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1 Introduction, Notations and Background

In the last years, the maximal regularity properties of boundary value problems (BVPs) for

differential-operator equations (DOEs) have been applied to PDE, psedo DE and the different

physical processes (see [3, 4, 10, 12, 15, 20, 22–26, 30, 33–39] and the references therein).

In these works, BVPs were essentially considered in Hilbert space valued class of functions

defined in fixed domains. The Lp-maximal regularity properties of differential operators in

fixed domains were studied e.g. in [11, 26–28, 32, 37–39]. Maximal regularity properties for

PDE in moving domain were studied e.g. in [21], and free BVPs were investigated e.g. in [11,

14] and the references therein. The main objective of the present paper is to discuss nonlocal

BVPs in moving domains for ordinary DOE and free BVP for partial DOE in Banach-valued

Lp spaces. More precisely,

(1) the boundaries depend on the perturbation parameter or on space variable;

(2) the boundary conditions are nonlocal;

(3) the operators appearing in the equations and in the boundary conditions are unbounded.

In the present work, the maximal Lp-regularity and the Fredholmness of this problem uni-

formly with respect to the boundary parameter are established. These results are applied to

nonlocal BVPs for elliptic, quasi-elliptic partial differential equations and finite or infinite sys-

tems of PDEs in moving domains. In application part, we establish well-posedness of free BVPs

for anisotropic elliptic equations in Lp, p =(p1, p) (i.e., Lebesgue spaces with mixed norm) and

Lp separability for infinite systems of elliptic equations.

Let E be a Banach space, and Lp(Ω, E) denote the space of strongly measurable E-valued
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functions that are defined on the measurable subset Ω ⊂ Rn with the norm given by

∥f∥Lp = ∥f∥Lp(Ω;E) =
(∫

Ω

∥f(x)∥pEdx
) 1

p

, 1 ≤ p < ∞.

The Banach space E is said to be a UMD-space (see [6–7]) if the Hilbert operator

(Hf)(x) = lim
ε→0

∫
|x−y|>ε

f(y)

x− y
dy

is bounded in Lp(R,E), p ∈ (1,∞). UMD spaces include e.g. Lp, lp and Lorentz spaces Lpq,

p, q ∈ (1,∞).

Let C be the set of the complex numbers and

Sφ = {λ;λ ∈ C, | arg λ| ≤ φ} ∪ {0}, 0 ≤ φ < π.

A linear operator A is said to be φ-positive (or positive) in a Banach space E if D(A) is

dense on E and

∥(A+ λI)−1∥B(E) ≤ M(1 + |λ|)−1

for any λ ∈ Sφ, where φ ∈ [0, π), I is the identity operator in E, and B(E) is the space of

bounded linear operators in E. Sometimes A+ λI is written as A+ λ and denoted by Aλ. It is

known that there exist the fractional powers Aθ of a positive operator A (see [31, Section 1.15.1]).

The operator A(s) is said to be φ-positive (or positive) in E uniformly with respect to s if

D(A(s)) is independent of s, D(A(s)) is dense in E and

∥(A(s) + λ)−1∥ ≤ M

1 + |λ|

for all λ ∈ Sφ, 0 ≤ φ < π, where M does not depend on s and λ. Let E(Aθ) denote the space

D(Aθ) with norm

∥u∥E(Aθ) = (∥u∥p + ∥Aθu∥p)
1
p , 1 ≤ p < ∞, 0 < θ < ∞.

Let E1 and E2 be two Banach spaces. By (E1, E2)θ,p (0 < θ < 1, 1 ≤ p ≤ ∞), we will denote

the interpolation spaces obtained from {E1, E2} by the K-method (see [31, Section 1.3.1]).

Let S = S(Rn;E) denote a Schwartz class, i.e., the space of E-valued rapidly decreas-

ing smooth functions on Rn, equipped with its usual topology generated by seminorms. Let

S′(Rn;E) denote the space of all continuous linear operators L : S → E, equipped with

the bounded convergence topology. Recall that S(Rn;E) is norm dense in Lp(Rn;E) when

1 ≤ p < ∞. Let F denote the Fourier transformation. A function Ψ ∈ C(Rn;L(E1, E2)) is

called a Fourier multiplier from Lp(Rn;E1) to Lq(Rn;E2) if the map u → Φu = F−1Ψ(ξ)Fu,

u ∈ S(Rn;E1) is well defined and extends to a bounded linear operator

Φ : Lp(Rn;E1) → Lq(Rn;E2).

The set of all multipliers from Lp(Rn;E1) to Lq(Rn;E2) will be denoted by Mq
p (E1, E2). For

E1 = E2 = E, it will be denoted by Mq
p (E). Most important facts on Fourier multipliers and

some related reference can be found e.g. in [8, 10, 19, 32] and [31, Section 2.2.1]).
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Let Ws = {Ψs ∈ Mq
p (E1, E2), s ∈ Q} be a collection of multipliers in Mq

p (E1, E2). We say

that Ws is a uniform collection of multipliers if there exists a constant M > 0 independent of

s ∈ Q, such that

∥F−1ΨsFu∥Lq(Rn;E2) ≤ M∥u∥Lp(Rn;E1)

for all s ∈ Q and u ∈ S(Rn;E1).

Let N denote the set of natural numbers. A set W ⊂ B(E1, E2) is called R-bounded

(see, e.g., [11]) if there is a positive constant C, such that for all T1, T2, · · · , Tm ∈ W and

u1,u2, · · · , um ∈ E1, m ∈ N,∫ 1

0

∥∥∥ m∑
j=1

rj(y)Tjuj

∥∥∥
E2

dy ≤ C

∫ 1

0

∥∥∥ m∑
j=1

rj(y)uj

∥∥∥
E1

dy,

where {rj} is a sequence of independent symmetric {−1, 1}-valued random variables on [0, 1]

(see [8]). The smallest C for which the above estimate holds is called an R-bound of the

collection W and denoted by R(W ).

A set Ws ⊂ B(E1, E2) depending on parameters s ∈ Q is called uniformly R-bounded with

respect to s if there is a constant C independent of s ∈ Q, such that for all T1(s), T2(s), · · · ,
Tm(s) ∈ Ws and u1,u2, · · · , um ∈ E1, m ∈ N,∫ 1

0

∥∥∥ m∑
j=1

rj(y)Tj(h)uj

∥∥∥
E2

dy ≤ C

∫ 1

0

∥∥∥ m∑
j=1

rj(y)uj

∥∥∥
E1

dy.

It implies that R(Ws) ≤ C for all s ∈ Q. Let

β = (β1, β2, · · · , βn) ∈ Nn, ξ = (ξ1, ξ2, · · · , ξn),

ξβ = ξβ1

1 ξβ2

2 · · · ξβn
n , |β| =

n∑
k=1

βk, Dj =
∂

∂ξj
,

Dβ = Dβ1

1 Dβ2

2 · · ·Dβn
n , Un = {β, βk ∈ {0, 1}}.

Definition 1.1 A Banach space E is said to be a space satisfying a multiplier condition

if, for any Ψ ∈ C(n)(Rn;B(E)), the R-boundedness of the set {ξ|β|DβΨ(ξ) : ξ ∈ Rn\0, β ∈ Un}
implies that Ψ is a Fourier multiplier, i.e., Ψ ∈ Mp

p (E) for any p ∈ (1,∞).

The uniform R-boundedness of the set {ξ|β|DβΨs(ξ) : ξ ∈ Rn\0, β ∈ U}, i.e.,

sup
s∈Q

R({ξ|β|DβΨs(ξ): ξ ∈ Rn\0, β ∈ U}) ≤ K

implies that Ψs is a uniform collection of Fourier multipliers.

The φ-positive operator A is said to be R-positive in a Banach space E if the set

LA = {λ(A+ λ)−1: λ ∈ Sφ}, 0 ≤ φ < π

is R-bounded.

