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Abstract The free boundary value problems for elliptic differential-operator equations are
studied. Several conditions for the uniform maximal regularity with respect to boundary
parameters and the Fredholmness in abstract Lp-spaces are given. In application, the
nonlocal free boundary problems for finite or infinite systems of elliptic and anisotropic
type equations are studied.
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1 Introduction, Notations and Background

In the last years, the maximal regularity properties of boundary value problems (BVPs) for
differential-operator equations (DOEs) have been applied to PDE, psedo DE and the different
physical processes (see [3, 4, 10, 12, 15, 20, 22-26, 30, 33-39] and the references therein).
In these works, BVPs were essentially considered in Hilbert space valued class of functions
defined in fixed domains. The L,-maximal regularity properties of differential operators in
fixed domains were studied e.g. in [11, 26-28, 32, 37-39]. Maximal regularity properties for
PDE in moving domain were studied e.g. in [21], and free BVPs were investigated e.g. in [11,
14] and the references therein. The main objective of the present paper is to discuss nonlocal
BVPs in moving domains for ordinary DOE and free BVP for partial DOE in Banach-valued
L, spaces. More precisely,

(1) the boundaries depend on the perturbation parameter or on space variable;

(2) the boundary conditions are nonlocal;

(3) the operators appearing in the equations and in the boundary conditions are unbounded.

In the present work, the maximal L,-regularity and the Fredholmness of this problem uni-
formly with respect to the boundary parameter are established. These results are applied to
nonlocal BVPs for elliptic, quasi-elliptic partial differential equations and finite or infinite sys-
tems of PDEs in moving domains. In application part, we establish well-posedness of free BVPs
for anisotropic elliptic equations in Ly, p =(p1,p) (i.e., Lebesgue spaces with mixed norm) and
L, separability for infinite systems of elliptic equations.

Let E be a Banach space, and L, (€, F) denote the space of strongly measurable E-valued
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functions that are defined on the measurable subset 2 C R™ with the norm given by

1
1, = ey = ([ 15 @lpde)”. 1<p<ox.
The Banach space F is said to be a UMD-space (see [6-7]) if the Hilbert operator

(Hf)(z) = lim Mdy
e—=0 \zfy|>sx_y
is bounded in L,(R, E), p € (1,00). UMD spaces include e.g. L,, I, and Lorentz spaces Ly,

p.q € (1,00).
Let C be the set of the complex numbers and

Se={MAeC Jarg\| < p}U{0}, 0<p<T.

A linear operator A is said to be g-positive (or positive) in a Banach space E if D(A) is
dense on E and

I(A+AD " e < ML+ [A)™

for any A € Sy, where ¢ € [0,7), I is the identity operator in E, and B(FE) is the space of
bounded linear operators in E. Sometimes A + Al is written as A + A\ and denoted by Ay. It is
known that there exist the fractional powers A? of a positive operator A (see [31, Section 1.15.1]).

The operator A(s) is said to be ¢-positive (or positive) in E uniformly with respect to s if
D(A(s)) is independent of s, D(A(s)) is dense in E and

I(A(s) + )7 <

14+ |A

for all A € S,, 0 < ¢ < 7, where M does not depend on s and A. Let E(A?) denote the space
D(A%) with norm

1
lull eaoy = (lul” + [|A%|?)7, 1 <p < oo, 0<<o0.

Let E; and E3 be two Banach spaces. By (Eq, Ez)g,, (0 <0 <1, 1 < p < 00), we will denote
the interpolation spaces obtained from {F4, E2} by the K-method (see [31, Section 1.3.1]).

Let S = S(R™; E) denote a Schwartz class, i.e., the space of E-valued rapidly decreas-
ing smooth functions on R™, equipped with its usual topology generated by seminorms. Let
S’(R™; E') denote the space of all continuous linear operators L : S — E, equipped with
the bounded convergence topology. Recall that S(R™; E) is norm dense in L,(R"™; E) when
1 < p < oo. Let F denote the Fourier transformation. A function ¥ € C(R"™; L(E1, Es)) is
called a Fourier multiplier from L,(R"; E1) to L,(R"; E») if the map u — ®u = F~1¥ () Fu,
u € S(R™; Ey) is well defined and extends to a bounded linear operator

®: L,(R™E1) —» Ly(R™ Es).

The set of all multipliers from L,(R"; E1) to Ly(R™; E2) will be denoted by MJZ(E1, Ez). For
Ey = B, = E, it will be denoted by MJ(E). Most important facts on Fourier multipliers and
some related reference can be found e.g. in [8, 10, 19, 32] and [31, Section 2.2.1]).
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Let Wy = {Vs € MJ(E, E2), s € Q} be a collection of multipliers in MJ(E1, Ea). We say
that W is a uniform collection of multipliers if there exists a constant M > 0 independent of
s € Q, such that

||F71\PSFU||LQ(R";E2) < M”“HLP(R";EQ

for all s € Q and u € S(R™; Ey).

Let N denote the set of natural numbers. A set W C B(FEi, Es) is called R-bounded
(see, e.g., [11]) if there is a positive constant C, such that for all Ty, T5, -+, T, € W and
U, U2, , Um S El, mGN,

1 m 1 m
/O H;m(y)Tjug‘HEQdySC/{) H;Tj(y)ujHEld%

where {r;} is a sequence of independent symmetric {—1,1}-valued random variables on [0, 1]
(see [8]). The smallest C for which the above estimate holds is called an R-bound of the
collection W and denoted by R(W).

A set Wy C B(F4, E2) depending on parameters s € @ is called uniformly R-bounded with
respect to s if there is a constant C independent of s € @, such that for all T1(s), T>(s), -,
Tm(s) € Ws and uq ug, -, Uy € E1, m €N,

1 m 1 m
X nwnm| ase [ S, a
0 =1 2 0 =1 !
It implies that R(W,) < C for all s € Q. Let
ﬂ:(ﬂhﬂ%"'vﬂn)ENnv 5:(513627"'a§n>7

- 0
¢ =erdl ol 1Bl=D Bk Dj=5-
k=1 8§J

D = DDy ---D, Uy = {8, B € {0,1}}.
Definition 1.1 A Banach space E is said to be a space satisfying a multiplier condition

if, for any U € C")(R"; B(E)), the R-boundedness of the set {¢/PIDPU(¢) : € € R™\0,8 € U,}
implies that ¥ is a Fourier multiplier, i.e., ¥ € MP(E) for any p € (1, 0).

