration by [1, Theorem 4] and [2, Theorem 1]. These cases can be excluded due to Lemma

2.1(ii) and Proposition 2.1.

A theorem of Grothendieck [9] claims that any abelian variety is liftable over W2(k). If

κ = 0 and Y is an abelian surface, then this case can be excluded by [3, Corollaire 2.8] and

Proposition 2.2.

It remains to exclude the cases where Y is K3 or Enriques. Since H1(X,L−1) ̸= 0, after

replacing Lpν by L, we may assume that F ∗ : H1(X,L−1) → H1(X,L−p) is not injective. Hence

we have H0(X,B1
X⊗L−1) ̸= 0 by the exact sequence (2.1). Given a section 0 ̸= ξ ∈ H0(X,B1

X⊗
L−1), the map H0(X,L⊗ωX) → H0(X,B1

X ⊗ωX), sending s to s · ξ, is an injective linear map

of k-vector spaces. As a consequence, we have dimH0(X,B1
X ⊗ ωX) ≥ dimH0(X,L⊗ ωX) ≥ 2

by Lemma 2.4.

Tensoring the exact sequence

0 → OX → F∗OX → B1
X → 0

with ωX and taking the cohomology groups, we obtain the exact sequence:

0 → H0(X,ωX) → H0(X,ωpX) → H0(X,B1
X ⊗ ωX) → H1(X,ωX)

F∗

→ H1(X,ωpX).

We have h0(X,ωX) = P1(X) = P1(Y ), h0(X,ωpX) = Pp(X) = Pp(Y ), and that by Serre

duality, h1(X,ωX) = h1(X,OX) is a birational invariant. If Y is K3, then we have P1(X) =

Pp(X) = 1 and h1(X,ωX) = 0, which contradict dimH0(X,B1
X ⊗ ωX) ≥ 2. If Y is a classical

Enriques surface, then we have P1(X) = 0, Pp(X) ≤ 1 and h1(X,ωX) = 0, which contradict

dimH0(X,B1
X ⊗ ωX) ≥ 2. If Y is a non-classical Enriques surface (see [2, §3]), then we have

ωY ∼= OY and h1(Y,OY ) = 1. Hence P1(X) = Pp(X) = 1 and h1(X,ωX) = 1, which also

contradict dimH0(X,B1
X ⊗ ωX) ≥ 2.

Therefore, X has to be a quasi-elliptic surface of Kodaira dimension 1 or a surface of general

type, which completes the proof of Theorem 1.1(i).

(ii) SinceH1(X,L−1) ̸=0, after replacing Lpν by L, we may assume that F ∗ : H1(X,L−1) →
H1(X,L−p) is not injective. Hence we have H0(X,B1

X ⊗L−1) ̸= 0 by the exact sequence (2.1).

By Lemma 2.1(i), we have

0 ̸= H0(X,B1
X(−L)) = {dh | h ∈ K(X), (dh) ≥ pL},

where L is a nef and big divisor on X such that L = OX(L).

Let h ∈ K(X) be a rational function such that (dh) ≥ pL. Then we can define a rational

map g : X 99K P1 via the rational function h. Through some blow-ups σ : X ′ → X, we get a

morphism g′ : X ′ → P1. Taking the Stein factorization of g′, we obtain a fibration f : X ′ → C
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to a smooth projective curve C with connected fibers and a finite morphism τ : C → P1.

X ′

σ

��

f //

g′

  B
BB

BB
BB

B C

τ

��
X

g //___ P1

Let L′ = σ∗L, G = im(OX′(pL′)
dh−→ Ω1

X′) and F = im(f∗Ω1
C → Ω1

X′). Then we have

Ω1
X′/C = Ω1

X′/F ⊇ T := G/G ∩ F .

Since τ∗(dh) can be regarded as a section of the line bundle Ω1
C → C over a non-empty

open subset of C, there is a non-empty open subset U of X ′, such that both G and G ∩ F are

generated by dh on U . Hence G and G ∩ F coincide on U and T is a torsion sheaf on X ′. Let

A = c1(T ) = c1(G)− c1(G ∩F). Since c1(G) = pL′ is nef and big on X ′ and c1(G ∩F) ≤ f∗KC ,

the divisor A must contain a certain irreducible component which is horizontal with respect to

f , i.e., it is not contained in any fiber of f . Denote such an irreducible component of A by C ′.

Lemma 2.5 We use the same notation and assumptions as above. Let F be an irreducible

and reduced fiber of f : X ′ → C. Then we have Ω1
F
∼= Ω1

X′/C |F .