A positive operator A(s) is said to be uniformly R-positive in a Banach space E if there

exists a φ ∈ [0, π) such that the set

LA = {λ(A(s) + λ)−1 : λ ∈ Sφ}



752 V. Shakhmurov

is uniformly R-bounded. Let σ∞(E) denote the space of all compact operators in E. Let E0

and E be two Banach spaces and E0 continuously and densely embedded into E; let Ω be a

measurable subset in Rn and m be a natural number. Let Wm
p (Ω;E0, E) denote the collection

of all functions u ∈ Lp(Ω;E0) that have the generalized derivatives Dm
k u = ∂m

∂xm
k
u ∈ Lp(Ω;E)

with the norm given by

∥u∥Wm
p

= ∥u∥Wm
p (Ω;E0,E) = ∥u∥Lp(Ω;E0) +

n∑
k=1

∥Dm
k u∥Lp(Ω;E) < ∞.

We will called it Sobolev-Lions type space. For n = 1, Ω = (a, b), a, b ∈ R, the space

Wm
p (Ω;E0, E) will be denoted by Wm

p (a, b;E0, E), and for E0 = E it will be denoted by

Wm
p (Ω;E). It is clear to see that

Wm
p (Ω;E0, E) = Wm

p (Ω;E) ∩ Lp(Ω;E0).

Let Ωt ⊂ Rn be a domain dependent on the parameter t.

Condition 1.1 For p ∈ (1,∞), there is a bounded linear extension operator from Wm
p (Ωt;

E(A), E) to Wm
p (Rn; E(A), E) independent of t.

Remark 1.1 If Ω ⊂ Rn is a region with smooth boundary, E = R, A = I, then for

p ∈ (1,∞) there exists a bounded linear extension operator from Wm
p (Ω) = Wm

p (Ω;R,R) to

Wm
p (Rn) = Wm

p (Rn;R,R) (see [5, Section 7]). If Gs is a bounded domain with the uniform

cone property for all s (see [1, p. 66]), or if si ∈ Cγ [0, T ], 0 < γ < 1 and there is a b > 0 so

that ν(s) ≥ b > 0, then in a similar way as in [1, pp. 83–94] or [5, Section 7] it can be shown

that Condition 1.1 holds.

Remark 1.2 By virtue of [10, Lemma 2.3], there is a positive constant C such that

|λ+ µ| ≥ C(|λ|+ |µ|)

for | arg λ| ≤ φ1, | argµ| ≤ φ2 and 0 ≤ φ1 + φ2 < π.

By using a similar technique as in [24–27], we obtain the following result.

Theorem 1.1 Suppose that Condition 1.1 holds. Let the following conditions be satisfied:

(1) E is a Banach space satisfying the uniform multiplier condition, p ∈ (1,∞), 0 < h ≤ h0

is a parameter;

(2) α = (α1, α2, · · · , αn) are n-tuples of nonnegative integer numbers such that

κ =

n∑
k=1

|α|
m

≤ 1, 0 ≤ µ ≤ 1− κ;

(3) A is an R-positive operator in E with 0 ≤ φ < π.

Then the embedding DαWm
p (Ωt;E(A), E) ⊂ Lp(Ωt;E(A1−κ−µ)) is continuous, and there

exists a positive constant Cµ such that

∥Dαu∥Lp(Ωt;E(A1−κ−µ)) ≤ Cµ[h
µ∥u∥Wm

p (Ωt;E(A),E) + h−(1−µ)∥u∥Lp(Ωt;E)]

for all u ∈ Wm
p (Ωt;E(A), E), t and h.

Theorem 1.2 Suppose that all conditions of Theorem 1.1 are satisfied, and Ωt is a bounded

region in Rn, A−1 ∈ σ∞(E). Then for 0 < µ ≤ 1− κ, the embedding DαWm
p (Ωt;E(A), E) ⊂

Lp(Ωt;E(A1−κ−µ)) is compact.
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Theorem 1.3 Suppose that all conditions of Theorem 1.1 are satisfied for φ ∈ (π2 , π). Then

the embedding

DαWm
p (Ωt;E(A), E) ⊂ Lp(Ωt; (E(A), E)κ,p)

is continuous, and there exists a positive constant Cµ, such that

∥Dαu∥Lp(Ωt;(E(A),E)κ,p) ≤ Cµ(h
µ∥u∥Wm

p (Ωt;E(A),E) + h−(1−µ)∥u∥Lp(Ωt;E))

for all u ∈ Wm
p (Ωt;E(A), E), t and h > 0.

Theorem 1.4 (see [26]) Let E be a Banach space, A be a positive operator in E of type φ,

m be a positive integer, 1 ≤ p < ∞ and 1
2p < α < m+ 1

2p , and let 0 ≤ γ < 2pα− 1. Then for

λ ∈ S(φ) the operator −A
1
2

λ generates a semigroup e−A
1
2
λ x which is holomorphic for x > 0 and

strongly continuous for x ≥ 0. Moreover, there exists a constant C > 0, such that∫ ∞

0

∥Aα
λe

−xA
1
2
λ u∥pEx

γdx ≤ C(∥u∥p(E,E(Am)) α
m

− 1+γ
2mp

,p

+ |λ|pα−
1+γ
2 ∥u∥pE)

for every u ∈ (E,E(Am)) α
m− 1+γ

2pm ,p and λ ∈ S(φ).

From [31, Section 1.8.2] and [5, Section 10.1], we have the theorem below.

Theorem 1.5 Let the following conditions be satisfied:

(1) m and j are integer numbers, and 0 ≤ j ≤ m− 1;

(2) θj =
pj+1
pm , 0 < t ≤ T < ∞, h > 0, x0 ∈ [0, b].

Then, for u ∈ Wm
p (0, b;E0, E), the transformations u → u(j)(x0) are bounded linear from

Wm
p (0, b;E0, E) onto (E0, E)θj ,p, and the following inequalities hold:

tθj∥u(j)(x0)∥(E0,E)θj,p
≤ C(∥tu(m)∥Lp(0,b;E) + ∥u∥Lp (0,b;E0)),

tθj∥u(j)(x0)∥E ≤ C(h1−θj∥tu(m)∥Lp(0,b;E) + h−θj∥u∥Lp (0,b;E)).

Consider the following differential-operator equation:

Lu = u(m)(x) +
m∑

k=1

akA
ku(m−k)(x) = 0, x ∈ (a, b). (1.1)

Let ω1, ω2, · · · , ωm be the roots of the equation

ωm + a1ω
m−1 + · · ·+ am = 0 (1.2)

and

ωmin = min{argωj , j = 1, · · · , q; arg ωj + π, j = q + 1, · · · ,m},
ωmax = max{arg ωj , j = 1, · · · , q; arg ωj + π, j = q + 1, · · · ,m},

where q is some integer number from (1,m).

A system of complex numbers ω1, ω2, · · · , ωm is called q-separated if there exists a straight

line P passing through 0, such that no value of the numbers ωj lies on it, and ω1, ω2, · · · , ωq

are on one side of P while ωq+1, · · · , ωm are on the other side.

By reasoning as in [39, p. 263], we obtain the following lemma.
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Lemma 1.1 Let the following conditions be satisfied:

(1) am ̸= 0 and the roots of equation (2.2), ωj , j = 1, · · · ,m, are q-separated;

(2) A is a closed operator in Banach space E with a dense domain D(A) and ∥(A−λ)−1∥ ≤
C|λ|−1, −π

2 − ωmax ≤ arg λ ≤ π
2 − ωmin, |λ| → ∞.

Then for a function u(x) to be a solution of equation (2.1), which belongs to the space

Wm
p (a, b;D(Am), E), it is necessary that u =

q∑
k=1

e−(x−a)ωkAgk +
m∑

k=q+1

e−(b−x)ωkAgk, where

gk ∈ (D(Am), E) 1
mp ,p

, k = 1, 2, · · · ,m.