The uniform R-boundedness of the set {¢/#IDPW (€): ¢ € R"\0,3 € U}, i.e.,

sug RUPIDPU,(£): ¢ e R™M0,8€U}) <K
se

implies that W, is a uniform collection of Fourier multipliers.
The @-positive operator A is said to be R-positive in a Banach space FE if the set

La={MA+XN)""AeS,}, 0<p<7

is R-bounded.
A positive operator A(s) is said to be uniformly R-positive in a Banach space F if there
exists a € [0, 7) such that the set

La={MNA(s)+ N1 XeS,}
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is uniformly R-bounded. Let o4 (E) denote the space of all compact operators in E. Let FEy
and E be two Banach spaces and Ey continuously and densely embedded into E; let Q be a
measurable subset in R” and m be a natural number. Let W} ($; Eo, E) denote the collection
of all functions u € L,(€; Ey) that have the generalized derivatives D'y = %u € L,(O E)
with the norm given by

n

lullwy = lullwy @802 = ltllL, @z + Y 1D U] L8 < oo
k=1

We will called it Sobolev-Lions type space. For n = 1, Q = (a,b), a,b € R, the space
W (8 Eo, E) will be denoted by W;"(a,b; Eo, E), and for Ey = E it will be denoted by
W (4 E). Tt is clear to see that

W (s Eo, E) = W (5 E) N Ly(Q; Eo).
Let Q; C R™ be a domain dependent on the parameter ¢.

Condition 1.1 For p € (1,00), there is a bounded linear extension operator from W (Q;
E(A),E) to W (R"; E(A), E) independent of t.

Remark 1.1 If Q C R" is a region with smooth boundary, ¥ = R, A = I, then for
p € (1,00) there exists a bounded linear extension operator from W;"(Q2) = W;"(Q; R, R) to
W (R™) = WM(R™; R, R) (see [5, Section 7]). If G is a bounded domain with the uniform
cone property for all s (see [1, p. 66]), or if s; € C7[0,T], 0 < v < 1 and there is a b > 0 so

that v(s) > b > 0, then in a similar way as in [1, pp. 83-94] or [5, Section 7] it can be shown
that Condition 1.1 holds.

Remark 1.2 By virtue of [10, Lemma 2.3], there is a positive constant C such that
A+ ul = CA[+ ()
for [arg A\| < 1, |arg u] < @9 and 0 < 1 + o < .
By using a similar technique as in [24-27], we obtain the following result.

Theorem 1.1 Suppose that Condition 1.1 holds. Let the following conditions be satisfied:

(1) E is a Banach space satisfying the uniform multiplier condition, p € (1,00), 0 < h < hg
18 a parameter;

(2) a=(a1,q9, - ,an) are n-tuples of nonnegative integer numbers such that

n

al
=) <1 0<p<l-
k=1

(3) A is an R-positive operator in E with 0 < ¢ < 7.
Then the embedding D*W)"(Qy; E(A), E) C Ly(u; E(A'=*71)) is continuous, and there
exists a positive constant C,, such that

ID%ul| 1, (@ m(a1 )y < Culblullwr@uiza).e) + 0~ lullL, @)

for all uw € W"(Q; E(A), E), t and h.

Theorem 1.2 Suppose that all conditions of Theorem 1.1 are satisfied, and € is a bounded
region in R", A™! € 0o (E). Then for 0 < p < 1— s, the embedding D*W"(; E(A),E) C
Ly (Q; E(AY=771)) is compact.
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Theorem 1.3 Suppose that all conditions of Theorem 1.1 are satisfied for o € (5, 7). Then
the embedding

DW"(Q; E(A), E) C Ly(Q4; (E(A), E)p)
is continuous, and there exists a positive constant C,,, such that

1Dullz,00(BA),B).v.p) < CulPH ullwmusma),m) + h= Ol 0, m))
for all u € W)"(Q; E(A), E), t and h > 0.

Theorem 1.4 (see [26]) Let E be a Banach space, A be a positive operator in E of type ¢,
m be a positive integer, 1 < p < oo and 2—117 <a<m+ %, and let 0 <~y < 2pa — 1. Then for

1 1
A € S(p) the operator —A3 generates a semigroup e AN which is holomorphic for x > 0 and

strongly continuous for x > 0. Moreover, there exists a constant C' > 0, such that

o0 1
_rA2
/0 |ASe =Yl de < C(lullp poamy . o

m ~ 2mp

1ty
+ AP )
»P

for every u € (E, E(A™)) o 14+ , and A € S(¢p).

m  2pm>

From [31, Section 1.8.2] and [5, Section 10.1], we have the theorem below.

Theorem 1.5 Let the following conditions be satisfied:

(1) m and j are integer numbers, and 0 < j <m — 1;

(2) 0, =B, 0<t<T <00, h>0,x€[0,b].

Then, for u € W;(0,b; Ey, E), the transformations u — u9) (xq) are bounded linear from
W (0,b; Eo, E) onto (Eo, E)s, p, and the following inequalities hold:

% [u" (o)l (80, )5,,, < CU™ |2, 0,05m) + 1l (0,0:0)):

t9uD (o)l g < C(R' % [ tu"™ || 1, 0,0) + B~ ullL, (0.5:8))-

Consider the following differential-operator equation:

Lu = u™(z) + Z arAPumR (2) =0, € (a,b). (1.1)
k=1
Let wy,ws,: - ,wn, be the roots of the equation

Tt a,=0 (1.2)

W™+ aw™”
and

wmin:min{a’rgwja ]:17 ,q; arg wj"'ﬂ-a ]:(I+17 7m}a

wmax:max{argwj7 .]Zla » 45 argwj—i—?r, jZQ+17 am}v

where ¢ is some integer number from (1,m).

A system of complex numbers w1, ws, - ,w,, is called g-separated if there exists a straight
line P passing through 0, such that no value of the numbers w; lies on it, and wy,ws, -+ ,wy
are on one side of P while wq41,- - ,wy, are on the other side.

By reasoning as in [39, p. 263], we obtain the following lemma.
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Lemma 1.1 Let the following conditions be satisfied:

(1) am # 0 and the roots of equation (2.2), wj;, j=1,---,m, are g-separated;

(2) Ais a closed operator in Banach space E with a dense domain D(A) and ||(A—X\)"1|| <
CIAI7Y, —% — Wmax < arg A < T — Wiin, |A] = oo.

Then for a function u(z) to be a solution of equation (2.1), Which belongs to the space

W (a,b; D(A™), E), it is necessary that u = Z e~ (@-a)urdg 4 Z —(b=2)wrd g, where
k=1 k=q+1

gr € (D(A™),E) 1

mp P’

k=1,2,---,m.