Proof By [5, Proposition II.8.11], we have the following exact sequence:

f∗Ω1
C → Ω1

X′ → Ω1
X′/C → 0,

which, by restriction to F , gives rise to an exact sequence:

0 → f∗Ω1
C |F

ξ→ Ω1
X′ |F

η→ Ω1
X′/C |F → 0. (2.4)

Since ξ is generically injective and f∗Ω1
C |F is locally free, ξ is injective. Let I = OX′(−F ) be

the ideal sheaf of F in X ′. By [5, Proposition II.8.12], we have the following exact sequence:

0 → I/I2 ν→ Ω1
X′ |F

π→ Ω1
F → 0. (2.5)

Since ν is generically injective and I/I2 = OX′(−F )|F is locally free, ν is injective.

It is easy to see that the composition f∗Ω1
C |F

ξ→ Ω1
X′ |F

π→ Ω1
F is zero, which induces

natural homomorphisms φ : f∗Ω1
C |F → OX′(−F )|F and ψ : Ω1

X′/C |F → Ω1
F . Thus, we have

the following commutative diagram with exact rows:

0 // f∗Ω1
C |F

ξ //

φ

��

Ω1
X′ |F

η // Ω1
X′/C |F //

ψ

��

0

0 // OX′(−F )|F
ν // Ω1

X′ |F
π // Ω1

F
// 0

Since f∗Ω1
C |F ∼= OF , OX′(−F )|F ∼= OF and both the isomorphisms are induced by the

restriction map, we have that φ : f∗Ω1
C |F → OX′(−F )|F is an isomorphism, and then so is

ψ : Ω1
X′/C |F → Ω1

F by the five-lemma.

Let F be a fiber of f : X ′ → C. If F is not irreducible or not reduced, then F is singular.

If F is irreducible and reduced, then by Lemma 2.5, Ω1
F
∼= Ω1

X′/C |F always has a torsion part

along the intersection F ∩ C ′ ̸= ∅. In particular, F is a singular curve, which completes the

proof of Theorem 1.1(ii).
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3 Some Remarks

The following definition is a generalization of Definition 2.1.

Definition 3.1 Let X be a smooth projective variety, L a line bundle on X and k a positive

integer. We say that X satisfies the Tk condition for L, if Hi(X,ΩjX ⊗ L−1) = 0 holds for all

i ≥ 0, j > 0 and i+ j ≤ k.

Remark 3.1 The Tk condition was first defined and used by Tango to give a criterion [14,

Theorem 5] of the Kodaira vanishing theorem. We recall this criterion here for the convenience

of the reader, while the idea of the proof is to use the exact sequences repeatedly associated

to the Cartier isomorphism. Though such a Tango’s criterion exists, it seems impossible to

generalize Theorem 1.1 to the higher dimensional cases, since the minimal model program for

higher dimensional varieties is much more complicated than that for the surfaces.

Theorem 3.1 Let X be a smooth projective variety of dimension n, and let 0 < k < n be an

integer. If X satisfies the Tk condition for all ample line bundles L on X, then Hi(X,L−1) = 0

holds for all 0 ≤ i ≤ k and all ample line bundles L on X.

Remark 3.2 As is well-known, the Kawamata-Viehweg vanishing theorem is a general-

ization of the Kodaira-Ramanujam vansihing theorem. For simplicity, we recall here a smooth

surface version of the Kawamata-Viehweg vanishing theorem for nef and big Q-divisors (see [6,

Theorem 1-2-3]).

(∗) Let X be a smooth projective surface over an algebraically closed field k with char(k) =

0. Let L be a nef and big Q-divisor on X, such that the fractional part of L has simple normal

crossing support. Then H1(X,−pLq) = 0, where pLq is the round-up of L.

Assume char(k) > 0. When L is integral, Theorem 1.1 shows that (∗) only fails for quasi-

elliptic surfaces of Kodaira dimension 1 and surfaces of general type. When L is a Q-divisor,

the situation becomes more delicate. For instance, the author has given counterexamples [16,

Theorem 3.1] to (∗) on certain ruled surfaces, and has also proved that (∗) holds for any surface

which is birational to a strongly liftable smooth projective surface (see [18, Theorem 1.4]).

In particular, the Kawamata-Viehweg vanishing theorem holds for all rational surfaces [17,

Theorem 1.4], and hence for all log del Pezzo surfaces [17, Corollary 1.6].

Acknowledgement The author would like to express his gratitude to the referees for their

careful reading and useful comments.
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