2 Statement of the Problem

Consider the following nonlocal free boundary value problem:

−D2
xu(x, y)−D2

yu(x, y) + (A(s) + λ)u(x, y)

+A1(s, x, y)Dxu(x, y) +A2(s, x, y)Dxu(x, y) = f(x, y), (2.1)

L1ku =
[m1k∑

i=0

νδi [α1kiu
(i)(0, y) + β1kiu

(i)(T, y)] +

Nk∑
j=1

δ1kju
(i)(xkj , y)

]
= 0,

L2ku =
[m2k∑

i=0

νδi [α2kiu
(i)x, s0(x) + β2kiu

(i)(x, s1(x))] +

Nk∑
j=1

δ2kju
(i)(x, ykj)

]
(2.2)

= 0, k = 1, 2

on the moving domain Gs = {(x, y) ∈ R2, 0 < x < T, y ∈ σ(s)}, where

s = (s0, s1), s0 = s0(x), s1 = s1(x), σ(s) = (s0(x), s1(x)),

ν = ν(s) = s1(x)− s0(x), x ∈ [0, T ], δi = i− 1

p
,

u = us, mik ∈ {0, 1},

αik, βik, δikj are complex numbers,

xkj ∈ (0, T ), ykj ∈ (s1(x), s2(x)), α = (α1, α2),

Dα = Dα1
x Dα2

y , Dα1
x =

( ∂

∂x

)α1

, Dα2
y =

( ∂

∂y

)α2

,

and A(s), A1(s, x, y), A2(s, x, y) for x, y ∈ Gs are possibly unbounded operators in E. Let

αjk = αjkmjk
, βjk = βjkmjk

, j, k = 1, 2.

The function u ∈ W 2
p (Gs;E(A), E) satisfying equation (2.1) a.e. on Gs is said to be the solution

to equation (2, 1). Consider at first, the following BVP for ordinary DOE:

Lu = −u(2)(y) +A(s)u(y) +B1(s, y)u
(1)(y) +B2(s, y)u(y) = f(y), y ∈ σ(s), (2.3)

Lku =

mk∑
i=0

νδi
[
αkiu

(i)(s0) + βkiu
(i)(s1) +

Nk∑
j=1

δkjiu
(i)(ykj)

]
= fk, k = 1, 2, (2.4)

where fk ∈ Ek = (E(A), E)θk,p, δi = i − 1
p , θk = mk

2 + 1
2p , p ∈ (1,∞), mk ∈ {0, 1}; Nk

and Mk are integer numbers, αk, βk, δkj are complex numbers; s0(t) < s1(t), ykj ∈ (s0, s1);
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s = (s0, s1), s0 = s0(t), s1 = s1(t), ν = ν(t) = s1(t)− s0(t), σ(s) = (s0(t), s1(t)), t ∈ [0, T ]; A(s)

and Bk(s, y) for y ∈ [s0, s1] are possibly unbounded operators in E, u = us is the solution to

the equation (2.3) on σ(s).

3 Homogeneous Equations

Let us first consider the following nonlocal BVP on the moving domain σ(s):

(L0 + λ)u = −u(2)(y) + (A(s) + λ)u(y) = 0, y ∈ σ(s), (3.1)

Lku =

mk∑
i=0

νδi
[
αkiu

(i)(s0) + βkiu
(i)(s1) +

Nk∑
j=1

δkjiu
(i)(ykj)

]
= fk, k = 1, 2, (3.2)

where λ is a complex parameter, mk ∈ {0, 1}; αki, βki, δkji are complex numbers; A(s) =

A(ν(s)) is a possibly unbounded operator in E. Let αk = αkmk
, βk = βkmk

.

Theorem 3.1 Suppose that

(1) E is a Banach space satisfying the uniform multiplier condition;

(2) A(s) is an uniformly R-positive operator in E, η = (−1)m1α1β2 − (−1)m2α2β1 ̸= 0,

p ∈ (1,∞);

(3) si ∈ Cγ [0, T ], 0 < γ < 1, and there is a b > 0 so that ν(s) ≥ b > 0.

Then, problem (3.1)–(3.2) for fk ∈ Ek, θk = mk

2 + 1
2p , p ∈ (1,∞) and | arg λ| ≤ φ, with

sufficiently large |λ|, has a unique solution u belonging to W 2
p (σ(s);E(A), E), and the following

coercive uniform estimate

2∑
j=0

λ1− j
2 ∥u(j)∥Lp(σ(s);E) + ∥Au∥Lp(σ(s);E) ≤ M

2∑
k=1

(∥fk∥Ek
+ |λ|1−θk∥fk∥) (3.3)

holds with respect to parameters s and λ.

Proof By the substitution of variable y = s0 + ν(s)x, x ∈ (0, 1) in problem (3.1)–(3.2)

and dividing both sides of the equation by ν−2, we obtain the following equivalent BVP on the

fixed domain (0, 1):

(L0 + λ)u = −u(2)(x) + ν2[A(s) + λ]u(x) = 0, (3.4)

Lk0u =

mk∑
i=0

ν−σi

[
αkiu

(i)(0) + βkiu
(i)(1) +

Nk∑
j=1

δkjiu
(i)(xkj)

]
= fk, k = 1, 2, (3.5)

where σi = i + 1
p . Due to uniform positivity of A, by using Remark 1.2 and by the condition

(2.1), we have the following estimate:

∥[(A(s) + λ)ν2 + µ]−1∥ ≤ M0

|µ|
(3.6)

with M0 independent of s and depending on φ only. In view of (3.6) and by [10, Lemma 2.6],

there exists a semigroup e−xν(A(s)+λ)
1
2 which is holomorphic for x > 0 and strongly continu-

ous for x ≥ 0. By virtue of Lemma 1.1, an arbitrary solution to equation (3.4) belonging to

W 2
p (0, 1;E(A), E) has the form

u(x) = U1s(x)g1 + U2s(x)g2, (3.7)
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where

U1s(x) = e−xν(A(s)+λ)
1
2 , U2s(x) = e−ν(1−x)A

1
2
λ (s),

A
1
2

λ (s) = [A(s) + λ]
1
2 , gk ∈ (E(A), E) 1

2p ,p
, k = 1, 2.

Now taking into account boundary conditions (3.5), we obtain the algebraic linear equations

with respect to g1, g2:

Lk0u = ν−
1
p

mk∑
i=0

[
(−1)iA

i
2

λ (s)
(
αki + βkiU1s(1) +

Nk∑
j=1

δkjiU1s(xkj)
)]

g1

+

mk∑
i=0

[
A

i
2

λ (s)
(
αkiU2s(0) + βki +

Nk∑
j=1

δkjiU2s(xkj)
)]

g2 = fk, k = 1, 2. (3.8)

Therefore, it is easy to see that the matrix-operator of system (3.8) for sufficiently large |λ|
is invertible in E2 and has a unique solution expressed in the form

gk = ν
1
p [C1k + d̃1k(λ, s)]A

−m1
2

λ f1 + ν
1
p [C2k + d̃2k(λ, s)]A

−m2
2

λ f2, k = 1, 2, (3.9)

where Cik are some complex numbers and d̃jk like djk go to 0 in B(E) and B(E(A)) as |λ| → ∞,

λ ∈ Sφ. Substituting (3.9) into (3.7), we obtain the representation of the solution to problem

(3.4)–(3.5):

u(x) = ν
1
p {U1s(x)[C11 + d11(λ, s)] + U2s(x)[C1k + d12(λ, s)]A

−m1
2

λ (s)}f1

+ {U1s(x)[C21 + d21(λ, s)] + U2s(x)[C2k + d22(λ, s)]A
−m2

2

λ (s)}f2. (3.10)

By virtue of [10, Lemma 2.6], we have

∥e−νxA
1
2
λ ∥ ≤ Ce−κν(s)|λ|

1
2 x, κ > 0, x ∈ (0, 1), λ ∈ S(φ).