2 Statement of the Problem

Consider the following nonlocal free boundary value problem:

— Du(z,y) — Dyu(z,y) + (A(s) + Nu(, y)

+ A1 (s, 2, y) Dyu(z,y) + Az(s, 2, y) Dyu(z, y) = f(x,y), (2.1)
mik Nk
Lipu = [Z Vo onkiut™ (0, y) + Brriu™ (T,y)] + > duiju (l‘k:jay):| =0,
Jj=1
mag Nk .
Lou [ZV aopiulV, so(x) + Boru (2, 51(x))] +Z(52kju(l)<x’ykj)] (2.2)
j=1
-0, k=12

on the moving domain G5 = {(z,y) € R?, 0 <z < T, y € o(s)}, where

o(z), s1(2)),

s=(s0,51), s0=3s0(z), s1=s1(x), o(s)=(s
V= u(s) = s1(x) — so(x), x€[0,T], & —i— ]19
u=us, my € {0,1},

ik, Bik, 0ik;j are complex numbers,

zr; € (0,T), wyij € (s1(2),82(2)), o= (a1, o),

pr=prpy, 0= ()" by = (5)"

and A(s), A1(s,x,y), Aa(s,z,y) for z,y € G are possibly unbounded operators in E. Let
Ok = Qjkmy,s  Bik = Bikmy,,  Jik=1,2.

The function u € W72 (Gy; E(A), E) satisfying equation (2.1) a.e. on G is said to be the solution
to equation (2,1). Consider at first, the following BVP for ordinary DOE:

Lu = —u(y) + A(s)u(y) + Bi(s, y)u(”( )+ Ba(s,y)uly) = f(y), yeals),  (23)

Liu= ZI/ {a;ﬂ (so0) + &mu( (s1) + Zékﬂu (yk])} =fi, k=12, (2.4)

j=1

where fy € By = (BE(A), E)g,p, 6 = i — 1, 0 = %= + 5., p € (1,00), my, € {0,1}; Ny
and M), are integer numbers, ag, B, 0k; are complex numbers so(t) < s1(t), yr; € (S0, 51);
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$= (‘90’51)750 = So(t)asl = Sl(t)7 V= V(t) = sl(t) - So(t), U(S) = (So(t)751(t))7t € [OvT]v A(S)
and By(s,y) for y € [sp, s1] are possibly unbounded operators in E, u = ug is the solution to
the equation (2.3) on o(s).

3 Homogeneous Equations

Let us first consider the following nonlocal BVP on the moving domain o(s):

(Lo +Nu = ~u® () + (A(s) + Nu(y) =0, y € o(s), (3.1)
Liyu= Z O [akiu( )(So) + 5}@1 81 + Z(;k]zu( )(ykj) =fr, k=12, (32)
i=0 =1

where A is a complex parameter, my € {0,1}; oui,Bri,Orji are complex numbers; A(s) =
A(v(s)) is a possibly unbounded operator in E. Let ag = axm,, Bk = Brmy,-

Theorem 3.1 Suppose that

(1) E is a Banach space satisfying the uniform multiplier condition;

(2) A(s) is an uniformly R-positive operator in E, n = (—1)™ a2 — (—1)™2af; # 0,
p € (1,00);

(3) s, €CY[0,T],0< <1, and there is a b > 0 so that v(s) > b > 0.

Then, problem (3.1)~(3.2) for fr € Eg, O = 7= + 2%, p € (1,00) and |arg A| < ¢, with
sufficiently large |X|, has a unique solution u belonging to W2 (o (s); E(A), E), and the following
coercive uniform estimate

2

. 2
SN g, ey + [Aulnoeiey < M (fls + DA (33)
=0 k=1

holds with respect to parameters s and A.

Proof By the substitution of variable y = s¢ + v(s)z, € (0,1) in problem (3.1)—(3.2)

2

and dividing both sides of the equation by v, we obtain the following equivalent BVP on the

fixed domain (0,1):

(Lo + Nu = —u@(z) + v2[A(s) + Nu(z) = 0, (3.4)
N
Lyou = Z v [Oékz (0) + Breu™ (1) + > pgiu (wry)| = fr, k=1,2, (3.5)

where o; =i + %. Due to uniform positivity of A, by using Remark 1.2 and by the condition
(2.1), we have the following estimate:

_ M,
ITCA(s) + N)p? + p] 7| < ﬁ (3.6)
with My independent of s and depending on ¢ only. In view of (3.6) and by [10, Lemma 2.6],

1
—2v(A()+M)2 which is holomorphic for > 0 and strongly continu-

there exists a semigroup e
ous for > 0. By virtue of Lemma 1.1, an arbitrary solution to equation (3.4) belonging to

W2(0,1; E(A), E) has the form

u(x) = Urs(z)g1 + Uzs(2) 92, (3.7)



756 V. Shakhmurov

where

Ura(x) = oA [ 0y gmv-nad o),

A

>Nl o

(s)=[A(s) + N3, g€ (E(A),E) L

55D

k=1,2.

Now taking into account boundary conditions (3.5), we obtain the algebraic linear equations
with respect to g1, go:

my ) N
1

Lipou=v"%» Z [(—l)iAA% (s) (am‘ + BriU1s(1) + ZfskjiUls(xkj))}gl

i=0 j=1

Ny,
+ Z [ f (akiU2s(0> + Bri + Z(SkjiU2s(37kj))}g2 =fr, k=12 (3.8)

Jj=1

Therefore, it is easy to see that the matrix-operator of system (3.8) for sufficiently large ||
is invertible in E? and has a unique solution expressed in the form

_my _m2
2 2

gk = V%[Clk + dik (), s)JA, 7 fi+ Ve [Caok + dar (X, s)]A, 2 fa, k=1,2, (3.9)

where C;j, are some complex numbers and ij like dji, go to 0 in B(E) and B(E(A)) as |A| = oo,
A € S,. Substituting (3.9) into (3.7), we obtain the representation of the solution to problem
(3.4)-(3.5):

(@) = v {Uss()[Ch1 + dia (A, )] + Una (2)[Crp + dis (N, )] A5 2 ()}

+ {U1:(2)[Cor + dr (A, )] + Uaa(@)[Ce + daa(A, )] Ay F ()} o (3.10)
By virtue of [10, Lemma 2.6], we have
le™ A% || < Ce@NZe 550, 2 € (0,1), A€ S(p).

So, in view of uniform boundedness of the operator di;(A,s), for |argA| < ¢ and |A| from
(3.10), we obtain

2
ST w016 + 14Ul 0,1:8)

1=0
<CVPZZ|>\|1_; / 143~ E Ups( )fk:||pd$)%
k=1 =0
+( / A4y F Vo) ). (3.11)

By the substitution of variable va = £ and in view of Theorem 1.4, we obtain
1 1 1—- "k % 2
o ([ 1A F @ felrde) " <00 S fulls, + A ) (3.12)
0 k=1

Moreover, due to positivity of operator A, for uy = Uis(x) fr (or up = Uss(z) fr), we have

JAAL T wnll = A% wg = AL i) < (L IAATDIAY 7 el
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By using the above estimate, in view of (3.11) and (3.12), by the substitution of variable
and by virtue of Theorem 1.4, we get the following uniform estimate for the solution to problem
(3.4)—(3.5):

D=

2
l Lk v 71/ xr
> v /IIAA F e ful 4 e~ 04 fiv]a)

k=1

2
<MY (Ifellse + A (1l (3.13)

k=1

Then by taking into account the substitution of variable, we obtain from (3.11) and (3.13) the
estimate (3.3).

4 Non-homogenous Equations

Now consider non-homogenous BVPs on the moving intervals o(s) = (s, s1):

(Lo + Nu = —u®(y) + (A + Nuly )=f(y)7 y € o(s), (4.1)
Liu = Zk l/6'i [aklu(l)(O) + ﬁ]ﬂu + Z 61@31” ykj = fk7 k=12, (42)
1=0

where yi; € o(s), s = (so(t),s1(t)), 0 <t <T < 00; au, P, dk; are complex numbers; A is a

complex parameter, and &; = i — %.

Remark 4.1 If functions s; satisfy the Holder’s condition (i.e., s; € C7[0,T], 0 < v < 1),
then by a similar way as in [1, pp. 83-94] or [5, Section 7], it can be shown that there is a
bounded linear extension operator from W72 (o (s); E(A), E) to W2(R; E(A), E) for p € (1,00)
independent of s.

Theorem 4.1 Suppose that all conditions of Theorem 3.1 are satisfied. Then, the operator
u— {(Lo + Nu, Liu, Lou} for |argA| < ¢, 0 < ¢ < 7 and sufficiently large |\|, is an isomor-
phism from W2(o(s); E(A), E) onto Ly(o(s); E) x Ey x Ey. Moreover, the following uniform
coercive estimate holds:

2
_3 ;
SN R D o) + AUl Ly ((5):)

§=0
2
< Ol torimy + D (sllz, + N i) (43)
k=1

Proof By the substitution of variable y = so + v(s)z, © € (0,1), problem (4.1)—(4.2) is
transformed to BVP with parameters on fixed domain

(Lo + Nu = —v2u® (z) + (A + Nu(z) = f(z), =€ (0,1), (4.4)
N
Liu = Z v [akz (0) + BriuD (1) + dejiu(i)(mkj)

1
= fr, k=12, O'i:i‘f'};. (4.5)
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We proved the uniqueness of the solution to problem (4.4)—(4.5) in Theorem 3.1. Let us define

(2) = {f(x), if x € [0,1],
0, if z ¢ [0,1].

E) for all f €

We now show that problem (4.4)-(4.5) has a solution u € W2(0,1; E(A),
1] of the solution

L,(0,1;E), fx € E, and v = uq + ug, where u;y is the restriction on [0,
to equation

(Lo+MNu= f(x), x€R=(—00,00), (4.6)
and us is a solution to problem
(LO + )\)u =0, Lpu= fk — Lyu. (47)

A solution to equation (4.6) is given by the formula

1 oo _
u(w) = LG s OFF = o [ T LT s O (PO
where Lo()\, s,&) = v726%2 + X + A. So, it is sufficient to show that operator-functions
\Ils,)\(f) :ALal()‘asag)a \Ils,)\,j(g) :Vj‘A|1_%§jLal(A757§)a .7 :0a172

are Fourier multipliers in L, (R; E') uniformly with respect to s and A. Really, due to positivity
of A and by virtue of Remark 1.2, we have the following uniform estimates:

Lo (A, 8,18)]| < ML+ w728 + [A]
[ (©)] = [A[A+ X+ v 7Y < Oy,
1T 5 (Ol = A2 L (N, 5,€)|| < Co.

Since A(s) is uniformly R-positive, in view of equality AR(\) = I + AR(\) and by virtue of

Kahane’s contraction principle for collection of R-bounded operators (see [9, Lemma 3.5]), we

get that the set {ALy"()\,s,€),& € R\{0}} is uniformly R-bounded. Moreover, it is clear to
see that

d _ _ _ _ _

gd?\l: AE) = 2620 2ALGE (N, 5,6) = [20 2L (N, 8, €)]ALG (), 5, ).

In view of Kahane’s contraction principle, from additional and product properties of the

collection of R-bounded operators (see [9, Lemma 3.5, Proposition 3.4]) and the uniform R-

positivity of operator A(s), we obtain

supR{|§|k aa(6): €€ R\{o}} <0, k=01

e

Namely, the R-bound of the set {|¢|* dgk
similar way, we have the uniform estimate

sa(&): € € R\{0}} is independent of s and A. In a

Ssl,l}\)R<{‘€|kd§’f saj(&): €€ R\{O}}) <C, k=0,1
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Then, in view of Definition 1.1, it follows that U, x(£) and ¥,y ;(§) are uniform collec-
tions of multipliers in L,(R; E). Then, we obtain that problem (4.6) has the solution u €
W2 (R; E(A), E) and the following uniform estimate

2 _ B
S v w1 rim) + 1Al L rie) < ClF L, rim) (4.8)
=0

holds with respect to s and A. Let u; be the restriction of u on (0,1). Then it implies that
uy € WE(O, 1; E(A), E). By virtue of Theorem 1.5, we get

W™ (.)€ (E(A); E)gypy k=1,2.