So, in view of uniform boundedness of the operator dkj(λ, s), for | arg λ| ≤ φ and |λ| from
(3.10), we obtain

2∑
i=0

ν−i|λ|1− i
2 ∥u(i)∥Lp(0,1;E) + ∥Au∥Lp(0,1;E)

≤ Cν
1
p

2∑
k=1

2∑
i=0

|λ|1− i
2

[( ∫ 1

0

∥A1−mk
2

λ Uks(x)fk∥pdx
) 1

p

+
(∫ 1

0

∥AA−mk
2

λ Uks(x)fk∥pdx
) 1

p
]
. (3.11)

By the substitution of variable νx = ξ and in view of Theorem 1.4, we obtain

ν
1
p

(∫ 1

0

∥A1−mk
2

λ U1s(x)fk∥pdx
) 1

p ≤ M1

2∑
k=1

(∥fk∥Ek
+ |λ|1−θk∥fk∥). (3.12)

Moreover, due to positivity of operator A, for uk = U1s(x)fk (or uk = U2s(x)fk), we have

∥AA−mk
2

λ uk∥ = ∥A1−mk
2

λ uk − λA
−mk

2

λ uk∥ ≤ (1 + ∥λA−1
λ ∥)∥A1−mk

2

λ uk∥.
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By using the above estimate, in view of (3.11) and (3.12), by the substitution of variable

and by virtue of Theorem 1.4, we get the following uniform estimate for the solution to problem

(3.4)–(3.5):

2∑
k=1

ν
1
p

(∫ 1

0

∥AA−mk
2

λ ∥[∥e−νxA
1
2
λ fk∥p + ∥e−ν(1−x)A

1
2
λfk∥p]dx

) 1
p

≤ M1

2∑
k=1

(∥fk∥Ek
+ |λ|1−θk∥fk∥). (3.13)

Then by taking into account the substitution of variable, we obtain from (3.11) and (3.13) the

estimate (3.3).

4 Non-homogenous Equations

Now consider non-homogenous BVPs on the moving intervals σ(s) = (s0, s1):

(L0 + λ)u = −u(2)(y) + (A+ λ)u(y) = f(y), y ∈ σ(s), (4.1)

Lku =

mk∑
i=0

νδi
[
αkiu

(i)(0) + βkiu
(i)(1) +

Nk∑
j=1

δkjiu
(i)(ykj)

]
= fk, k = 1, 2, (4.2)

where ykj ∈ σ(s), s = (s0(t), s1(t)), 0 < t ≤ T < ∞; αk, βk, δkj are complex numbers; λ is a

complex parameter, and δi = i− 1
p .

Remark 4.1 If functions si satisfy the Hölder’s condition (i.e., si ∈ Cγ [0, T ], 0 < γ ≤ 1),

then by a similar way as in [1, pp. 83–94] or [5, Section 7], it can be shown that there is a

bounded linear extension operator from W 2
p (σ(s);E(A), E) to W 2

p (R;E(A), E) for p ∈ (1,∞)

independent of s.

Theorem 4.1 Suppose that all conditions of Theorem 3.1 are satisfied. Then, the operator

u → {(L0 + λ)u, L1u, L2u} for | arg λ| ≤ φ, 0 ≤ φ < π and sufficiently large |λ|, is an isomor-

phism from W 2
p (σ(s);E(A), E) onto Lp(σ(s);E) × E1 × E2. Moreover, the following uniform

coercive estimate holds:

2∑
j=0

|λ|1−
j
2 ∥u(j)∥Lp(σ(s);E) + ∥Au∥Lp(σ(s);E)

≤ C
[
∥f∥Lp(σ(s);E) +

2∑
k=1

(∥fk∥Ek
+ |λ|1−θk∥fk∥E)

]
. (4.3)

Proof By the substitution of variable y = s0 + ν(s)x, x ∈ (0, 1), problem (4.1)–(4.2) is

transformed to BVP with parameters on fixed domain

(L0 + λ)u = −ν−2u(2)(x) + (A+ λ)u(x) = f(x), x ∈ (0, 1), (4.4)

Lku =

mk∑
i=0

ν−σi

[
αkiu

(i)(0) + βkiu
(i)(1) +

Nk∑
j=1

δkjiu
(i)(xkj)

]
= fk, k = 1, 2, σi = i+

1

p
. (4.5)



758 V. Shakhmurov

We proved the uniqueness of the solution to problem (4.4)–(4.5) in Theorem 3.1. Let us define

f(x) =

{
f(x), if x ∈ [0, 1],

0, if x /∈ [0, 1].

We now show that problem (4.4)–(4.5) has a solution u ∈ W 2
p (0, 1;E(A), E) for all f ∈

Lp(0, 1;E), fk ∈ Ek and u = u1 + u2, where u1 is the restriction on [0, 1] of the solution

to equation

(L0 + λ)u = f(x), x ∈ R = (−∞,∞), (4.6)

and u2 is a solution to problem

(L0 + λ)u = 0, Lku = fk − Lku1. (4.7)

A solution to equation (4.6) is given by the formula

u(x) = F−1L−1
0 (λ, s, ξ)Ff =

1

2π

∫ ∞

∞
eiξxL−1

0 (λ, s, ξ)(Ff)(ξ)dξ,

where L0(λ, s, ξ) = ν−2ξ2 + λ+A. So, it is sufficient to show that operator-functions

Ψs,λ(ξ) = AL−1
0 (λ, s, ξ), Ψs,λ,j(ξ) = νj |λ|1−

j
2 ξjL−1

0 (λ, s, ξ), j = 0, 1, 2

are Fourier multipliers in Lp(R;E) uniformly with respect to s and λ. Really, due to positivity

of A and by virtue of Remark 1.2, we have the following uniform estimates:

∥L−1
0 (λ, s, iξ)∥ ≤ M [1 + ν−2ξ2 + |λ|]−1,

∥Ψs,λ(ξ)∥ = ∥A[A+ λ+ ν−2ξ2]−1∥ ≤ C1,

∥Ψs,λ,j(ξ)∥ = ∥ν−j |λ|1−
j
2 ξjL−1

0 (λ, s, ξ)∥ ≤ C2.

Since A(s) is uniformly R-positive, in view of equality AR(λ) = I + λR(λ) and by virtue of

Kahane’s contraction principle for collection of R-bounded operators (see [9, Lemma 3.5]), we

get that the set {AL−1
0 (λ, s, ξ), ξ ∈ R\{0}} is uniformly R-bounded. Moreover, it is clear to

see that

ξ
d

dξ
Ψs,λ(ξ) = −2ξ2ν−2AL−2

0 (λ, s, ξ) = [−2ν−2ξ2L−1
0 (λ, s, ξ)]AL−1

0 (λ, s, ξ).

In view of Kahane’s contraction principle, from additional and product properties of the

collection of R-bounded operators (see [9, Lemma 3.5, Proposition 3.4]) and the uniform R-

positivity of operator A(s), we obtain

sup
s,λ

R
{
|ξ|k dk

dξk
Ψs,λ(ξ): ξ ∈ R\{0}

}
≤ C, k = 0, 1.

Namely, the R-bound of the set {|ξ|k dk

dξk
Ψs,λ(ξ): ξ ∈ R\{0}} is independent of s and λ. In a

similar way, we have the uniform estimate

sup
s,λ

R
({

|ξ|k dk

dξk
Ψs,λ,j(ξ) : ξ ∈ R\{0}

})
≤ C, k = 0, 1.
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Then, in view of Definition 1.1, it follows that Ψs,λ(ξ) and Ψs,λ,j(ξ) are uniform collec-

tions of multipliers in Lp(R;E). Then, we obtain that problem (4.6) has the solution u ∈
W 2

p (R;E(A), E) and the following uniform estimate

2∑
j=0

ν−j |λ|1−
j
2 ∥u(j)∥Lp(R;E) + ∥Au∥Lp(R;E) ≤ C∥f∥Lp(R;E) (4.8)

holds with respect to s and λ. Let u1 be the restriction of u on (0, 1). Then it implies that

u1 ∈ W 2
p (0, 1;E(A), E). By virtue of Theorem 1.5, we get

u
(mk)
1 ( · ) ∈ (E(A);E)θk,p, k = 1, 2.

Hence, L0ku1 ∈ Ek. Thus by virtue of Theorem 3.1, problem (4.7) has a unique solution u2(x)

that belongs to W 2
p (0, 1;E(A), E) and for sufficiently large |λ|, we have

2∑
j=0

ν−j |λ|1−
j
2 ∥u(j)

2 ∥Lp(0,1;E) + ∥Au2∥Lp(0,1;E)

≤ C
2∑

k=1

(∥fk − Lku1∥Ek
+ |λ|1−θk∥fk − Lku1∥E). (4.9)

From (4.9), for | arg λ| ≤ φ, we obtain

2∑
j=0

ν−j |λ|1−
j
2 ∥u(j)

1 ∥Lp(0,1;E) + ∥Au1∥Lp(0,1;E) ≤ C∥f∥Lp(0,1;E). (4.10)

Therefore, in view of Theorem 1.5 and by estimate (4.10) we have

ν−(j+ 1
p )∥u(j)

1 ( · )∥Ek
≤ C1[∥ν−2u

(2)
1 ∥Lp(0,1;E) + ∥Au1∥Lp(0,1;E)] ≤ C∥f∥Lp(0,1;E). (4.11)

In virtue of Theorem 1.5 for λ = µ2, u ∈ W 2
p (0, 1;E), we obtain

|µ|2−jν−(j+ 1
p )∥u(j)( · )∥E ≤ C[|µ|

1
p ∥ν−2u(2)∥Lp(0,1;E) + |µ|2+

1
p ∥u∥Lp(0,1;E)]. (4.12)

Hence, from estimates (4.9)–(4.12), we have

2∑
j=0

ν−j |λ|1−
j
2 ∥u(j)

2 ∥Lp(0,1;E) + ∥Au2∥Lp(0,1;E)

≤ C
(
∥f∥Lp(0,1;E) +

2∑
k=1

(∥fk∥Ek
+ |λ|1−θk∥fk∥E)

)
. (4.13)

Then, from estimates (4.8) and (4.13), we obtain that the operator generated by problem

(4.4)–(4.5) for | arg λ| ≤ φ, 0 ≤ φ < π and sufficiently large |λ|, is an isomorphism from

W 2
p (0, 1;E(A), E) onto Lp(0, 1;E) × E1 × E2. Moreover, for these s, λ, the following uniform

coercive estimate holds:

2∑
j=0

ν−j |λ|1−
j
2 ∥u(j)∥Lp(0,1;E) + ∥Au∥Lp(0,1;E)
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≤ C
[
∥f∥Lp(0,1;E) +

2∑
k=1

(∥fk∥Ek
+ |λ|1−θk∥fk∥E)

]
. (4.14)

Finally, by changing of variable from (4.14), we obtain the assertion.

Consider the following problem:

(L0 + λ)u = −u(2)(y) + (A(s) + λ)u(y) = f(y), y ∈ σ(s),

Lku =

mk∑
i=0

νδi
[
αkiu

(i)(s0) + βkiu
(i)(s1) +

Nk∑
j=1

δkjiu
(i)(ykj)

]
= 0, k = 1, 2. (4.15)

Let B(s) denote the operator in Lp(σ(s);E) generated by problem (4.15), i.e.,

D(B(s)) = W 2
p (σ(s);E(A), E, Lk), B(s)u = −u(2) +Au.

By changing of variable y = s0 + ν(s)x, x ∈ (0, 1), problem (4.15) is transformed to the

following BVP with parameter on fixed domain:

(L̃0 + λ)u = −ν−2u(2)(x) + (A+ λ)u(x) = f(x), x ∈ (0, 1),

L̃ku =

mk∑
i=0

ν−σi

[
αkiu

(i)(0) + βkiu
(i)(1) +

Nk∑
j=1

δkjiu
(i)(xkj)

]
= 0, k = 1, 2.

(4.16)

Let B(s) denote the operator in F = Lp(0, 1;E) generated by problem (4.16), i.e.,

D(B(s)) = W 2
p (0, 1;E(A), E, L̃k), B(s)u = −ν−2u′′ +A(s)u.

Theorem 4.1 implies the following result.

Result 4.1 The operator B(s) is uniformly positive in F and for λ ∈ S(φ) the following

estimate holds:

2∑
j=0

|λ|1−
j
2 ∥[B(s) + λ]−1∥F + ∥A[B(s) + λ]−1∥F ≤ M.

Theorem 4.2 Let all conditions of Theorem 3.1 be satisfied. Then the operator G(s) is

uniformly R-positive in F.

Proof The estimate (4.3) implies that G(s) is uniformly positive in F. The equation (4.16)

can be express as

−u(2)(x) + ν2Aλu(x) = −
( d

dx
− νA

1
2

λ

)( d

dx
+ νA

1
2

λ

)
= ν2f(x).

Then, by using a similar technique as in [35], we obtain that for f ∈ D(0, 1;E(A)) the solution

to equation (4.16) is represented as

u(x) = U1λν(x)g1 + U2λν(x)g2 + ν2
∫ 1

0

U0λν(x− y)f(y)dy, gk ∈ E, (4.17)

where

U0λν(x− y) =


−1

ν
A

− 1
2

λ e−ν(x−y)A
1
2
λ , x ≥ y,

1

ν
A

− 1
2

λ e−ν(y−x)A
1
2
λ , x ≤ y,
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and Ujλν(x), j = 1, 2, are analytic semigroups defined by

U1λν(x) = e−νxA
1
2
λ , U2λν(x) = e−ν(1−x)A

1
2
λ .

By taking into account the boundary conditions, we obtain the following equation with respect

to g1 and g2:

Lk(U1λν)g1 + Lk(U2λν)g2 = Lk(Φλν), k = 1, 2,

Φλν = ν2
∫ 1

0

U0λν(x− y)f(y)dy.

By solving the above system, substituting it into (4.17), and calculating Lk(Φλν), we obtain

from the above as in Theorem 3.1, the representation of the solution to problem (4.16):

u(x) = [B(s) + λ]−1f =

∫ 1

0

Kν(λ, x, y)f(y)dy,

Kν(λ, x, y) = ν

2∑
j=1

2∑
k=1

mk∑
µ=0

A
− (mk−µ)

2

λ (s)Bkjµν(λ)Ujλν(x)Ũkjλν(x− y) + U0λν(x− y),

(4.18)

where Bkjν(λ) are like djk, so are uniformly bounded operators in E and

Ũkjµλν(x− y) =

bkjµe
−ν(x−y)A

1
2
λ , x ≥ y,

δkjµe
−ν(y−x)A

1
2
λ , x ≤ y,

bkjµ, δkjµ ∈ C.

Let us at first show that the set {Kν(λ, x, y);λ ∈ S(φ)} is uniformly R-bounded. Really,

by using the generalized Minkowcki’s, Young inequalities by semigroups estimates and by the

substitution of variable νξ = η, we have the uniform estimate

∥Kν(λ, x, y)f∥F ≤ C

2∑
j=1

2∑
k=1

mk∑
µ=0

ν{∥A− 1
2

λ ∥∥Bkjµν(λ)∥∥Ũkjλν(x)f∥F + ∥U0λν(x)f∥F }

≤ C
2∑

k=1

ν∥f∥F + ∥f∥F ≤ C∥f∥F .

Due to uniform R-positivity of A(s), and uniform boundedness of operators Bkjµν(λ), and

by using the Kahane’s contraction principle, we get that the following sets

bkjµν(λ, x, y) = {νBkjµν(λ)A
− 1

2

λ Ujλν(x)[U1λν(1− y) + U2λν(y)] : λ ∈ Sφ},
b0ν(λ, x, y) = {U0λν(x− y) : λ ∈ Sφ}

are uniformly R-bounded. Then by using the Kahane’s contraction principle, product and

additional properties of the collection of R-bounded operators and R-boundedness of the sets

bkjν , d0ν , for all u1,u2, · · · , um ∈ F , λ1, λ2, · · · , λm ∈ S(φ), and independent symmetric {−1, 1}-
valued random variables ri(y), i = 1, 2, · · · ,m, m ∈ N, we have the estimate∫

Ω

∥∥∥ m∑
i=1

ri(y)Kν(λi, x, y)ui

∥∥∥
F
dτ
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≤ C
{ 2∑

k,j=1

mk∑
µ=0

∫
Ω

∥∥∥ m∑
i=1

ri(y)bkjµν(λi, x, y)ui

∥∥∥
F
dτ +

∫
Ω

∥∥∥ m∑
i=1

ri(y)d0ν(λi, x, y)ui

∥∥∥
F
dτ

≤ Ceβ|λ|
1
2 |x−y|

∫
Ω

∥∥∥ m∑
i=1

ri(y)ui

∥∥∥
F
dτ, β < 0,

uniformly in x, y and t. This implies that

R{Kν(λ, x, y) : λ ∈ Sφ} ≤ Ceβ|λ|
1
2 |x−y|, β < 0, x, y ∈ (0, b).

By applying the R-bondedness property of kernel operators (see [9, Proposition 4.12]) and

due to density of D(0, 1;E(A)) in Lp(0, 1;E) (see, e.g., [22, Section 2.2]) and by the substitution

of variable, we obtain the assertion.