Hence, Logu; € Ei. Thus by virtue of Theorem 3.1, problem (4.7) has a unique solution ug(x)
that belongs to W2(0,1; E(A), E) and for sufficiently large |A[, we have

2
ST S N 1, 005m) + | Aullz, 0,18
7=0

2
<O (Ifx = Liw | g + N fi = Lyl ). (4.9)
k=1

From (4.9), for |arg A\| < ¢, we obtain
2 ‘ _ _
ST v [, 00y + 14wz, 01:8) < ClFllL0.:8)- (4.10)
§=0

Therefore, in view of Theorem 1.5 and by estimate (4.10) we have
(4l j _
v D (s, < Cullv 2P |08 + 14w z,010)] < Clflln0um.  (411)
In virtue of Theorem 1.5 for A = u2, u € WPQ(O7 1; E), we obtain
(i1 . 1 _ 1
P D D (g < Cllal¥ v =2u@ | om + Wl 0aim) (412)

Hence, from estimates (4.9)—(4.12), we have

2
S IR 08y 0,1 + [Auz] L 00:8)
=0

2
< (Il 08 + S (Willm, + N fellm))- (4.13)

k=1

Then, from estimates (4.8) and (4.13), we obtain that the operator generated by problem
(4.4)-(4.5) for JargA| < ¢, 0 < ¢ < 7 and sufficiently large |A|, is an isomorphism from
W2(0,1; E(A), E) onto Ly(0,1; E) x Ey x E,. Moreover, for these s, A, the following uniform
coercive estimate holds:

2
Z v A2 ul) Iz,0.1:2) + [[AullL,0.1:5)
3=0
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2
C I lLy0:) + Y Fellm + A fell6) |- (4.14)
k=1

Finally, by changing of variable from (4.14), we obtain the assertion.
Consider the following problem:

(Lo +Nu=—u®(y) + (A(s) + Nuly) = f(y), y€oals),

my Nk
Lyu=7) v [O‘mu(l)(so) + B (s1) + > ki (yry)| =0, k=1,2. (4.15)
i=0 J=1

Let B(s) denote the operator in L,(o(s); E') generated by problem (4.15), i.e.,
D(B(s)) = W2(o(s): B(A), E. L), B(s)yu= —u® 1 Au.

By changing of variable y = sg + v(s)z, € (0,1), problem (4.15) is transformed to the
following BVP with parameter on fixed domain:

(Lo + Nu = —v2u® (2) + (A + Nu(z) = f(z), ze€(0,1),

R : : Al , (4.16)
Lyu=Y v [akiu(’)(O) + B (1) + 3 Ggu (ahy)] =0, k=12,
i=0 J=1

Let B(s) denote the operator in F' = L,(0, 1; E) generated by problem (4.16), i.e
D(B(s)) = W2(0,1; E(A), B, L), B(s)u = —v""u" + A(s)u.
Theorem 4.1 implies the following result.

Result 4.1 The operator B(s) is uniformly positive in F' and for A € S(y¢) the following
estimate holds:

ZIAI1_5II $) + A7 I + |AIB(s) + A7l r < M.

Theorem 4.2 Let all conditions of Theorem 3.1 be satisfied. Then the operator G(s) is
uniformly R-positive in F.

Proof The estimate (4.3) implies that G(s) is uniformly positive in F. The equation (4.16)
can be express as

—u®P(z) + 2 Ayu(z) = —(% - VA%) (% + yA%) =2 f(x).

Then, by using a similar technique as in [35], we obtain that for f € D(0,1; F(A)) the solution
to equation (4.16) is represented as

1
U(IE) = Ul)\u(x)gl + UQAV(x)QQ + V2/0 UO)\I/(‘T - y)f(y)dya gk € Ea (417)

where
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and Ujy,(z), j = 1,2, are analytic semigroups defined by

1 1
U1,\u($) _ e—uacAf7 U2)\V($) _ e—V(l—w)Af )

By taking into account the boundary conditions, we obtain the following equation with respect
to g1 and go:

Lp(Uiaw)g1r + Lg(Uaan)g2 = L (®r), k=1,2,

1
Oy, = VQ/O Uoxv(z —y) f(y)dy.

By solving the above system, substituting it into (4.17), and calculating Ly (P, ), we obtain
from the above as in Theorem 3.1, the representation of the solution to problem (4.16):

u(z) = [B(s) + |1 f = / K, (\ 2,9)f(4)dy,

2 my

K,(\z,y) —uzzz N

j=1k=1p=0

(4.18)

_ mymin)

Bk]uu<)\)UjAy($)[}k]’)\u($ - y) + UO)\V(‘T - y)a

where Bkj,,()\) are like dji, so are uniformly bounded operators in £ and

1
_ _ 2
bejue VAL x>y,

oty )A% bkju,ékju e C.
Opjue "WTPAN <y,

Uk (@ —y) =

Let us at first show that the set {K, (A, z,y); A € S(¢)} is uniformly R-bounded. Really,
by using the generalized Minkowcki’s, Young inequalities by semigroups estimates and by the
substitution of variable v{ = 7, we have the uniform estimate

2 mp

10 (N 2, 9) flle < CZZZV{HA *1Brgu W ino () f L + Voro () 1}

j=1k=1p=0
2
<CY vliflle +lIflr < Cllflle-
k=1

Due to uniform R-positivity of A(s), and uniform boundedness of operators By, ()), and
by using the Kahane’s contraction principle, we get that the following sets

1
brjpw (A 2, y) = {VBrjun (N Ay 2 Upaw (@) Ui (1 — y) + Uaxo (y)] : A € Sy},
bOl/(Aaxay) = {(J())\V(aj - y) : A S SSG}
are uniformly R-bounded. Then by using the Kahane’s contraction principle, product and
additional properties of the collection of R-bounded operators and R-boundedness of the sets

bijv, dow, for all ug ug, - -+, um € F, A1, A2, -+, Ay, € S(¢), and independent symmetric {—1,1}-
valued random variables r;(y), i = 1,2,--- ,m, m € N, we have the estimate

/ HZTZ v (i @, y)u;
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Z Z/HZ” Vb (Niy @, y)u /HZ” Yoy (M, 7, y)ui

k,j=1 p=0
<ot [ | S
Q%o

uniformly in z, y and ¢. This implies that

d

) IB<O7

R{K,(\,z,y): A€ S,} <CePN2l==vl g <0 2,y € (0,b).

By applying the R-bondedness property of kernel operators (see [9, Proposition 4.12]) and
due to density of D(0,1; E(A)) in L,(0,1; E) (see, e.g., [22, Section 2.2]) and by the substitution
of variable, we obtain the assertion.

5 Coerciveness on the Space Variable and Fredholmness
Consider problem (2.3)—(2.4).

Theorem 5.1 Suppose that all conditions of Theorem 3.1 hold. Moreover, the function
Bi(z)u for u € D(A2) and the function By(x)u for u € D(A) are measurable on (so,s1), and
for any € > 0 there is C(e) > 0 such that for almost all x € [so, 1],

IB1 (s, z)ull < e A2ul| + C(e)|Jull, ue D(A?),
|Bo(s, )ull < el Aull + Ce)|lull,  ue D(A).