5 Coerciveness on the Space Variable and Fredholmness

Consider problem (2.3)–(2.4).

Theorem 5.1 Suppose that all conditions of Theorem 3.1 hold. Moreover, the function

B1(x)u for u ∈ D(A
1
2 ) and the function B2(x)u for u ∈ D(A) are measurable on (s0, s1), and

for any ε > 0 there is C(ε) > 0 such that for almost all x ∈ [s0, s1],

∥B1(s, x)u∥ ≤ ε∥A 1
2u∥+ C(ε)∥u∥, u ∈ D(A

1
2 ),

∥B2(s, x)u∥ ≤ ε∥Au∥+ C(ε)∥u∥, u ∈ D(A).

Then

(a) for solution u ∈ W 2
p (σ(s);E(A), E) the following uniform coercive estimate holds:

2∑
j=0

∥u(j)∥Lp(σ(s);E) + ∥Au∥Lp(σ(s);E)

≤ C
[
∥Lu∥Lp(σ(s);E) +

2∑
k=1

(∥Lku∥Ek
+ ∥u∥Lp(σ(s);E))

]
; (5.1)

(b) if A−1 ∈ σ∞(E), then the operator u → O(s)u = {Lu,L1u, L2u} from W 2
p (σ;E(A), E)

into Lp(σ;E)× E1 × E2 is Fredholm.

Proof The substitution of variable y = s0 + (s1 − s0)x, x ∈ (0, 1) in problem (2.3)–(2.4)

leads to the following BVP on the fixed domain (0, 1):

(L+ λ)u = −ν−2u(2)(x) + (A+ λ)u(x) + ν−1B1(s, x)u
(1)(x) +B2(s, x)u(x)

= f(x), x ∈ (0, 1),

Lku =

mk∑
i=0

ν−δi
[
αkiu

(i)(0) + βku
(i)(1) +

Nk∑
j=1

δkjiu
(i)(xkj)

]
= fk, k = 1, 2,

(5.2)

where xkj ∈ (0, 1). Let u ∈ W 2
p (0, 1;E(A), E) be a solution to problem (5.2) and d be a positive

number. Then u(x) is a solution to the problem

−ν−2 d
2u

dx2
+ (A+ d)u = f(x) + du− ν−1B1

du

dx
−B2u,
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Lku = fk, k = 1, 2.

By Theorem 4.1 for sufficiently large d, we have the following uniform estimate:

2∑
j=0

ν−j∥u(j)∥Lp(0,1;E) + ∥Au∥Lp(0,1;E)

≤ C
[
∥f + du− ν−1B1u

(1) −B2u∥Lp(0,1;E) +
2∑

k=1

∥fk∥Ek

]
. (5.3)

By virtue of the condition (1.2), it follows that

∥B1(s, x)u
(1)(x)∥E ≤ ε∥A 1

2u(1)(x)∥E + C(ε)∥u(1)(x)∥E ,
∥B2(s, x)u(x)∥E ≤ ε∥Au(x)∥E + C(ε)∥u(x)∥E , x ∈ (0, 1).

Hence

∥B1u
(1)∥Lp(0,1;E) ≤ ε∥A 1

2u(1)∥Lp(0,1;E) + C(ε)∥u(1)∥Lp(0,1;E),

∥B2u∥Lp(0,1;E) ≤ ε∥Au∥Lp(0,1;E) + C(ε)∥u∥Lp(0,1;E).
(5.4)

By virtue of Theorem 1.1, we have

ν−1∥A 1
2u(1)∥Lp(0,1;E) ≤ C[∥ν−2u(2)∥Lp(0,1;E) + ∥Au∥Lp(0,1;E)].

Moreover, by virtue of Theorem 1.1 again, there exists a C > 0 such that for 0 < h ≤ h0,

∥ν−1u1∥Lp(0,1;E) ≤ C(h
1
2 ∥ν−2u(2)∥Lp(0,1;E) + h− 1

2 ∥u∥Lp(0,1;E)).

Therefore, by using (5.4) we can conclude that

∥ν−1B1u
(1)∥Lp(0,1;E) ≤ ε∥ν−1A

1
2u(1)∥Lp(0,1;E) + C(ε)∥ν−1u(1)∥Lp(0,1;E)

≤ ε[∥ν−2u(2)∥Lp(0,1;E) + ∥Au∥Lp(0,1;E)] + C(ε)∥u∥Lp(0,1;E).

Moreover, from condition (1.2), it is clear that

∥B2u∥Lp(0,1;E) ≤ ε∥Au∥Lp(0,1;E) + C(ε)∥u∥Lp(0,1;E)

≤ ε[∥ν−2u(2)∥Lp(0,1;E) + ∥Au∥Lp(0,1;E)] + C(ε)∥u∥Lp(0,1;E). (5.5)

By choosing a suitable ε from (5.3)–(5.5), and by the substitution of variable, we obtain

(5.1).

(b) Let O0, O denote operators in Lp(σ;E) generated by problems (4.1)–(4.2) and (2.3)–

(2.4), respectively. Let

O1u = B1u
(1) +B2u, u ∈ W 2

p (σ;E(A), E).

We can conclude from Theorem 4.1 that operator O0(s) + d, for sufficiently large d > 0 has

an inverse from X = Lp(σ;E) × E1 × E2 onto W 2
p (σ;E(A), E). By estimates (5.3)–(5.4), for

every ε > 0, there exists a positive constant C(ε), such that for u ∈ W 2
p (σ;E(A), E),

∥O1u∥Lp(σ;E) ≤ ε∥u∥W 2
p (σ;E(A),E) + C(ε)∥u∥Lp(σ;E).

Then from Theorem 1.2 and [39] it follows that the operator O1(t) from W 2
p (σ;E(A), E) into

X is compact. Then in view of Theorem 4.1 and by the perturbation theory of linear operator

[17, Section 14], we obtain that the operator O1(s) from W 2
p (σ;E(A), E) into X is a Fredholm

operator.
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6 Free BVPs for Partial DOE

Let us now consider the nonlocal BVP (2.1)–(2.2).

Theorem 6.1 Assume that the following conditions are satisfied:

(1) E is a UMD space; A(s)=As(x) is a uniformly R-positive operator in E, As(x)A
−1
s (x0)

is bounded and uniformly continuous with respect to a collection of s and x ∈ [0, T ];

(2) for any ε > 0, there is C(ε) > 0 such that for a.e. x ∈ G and for u ∈ (E(A), E) 1
2 ,∞

,

∥Ak(s, x, y)u∥ ≤ ε∥u∥(E(A),E) 1
2
,∞

+ C(ε)∥u∥;

(3) ηk = (−1)m1αk1βk2 − (−1)m2αk2βk1 ̸= 0, p ∈ (1,∞), k = 1, 2;

(4) si ∈ Cγ [0, T ], 0 < γ < 1 and there is a b > 0 so that ν(s) ≥ b > 0 and ν(s), ν−1(s) are

uniformly continuous with respect to s and x ∈ [0, T ].