Then
(a) for solution u € W2 (o(s); E(A), E) the following uniform coercive estimate holds:

2

Z Hu’(j) HLP(O'(S);E) + HAu”Lp(O'(S);E)
=0

2
< C[||Lu||Lp(U(s);E) =+ Z(HLkuHEk + HU’HLP(O'(S);E)) 5 (51)
k=1

(b) if A™' € 0so(E), then the operator u — O(s)u = {Lu, Lyu, Lyu} from W2(o; E(A), E)
into Ly(0; E) x E1 x Ey is Fredholm.

Proof The substitution of variable y = so + (51 — so)z, € (0,1) in problem (2.3)-(2.4)
leads to the following BVP on the fixed domain (0, 1):

(L+Nu=—v"2u®(z) + (A+ Nu(z) + v By (s, 2)u (z) + By(s, x)u(z)

= f(x), x€(0,1), 52)

Lku—Zu o ®(0) + B (1) + 3 b ang)| = fr, k=12,

where 25 € (0,1). Let u € W2(0,1; E(A), E) be a solution to problem (5.2) and d be a positive
number. Then u(x) is a solution to the problem
_,d%u

du
-1
—v @—F(A—Fd)u:f(m)%—du—u Bla—Bgu,
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Lku:fk, k:1,2.

By Theorem 4.1 for sufficiently large d, we have the following uniform estimate:

2
> v WD L, 008 + AUl Ly 0,1:2)
=0
2
< C[Hf +du— v "By — Boul|z0.1,m) + Z ||fk||Ek]' (5.3)

k=1
By virtue of the condition (1.2), it follows that
1B1 (5, 0)u® (@)1 < ell A2u® (@)]| & + C(e) | ()],
1Ba(s, z)u(z)l|p < el|Au(z)||lp + C(e)[u(@)[|e, = € (0,1).

Hence
1
1BiuM |1, 0,18 < ellAZuM 0.1, + CE) NN 1, 0,1:8): (5.4)
||B2UHL,J(0,1;E) < 6HAUHL,,(O,l;E) + C(£)||“||Lp(o,1;E)~
By virtue of Theorem 1.1, we have
IR _
v 1||A2u(1)||Lp(O,1;E) < C[llv 2U(2)||Lp(0,1;E) + ”AUHLP(O,l;E)]'
Moreover, by virtue of Theorem 1.1 again, there exists a C' > 0 such that for 0 < h < hg,
_ 1o 1
v | 0,18) < C(R2 v 2u® L, 0.18) + 272 ullL, 0,1:2))-
Therefore, by using (5.4) we can conclude that
Il Bru® |1, 0.1.m) < ellvt AZuD |1 0.1m) + CE) M|, 0.1:8)
< 5[\\V72U(2)||Lp(0,1;E) + | Aull 1, 0,1:5)] + CE)ullL,0,1;8)-
Moreover, from condition (1.2), it is clear that
||B2u||Lp(0,1;E) < 5||AUHLP(0,1;E) + C(E)HUHL,,(OJ;E)
< ellv 2 u? |z, 0.8 + 144 L, 0.1:m)] + C@) )L, 0.1:m)- (5.5)

By choosing a suitable ¢ from (5.3)—(5.5), and by the substitution of variable, we obtain
(5.1).

(b) Let Op, O denote operators in Ly(c; E) generated by problems (4.1)—(4.2) and (2.3)-
(2.4), respectively. Let

O1u = Biu™W) + Byu, wue Wg(a; E(A),E).

We can conclude from Theorem 4.1 that operator Oy(s) + d, for sufficiently large d > 0 has
an inverse from X = L,(0; E) x By x E, onto W;(U;E(A)7E). By estimates (5.3)—(5.4), for
every € > 0, there exists a positive constant C(e), such that for u € W2(o; E(A), E),

014l L, (o:) < €HU||W3(U;E(A),E) +CE)ullz,(o:m)-

Then from Theorem 1.2 and [39] it follows that the operator Oy (t) from W2(o; E(A), E) into
X is compact. Then in view of Theorem 4.1 and by the perturbation theory of linear operator
[17, Section 14], we obtain that the operator Oy (s) from W2 (o; E(A), E) into X is a Fredholm
operator.
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6 Free BVPs for Partial DOE
Let us now consider the nonlocal BVP (2.1)—(2.2).

Theorem 6.1 Assume that the following conditions are satisfied:

(1) Eis aUMD space; A(s)=As(x) is a uniformly R-positive operator in E, As(x) A7 (o)
is bounded and uniformly continuous with respect to a collection of s and x € [0,T);

(2) for any e >0, there is C(e) > 0 such that for a.e. x € G and for u € (E(A), E)1 o,

14k (s, 2, y)ull < ellullmcay,m, , +CE)ull

(3) Mk = (=1)"™ 1Bz — (—1)™2ax2fr1 # 0, p € (1,00), k =1,2;

(4) s, € CY[0,T],0<~ <1 and there is a b > 0 so that v(s) > b > 0 and v(s), v=1(s) are
uniformly continuous with respect to s and x € [0,T).

Then, for all f € L,(Gs; E), |arg M| < ¢ and sufficiently large |A|, problem (2.1)-(2.2) has
a unique solution u belonging to W2 (G; E(A), E) and the following uniform coercive estimate
holds:

[N~}

2

> IA[P~% {Z IDJullL, k) + ||D§UHLP(GS;E)} + |AullL,c.;py < Clfllz,cm)- (6.1)
=0 =0

Proof Consider the principal part of the BVP (2.1)-(2.2), i.e., consider the following
problem:

Lou = _Dgu(m>y) - Dzu(:v,y) + (A(S> + )‘)u(m>y) = f(x,y),

] (6.2)
Ljpu=0, j,k=1,2,

where Ljj, are defined by equalities (2.2). Let Qo(s) and Q(s) be differential operators in
L,(Gs; E) generated by BVP (6.2) and (2.1)—(2.1), respectively. Since L,(0,T;L,(c(s); E)) =
L,(Gs; E) = X, the BVP (6.2) can be expressed as the following ordinary DOE with variable
coefficient:

— D*u(x) + [B(s(x)) + Au(z) = f(2),

s . , Al , (6.3)
Ligu = Z Z/(;i [aljiu(’) (0) + BU,‘U(Z) (T) + Z 51jiu(l)(a:1kj)} =0, k=1,2,
i=0 j=1

where z15; € (0,T) and B(s) = Bs(x) is the differential operator in L,(o; E) = E, generated
by BVP problem (4.15). Consider the operator By generated by problem (4.16). By estimate
(4.3), we have the following uniform estimate:

|4 (20) BSH (x0) | (r) < C- (6.4)
For u € F', we have

1Bs(2) B (w0)u — Bs()BZ (wo)ul F
= [[[Bs(x) = Bs(n)] B (wo)ullr

< 2@ = v 2 B o+ s(o) = ALPLBL @o)ul

< I[As(@) = As(MIAT (20) | () [ As(20) B (wo)ull - (6.5)



Free Boundary Value Problems for Abstract Elliptic Equations and Applications 765

By virtue of Result 4.1, we obtain that D(B;) is independent of s and = and B; is uniformly
positive in F. By conditions (1.1)—(2.2), in view of (6.4) and (6.5) and by estimate (4.3), we
obtain that the function B,(x)B; ! (z0) is bounded and uniformly continuous with respect to the
collection of s and = € [0, T)]. It implies that B,(x)B; ! (z) is bounded and uniformly continuous
with respect to the collection of s and x € [0,T]. By virtue of [3, Theorem 4.5.2], E; € UMD
provided E € UMD, p € (1,00). Theorem 4.2 implies that the operator Bj is uniformly R-
positive in E,. Therefore, by virtue of [26, Theorem 3] for all f € L,(0,T; Ey), |arg A\| < ¢ and
sufficiently large |A|, problem (6.2) has a unique solution u belonging to W2(0,T; D(By), F)
and the following uniform coercive estimate holds:

2
S A2 DIullp,0.150) + | Bstll 0,750 < ClE Ly 0,758)- (6.6)
§=0

Then, by estimate (6.6) and by the substitution of variable y = sg + (s1 — so)t, ¢ € (0, 1),
we obtain that for f € L,(G; E), |argA| < ¢ and sufficiently large |A|, problem (6.2) has a
unique solution u belonging to Wg(Gs; E(A), E) and the uniform in s coercive estimate (6.1)
holds for the solution to problem (6.3). This implies the estimate

2
DA EIDLQo + X) 7 fllx + A A 1D (Qo + A~ fllx)
3=0

+[1AQo + X fllx < Cllflx- (6.7)

By condition (1.1) and by virtue of Theorem 1.1 for all u € W?(Gy; E(A), E), for any € > 0
there is a C'(g) > 0, such that

[A1 Dyl x + [|[A2Dyullx < ellullwz(c.;pa),r) + Ce)]ul x. (6.8)
By using estimates (6.7)—(6.8) for sufficiently large |A|, we obtain
A1 Dyul|x + [| A2 Dyullx < el[(Qo + Mullx. (6.9)

Then, in view of estimates (6.8)—(6.9) and in virtue of the perturbation theory of linear
operators [17, Theorem 14.1], we obtain the estimate (6.1).

Theorem 6.2 Let all conditions of Theorem 6.1 be satisfied and A~' € oo (E). Then,
problem (2.1)~(2.2) is Fredholm in L,(Gs; E) for A = 0.

Proof Theorem 6.1 implies that the differential operator Q(s) has a bounded inverse from
Ly(Gs; E) to W2(Gs; D(A), E) for sufficiently large |A|. Fredholmness of the operator Q is
obtained then from Theorem 5.1 by virtue of compactness of embedding of W2(Gs; E(A), E)
into L,(Gs; E) (see [28, Theorem 2]) and by the perturbation theory of linear operators [16,
Theorem 14.1].

Result 6.1 Theorem 6.1 implies that the differential operator @ = Q(s) has a resolvent
operator (Q + \)~! for A € S(¢), ¢ € [0,7) and the following uniform estimate holds:
2

ST E(IDLQ+N) " HIx + IDHQ+N) " x) + [A@Q+N) Hx < C.
j=0

Remark 6.1 Assume that all conditions of Theorem 6.1 are satisfied. Then in virtue
of R-positivity of A, by using the representation of the solution to problem (2.1)—(2.2) (see
[11, Lemma 7.1]) and a similar technique as in [11, Theorem 7.4], we conclude that the operator
Q is R-positive in L,(Gs; E).



766 V. Shakhmurov
7 Free Boundary Value Problems for Anisotropic Elliptic Equations

The Fredholm property of BVPs for elliptic equations with parameters in smooth domains
were studied e.g. in [1, 9], and for nonsmooth domains these questions were investigated e.g.
n [12, 13].

Let Q C R™ be an open connected set with compact C?™-boundary 0. Let us consider
the nonlocal free BVPs on cylindrical domain Q =G, x Q for the following anisotropic elliptic
equation:

2 2
O*u(w,y) du(z,y)
Lu— -S4y ), 285 Y)
Y = o3 Jrz  oxn,
+ Z ao(y)Dyu(z,y) = f(z,y), x€G, yeQ, (7.1)

lal<2m

mik

Liju = Z V7 faiul?) (0, 22, ) + Buriul) (T, 22,7))]

+Z(51k] Uyt mk]amQ y) 07

ma | (7.2)
Logu = Z Vv Jagpaul) (21, s0(2), y) + Bariull) (21, 51(2), y)]

+Z(52kj ZEQ(xl?yk]? ):0, k=12,

Z bis(y Duxy)f() re€Gs, yed, 7=1,2,---,m, (7.3)

[BI<m;

where Gy = {z = (21,22), 0 <1 < T, z3 € 0(s)},

s=1(s0,81), So0=s0(x), s1=s1(x), o(s)=(so(x),s1(x)),
v=uv(s) =s1(x) —so(xz), z€l[0,T], xkj€(0,T), yk € (s1(x),s2(x)),

I' is a boundary of the region Q2 € R", ay, oyr; and Bir; are complex-valued function on Gj,
Dj = _iaiy]d mg € {071}7 Y= (ylv"' ayn)'

Let Q C R™ be an open connected set with compact C?™-boundary 92. Recall that for all
yo € 0N local coordinates corresponding to yy are defined as coordinates obtained from the
original ones by a rotation and a shift which transfers yy to the origin and after which the
positive y;-axis has the direction of the interior normal to 992 at yg.

If Qs =GsxQ,p=(p1,p), Lp(ﬁs) will denote the space of all p-summable scalar-valued
functlons with mixed norm (see, e.g., [7, Section 1)), i.e., the space of all measurable functions
f defined on ﬁs, for which

1

sy = ([ ([ 1renra)®a) <o

Analogously, Wg’Qm(()S) denotes the anisotropic Sobolev space with corresponding mixed norm
(see [7, Section 10]).