Then, for all f ∈ Lp(Gs;E), | arg λ| ≤ φ and sufficiently large |λ|, problem (2.1)–(2.2) has

a unique solution u belonging to W 2
p (Gs;E(A), E) and the following uniform coercive estimate

holds:

2∑
j=0

|λ|1−
j
2

[ 2∑
j=0

∥Dj
xu∥Lp(Gs;E) + ∥Dj

yu∥Lp(Gs;E)

]
+ ∥Au∥Lp(Gs;E) ≤ C∥f∥Lp(Gs;E). (6.1)

Proof Consider the principal part of the BVP (2.1)–(2.2), i.e., consider the following

problem:

L0u = −D2
xu(x, y)−D2

yu(x, y) + (A(s) + λ)u(x, y) = f(x, y),

Ljku = 0, j, k = 1, 2,
(6.2)

where Ljk are defined by equalities (2.2). Let Q0(s) and Q(s) be differential operators in

Lp(Gs;E) generated by BVP (6.2) and (2.1)–(2.1), respectively. Since Lp(0, T ;Lp(σ(s);E)) =

Lp(Gs;E) = X, the BVP (6.2) can be expressed as the following ordinary DOE with variable

coefficient:

−D2u(x) + [B(s(x)) + λ]u(x) = f(x),

L1ku =

mk∑
i=0

νδi
[
α1jiu

(i)(0) + β1jiu
(i)(T ) +

Nk∑
j=1

δ1jiu
(i)(x1kj)

]
= 0, k = 1, 2,

(6.3)

where x1kj ∈ (0, T ) and B(s) = Bs(x) is the differential operator in Lp(σ;E) = Es generated

by BVP problem (4.15). Consider the operator Bs generated by problem (4.16). By estimate

(4.3), we have the following uniform estimate:

∥As(x0)B
−1
s (x0)∥B(F ) ≤ C. (6.4)

For u ∈ F , we have

∥Bs(x)B
−1
s (x0)u−Bs(τ)B

−1
s (x0)u∥F

= ∥[Bs(x)−Bs(τ)]B
−1
s (x0)u∥F

≤
∥∥∥[ν−2(x)− ν−2(τ)]

d2

dx2
B−1

s (x0)u
∥∥∥
F
+ ∥[As(x)−As(τ)]B

−1
s (x0)u∥F

≤ ∥[As(x)−As(τ)]A
−1
s (x0)∥B(F )∥As(x0)B

−1
s (x0)u∥F . (6.5)
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By virtue of Result 4.1, we obtain that D(Bs) is independent of s and x and Bs is uniformly

positive in F. By conditions (1.1)–(2.2), in view of (6.4) and (6.5) and by estimate (4.3), we

obtain that the function Bs(x)B
−1
s (x0) is bounded and uniformly continuous with respect to the

collection of s and x ∈ [0, T ]. It implies that Bs(x)B
−1
s (x0) is bounded and uniformly continuous

with respect to the collection of s and x ∈ [0, T ]. By virtue of [3, Theorem 4.5.2], Es ∈ UMD

provided E ∈ UMD, p ∈ (1,∞). Theorem 4.2 implies that the operator Bs is uniformly R-

positive in Es. Therefore, by virtue of [26, Theorem 3] for all f ∈ Lp(0, T ;Es), | arg λ| ≤ φ and

sufficiently large |λ|, problem (6.2) has a unique solution u belonging to W 2
p (0, T ;D(Bs), F )

and the following uniform coercive estimate holds:

2∑
j=0

|λ|1−
j
2 ∥Dj

xu∥Lp(0,T ;F ) + ∥Bsu∥Lp(0,T ;F ) ≤ C∥f∥Lp(0,T ;F ). (6.6)

Then, by estimate (6.6) and by the substitution of variable y = s0 + (s1 − s0)t, t ∈ (0, 1),

we obtain that for f ∈ Lp(Gs;E), | arg λ| ≤ φ and sufficiently large |λ|, problem (6.2) has a

unique solution u belonging to W 2
p (Gs;E(A), E) and the uniform in s coercive estimate (6.1)

holds for the solution to problem (6.3). This implies the estimate

2∑
j=0

(|λ|1−
j
2 ∥Dj

x(Q0 + λ)−1f∥X + |λ|1−
j
2 ∥Dj

y(Q0 + λ)−1f∥X)

+ ∥A(Q0 + λ)−1f∥X ≤ C∥f∥X . (6.7)

By condition (1.1) and by virtue of Theorem 1.1 for all u ∈ W 2
p (Gs;E(A), E), for any ε > 0

there is a C(ε) > 0, such that

∥A1Dxu∥X + ∥A2Dyu∥X ≤ ε∥u∥W 2
p (Gs;E(A),E) + C(ε)∥u∥X . (6.8)

By using estimates (6.7)–(6.8) for sufficiently large |λ|, we obtain

∥A1Dxu∥X + ∥A2Dyu∥X ≤ ε∥(Q0 + λ)u∥X . (6.9)

Then, in view of estimates (6.8)–(6.9) and in virtue of the perturbation theory of linear

operators [17, Theorem 14.1], we obtain the estimate (6.1).

Theorem 6.2 Let all conditions of Theorem 6.1 be satisfied and A−1 ∈ σ∞(E). Then,

problem (2.1)–(2.2) is Fredholm in Lp(Gs;E) for λ = 0.

Proof Theorem 6.1 implies that the differential operator Q(s) has a bounded inverse from

Lp(Gs;E) to W 2
p (Gs;D(A), E) for sufficiently large |λ|. Fredholmness of the operator Q is

obtained then from Theorem 5.1 by virtue of compactness of embedding of W 2
p (Gs;E(A), E)

into Lp(Gs;E) (see [28, Theorem 2]) and by the perturbation theory of linear operators [16,

Theorem 14.1].

Result 6.1 Theorem 6.1 implies that the differential operator Q = Q(s) has a resolvent

operator (Q+ λ)−1 for λ ∈ S(φ), φ ∈ [0, π) and the following uniform estimate holds:

2∑
j=0

|λ|1−
j
2 (∥Dj

x(Q+λ)−1∥X + ∥Dj
y(Q+λ)−1∥X) + ∥A(Q+λ)−1∥X ≤ C.

Remark 6.1 Assume that all conditions of Theorem 6.1 are satisfied. Then in virtue

of R-positivity of A, by using the representation of the solution to problem (2.1)–(2.2) (see

[11, Lemma 7.1]) and a similar technique as in [11, Theorem 7.4], we conclude that the operator

Q is R-positive in Lp(Gs;E).
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7 Free Boundary Value Problems for Anisotropic Elliptic Equations

The Fredholm property of BVPs for elliptic equations with parameters in smooth domains

were studied e.g. in [1, 9], and for nonsmooth domains these questions were investigated e.g.

in [12, 13].

Let Ω ⊂ Rn be an open connected set with compact C2m-boundary ∂Ω. Let us consider

the nonlocal free BVPs on cylindrical domain Ω̃ = Gs ×Ω for the following anisotropic elliptic

equation:

Lu = −
2∑

k=1

∂2u(x, y)

∂x2
k

+
2∑

k=1

dk
∂u(x, y)

∂xk

+
∑

|α|≤2m

aα(y)D
α
y u(x, y) = f(x, y), x ∈ Gs, y ∈ Ω, (7.1)

L1ku =

m1k∑
i=0

νi−
1
p [α1kiu

(i)
x1
(0, x2, y) + β1kiu

(i)
x1
(T, x2, y)]

+

Nk∑
j=1

δ1kju
(i)
x1
(xkj , x2, y) = 0,

(7.2)
L2ku =

m2k∑
i=0

νi−
1
p [α2kiu

(i)
x2
(x1, s0(x), y) + β2kiu

(i)
x2
(x1, s1(x), y)]

+

Nk∑
j=1

δ2kju
(i)
x2
(x1, ykj , y) = 0, k = 1, 2,

Bju =
∑

|β|≤mj

bjβ(y)D
β
yu(x, y) = 0, x ∈ Gs, y ∈ ∂Ω, j = 1, 2, · · · ,m, (7.3)

where Gs = {x = (x1, x2), 0 < x1 < T, x2 ∈ σ(s)},

s = (s0, s1), s0 = s0(x), s1 = s1(x), σ(s) = (s0(x), s1(x)),

ν = ν(s) = s1(x)− s0(x), x ∈ [0, T ], xkj ∈ (0, T ), ykj ∈ (s1(x), s2(x)),

Γ is a boundary of the region Ω ∈ Rn, ak, αikj and βikj are complex-valued function on Gs,

Dj = −i ∂
∂yj

, mk ∈ {0, 1}, y = (y1, · · · , yn).
Let Ω ⊂ Rn be an open connected set with compact C2m-boundary ∂Ω. Recall that for all

y0 ∈ ∂Ω local coordinates corresponding to y0 are defined as coordinates obtained from the

original ones by a rotation and a shift which transfers y0 to the origin and after which the

positive yl-axis has the direction of the interior normal to ∂Ω at y0.

If Ω̃s = Gs × Ω, p =(p1, p), Lp(Ω̃s) will denote the space of all p-summable scalar-valued

functions with mixed norm (see, e.g., [7, Section 1]), i.e., the space of all measurable functions

f defined on Ω̃s, for which

∥f∥Lp(Ω̃s)
=

(∫
Gs

(∫
Ω

|f(x, y)|p1dy
) p

p1
dx

) 1
p

< ∞.