Theorem 7.1 Let the following conditions be satisfied:
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(1) s; € CY[0,T],0<~ <1 and there is a b > 0 so that v(s) > b > 0 and v(s), v—1(s) are
uniformly continuous with respect to s and x € [0,T] and ng = (—1)™ a1 Bre — (—1)™2 o Br1 #
0, p,p1 € (1,00), where ax; = Qkimyys Bri = Brimas

(2) aq € C(Q) for each |a] = 2m and aq € [Loo + Ly J(Q) for each |a] = k < 2m with
L > q and2m—k>i;

(3) bjg € C*™=mi(9Q) for each j, B and mj < 2m, Bjo(y',&) = > big(y’, &) # 0 for

|=m;

18
y € 00, where £ = (£1,&,-++ ,&,) € R™ is normal to 0
(4) forye Q, € R, A€ S(p), ¢ € (0,7), |&] + |\ #0, let X+ Ao(y,&) # 0, where
Ao(y,€) = 2 aa(y)€™;

|a]=2m

(5) for each yo € 98, local BVP in local coordinates corresponding to yo

J

A+ Ao(yo. €. Du1)9(y) = 0.y >0,
B]'O(yO?g/aDn—&-l)ﬁ(O) == h_]7 j = 172, e m

has a unique solution 9 € Co(R4) for allh = (hy,ha, -+ ,hy) € R™ and A € S(p), & € R™ with
€' + |A] # 0.

Then, we have that

(a) forall f € Lp(Qs; E), |arg A| < ¢ and sufficiently large |A|, problem (7.1)—=(7.3) has a

unique solution u that belongs to Wg’Qm(Qs) and the following coercive uniform estimate holds:

n 2 )
> D AT
=0

k=11

O'u

al'k

Z HDgu”Lp(ﬁs) < CHfHLp(ﬁS)?

R

(b) problem (7.1)~(7.3) is Fredholm in Ly (S2s).

Proof Let E = L, (). By [7], the space L, (), p1 € (1,00) is UMD. Consider the
operator A defined by

D(A) = ngm(Q; Bju=0), Au= Z ao (y)D%u(y).

lal<2m

For x € Q also consider the following operators:
Ap(2)u = di(z,y)u(y), k=1,2,--- ,n.

Problem (7.1)-(7.3) can be rewritten in the form (2.1)-(2.2), where u(z) = u(z, -), f(z) =
f(z, -) are functions with values in E = L,, (Q). By virtue of [1], problem

Mu(y)+ Y aa(y)Dguly) = f(y),
o <2m

Biju= Y bisy)Dju(y) =0, j=1,2,---,m
[B]<m;;

has a unique solution for f € L, () and arg A € S(yp), |\| = oo. Moreover, in view of
[9, Theorem 8.2], the differential operator A is R-positive in L,,. It is known that the embed-
ding W2™(2) C Ly, (Q) is compact (see e.g. [30, Theorem 3.2.5]). Then by using interpolation
properties of Sobolev spaces (see e.g. [31, Section 4]) it is clear to see that condition (2) of
Theorem 6.1 holds. Conditions (1)—(5) imply that the other conditions of Theorem 6.1 are
fulfilled too. Then from Theorems 6.1-6.2, the assertions are obtained.
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8 Nonlocal Free Boundary Value Problems for Infinite Systems of
Elliptic Equations

The Fredholm property of boundary value problems for elliptic equations with parameters
in smooth domains was studied in [2, 9] and for non-smooth domains it was treated e.g. in
[13]. In this section, the maximal regularity of nonlocal BVPs for finite and infinite systems of
elliptic equations are established. Consider the following infinite system of nonlocal boundary
value problems:

- Dium($7y> - Dzum(x7y) + Zdlmj(x7y)Dwuj($ay)
J=1

+Zd2mjxyDquy +Z AN (2, y) = fm(z,y), z,yeGs,  (81)
j=1 j=1

mig

Ligum = Z o [0411“ 9(0,y) + Buul (T, y) + Z&k; (331@3711)} =0,
i=0 Jj=1
mag .
Logtiy, = Z o [ag;ﬁ'u%)(m, s0(2)) + Baruld (z, 51 (x)) + Zégk uld) (z, ykj)} (8.2)
i=0 Jj=1
—0, k=1,2,

where
Qs ={(z,y) € R? z € [0,T], zx; € (0,T), y € 0(s)}

is moving domain and

ykj € 0(s), o(s) = (so(@), s1(2)), 0 =i =7,

D={dn}, dn>0, u={un}t, Du={dnum}, m=12,---,

1,(D) = {u: w € by, |l o) = |Dulli, = ( 3 \dmum|q)5 < oo}, 1<q< oo
m=1

Let O(s) denote the differential operator in L, ({s;[,) generated by BVP (8.1)—(8.2).

Theorem 8.1 Suppose that s; € C7[0,T], 0 < v < 1 and there is a b > 0 so that
v(s) > b >0 and v(s), v=1(s) are uniformly continuous with respect to s and x € [0,T] and

(71)mlailﬂi2 — (* )mQOéizﬂu #£0, i=1,2,

(- 1
m’?xsupggdkm] z)d; < M, O<u<§, x €10,T].
j

Then, for all f(x) = {fm(2)}7° € Ly(Qs;1q) and for sufficiently large |A|, problem (8.1)—(8.2)
has a unique solution u = {un, (2)}7° that belongs to space W72 (S2s,14(D),1y), and the following
uniform coercive estimate holds:

p

1
qu}p

/Z|D2um “da)” /Z\D%m ")

Sml Sml
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+ [(/ﬂsgwmum(xﬂq)gdx};
<o[([ S 1mere) ar]” (53)

s m=1
Moreover, problem (8.1)—(8.2) is Fredholm in L,(Qs;1q) for A =0.

Proof Really, let £ =1,;, A and A} be infinite matrices, such that

A= dm(sjm, Ak = [dkmj(,r)], m)j = 1727 ce 00,

It is easy to see that this operator A is R-positive in [,. Therefore, by virtue of Theorem 6.1,
we obtain that the problem (8.1)—(8.2) for f € L,(Qs;1y), | arg A| < ¢ and sufficiently large |A|,

has

a unique solution u that belongs to Wé(Qs; l4(D), 1) and the following coercive estimate

holds:

|DZullr, 0.0, + 1 Dpullr, .1, + 1Dull L, 000, < ClF L, @uiy)- (8.4)

Namely, we obtain the estimate (8.3). Moreover, by Theorem 6.2, problem (8.1)—(8.2) for A =0
is Fredholm in L,(£s;1,).
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