Analogously, W 2,2m
p (Ω̃s) denotes the anisotropic Sobolev space with corresponding mixed norm

(see [7, Section 10]).

Theorem 7.1 Let the following conditions be satisfied:



Free Boundary Value Problems for Abstract Elliptic Equations and Applications 767

(1) si ∈ Cγ [0, T ], 0 < γ < 1 and there is a b > 0 so that ν(s) ≥ b > 0 and ν(s), ν−1(s) are

uniformly continuous with respect to s and x ∈ [0, T ] and ηk = (−1)m1αk1βk2−(−1)m2αk2βk1 ̸=
0, p, p1 ∈ (1,∞), where αki = αkimik

, βki = βkimik
;

(2) aα ∈ C(Ω) for each |α| = 2m and aα ∈ [L∞ + Lrk ](Ω) for each |α| = k < 2m with

rk ≥ q and 2m− k > l
rk
;

(3) bjβ ∈ C2m−mj (∂Ω) for each j, β and mj < 2m, Bj0(y
′, ξ) =

∑
|β|=mj

bjβ(y
′, ξ) ̸= 0 for

y′ ∈ ∂Ω, where ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn is normal to ∂Ω;

(4) for y ∈ Ω, ξ ∈ Rn, λ ∈ S(φ), φ ∈ (0, π), |ξ| + |λ| ̸= 0, let λ + A0(y, ξ) ̸= 0, where

A0(y, ξ) =
∑

|α|=2m

aα(y)ξ
α;

(5) for each y0 ∈ ∂Ω, local BVP in local coordinates corresponding to y0

λ+A0(y0, ξ
′, Dn+1)ϑ(y) = 0, y > 0,

Bj0(y0, ξ
′, Dn+1)ϑ(0) = hj , j = 1, 2, · · · ,m

has a unique solution ϑ ∈ C0(R+) for all h = (h1, h2, · · · , hn) ∈ Rn and λ ∈ S(φ), ξ′ ∈ Rn with

|ξ′|+ |λ| ̸= 0.

Then, we have that

(a) for all f ∈ Lp(Ω̃s;E), | arg λ| ≤ φ and sufficiently large |λ|, problem (7.1)–(7.3) has a

unique solution u that belongs to W 2,2m
p (Ω̃s) and the following coercive uniform estimate holds:

n∑
k=1

2∑
i=0

|λ|1− i
2

∥∥∥ ∂iu

∂xk

∥∥∥
Lp(Ω̃s)

+
∑

|β|=2m

∥Dβ
yu∥Lp(Ω̃s)

≤ C∥f∥Lp(Ω̃s)
;

(b) problem (7.1)–(7.3) is Fredholm in Lp(Ω̃s).

Proof Let E = Lp1(Ω). By [7], the space Lp1(Ω), p1 ∈ (1,∞) is UMD. Consider the

operator A defined by

D(A) = W 2m
p1

(Ω;Bju = 0), Au =
∑

|α|≤2m

aα(y)D
αu(y).

For x ∈ Ω also consider the following operators:

Ak(x)u = dk(x, y)u(y), k = 1, 2, · · · , n.

Problem (7.1)–(7.3) can be rewritten in the form (2.1)–(2.2), where u(x) = u(x, · ), f(x) =

f(x, · ) are functions with values in E = Lp1(Ω). By virtue of [1], problem

λu(y) +
∑

|α|≤2m

aα(y)D
α
y u(y) = f(y),

Bju =
∑

|β|≤mj

bjβ(y)D
β
yu(y) = 0, j = 1, 2, · · · ,m

has a unique solution for f ∈ Lp1(Ω) and arg λ ∈ S(φ), |λ| → ∞. Moreover, in view of

[9, Theorem 8.2], the differential operator A is R-positive in Lp1 . It is known that the embed-

ding W 2m
p1

(Ω) ⊂ Lp1(Ω) is compact (see e.g. [30, Theorem 3.2.5]). Then by using interpolation

properties of Sobolev spaces (see e.g. [31, Section 4]) it is clear to see that condition (2) of

Theorem 6.1 holds. Conditions (1)–(5) imply that the other conditions of Theorem 6.1 are

fulfilled too. Then from Theorems 6.1–6.2, the assertions are obtained.
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8 Nonlocal Free Boundary Value Problems for Infinite Systems of
Elliptic Equations

The Fredholm property of boundary value problems for elliptic equations with parameters

in smooth domains was studied in [2, 9] and for non-smooth domains it was treated e.g. in

[13]. In this section, the maximal regularity of nonlocal BVPs for finite and infinite systems of

elliptic equations are established. Consider the following infinite system of nonlocal boundary

value problems:

−D2
xum(x, y)−D2

yum(x, y) +
∞∑
j=1

d1mj(x, y)Dxuj(x, y)

+
∞∑
j=1

d2mj(x, y)Dyuj(x, y) +
∞∑
j=1

[dj + λ]uj(x, y) = fm(x, y), x, y ∈ Gs, (8.1)

L1kum =

m1k∑
i=0

νδi
[
α1kiu

(i)
m (0, y) + β1ku

(i)(T, y) +

Nk∑
j=1

δ1kju
(i)
m (xkj , y)

]
= 0,

L2kum =

m2k∑
i=0

νδi
[
α2kiu

(i)
m (x, s0(x)) + β2ku

(i)
m (x, s1(x)) +

Nk∑
j=1

δ2kju
(i)
m (x, ykj)

]
(8.2)

= 0, k = 1, 2,

where

Ωs = {(x, y) ∈ R2, x ∈ [0, T ], xkj ∈ (0, T ), y ∈ σ(s)}

is moving domain and

ykj ∈ σ(s), σ(s) = (s0(x), s1(x)), δi = i− 1

p
,

D = {dm}, dm > 0, u = {um}, Du = {dmum}, m = 1, 2, · · · ,

lq(D) =
{
u: u ∈ lq, ∥u∥lq(D) = ∥Du∥lq =

( ∞∑
m=1

|dmum|q
) 1

q

< ∞
}
, 1 < q < ∞.

Let O(s) denote the differential operator in Lp(Ωs; lq) generated by BVP (8.1)–(8.2).

Theorem 8.1 Suppose that si ∈ Cγ [0, T ], 0 < γ < 1 and there is a b > 0 so that

ν(s) ≥ b > 0 and ν(s), ν−1(s) are uniformly continuous with respect to s and x ∈ [0, T ] and

(−1)m1αi1βi2 − (−1)m2αi2βi1 ̸= 0, i = 1, 2,

max
k

sup
m

∞∑
j=1

dkmj(x)d
−( 1

2−µ)
j < M, 0 < µ <

1

2
, x ∈ [0, T ].

Then, for all f(x) = {fm(x)}∞1 ∈ Lp(Ωs; lq) and for sufficiently large |λ|, problem (8.1)–(8.2)

has a unique solution u = {um(x)}∞1 that belongs to space W 2
p (Ωs, lq(D), lq), and the following

uniform coercive estimate holds:

[( ∫
Ωs

∞∑
m=1

|D2
xum(x)|q

) p
q

dx
] 1

p

+
[( ∫

Ωs

∞∑
m=1

|D2
yum(x)|q

) p
q

dx
] 1

p
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+
[( ∫

Ωs

∞∑
m=1

|dmum(x)|q
) p

q

dx
] 1

p

≤ C
[( ∫

Ωs

∞∑
m=1

|fm(x)|q
) p

q

dx
] 1

p

. (8.3)

Moreover, problem (8.1)–(8.2) is Fredholm in Lp(Ωs; lq) for λ = 0.

Proof Really, let E = lq, A and Ak be infinite matrices, such that

A = dmδjm, Ak = [dkmj(x)], m, j = 1, 2, · · · ,∞.

It is easy to see that this operator A is R-positive in lq. Therefore, by virtue of Theorem 6.1,

we obtain that the problem (8.1)–(8.2) for f ∈ Lp(Ωs; lq), | arg λ| ≤ φ and sufficiently large |λ|,
has a unique solution u that belongs to W l

p(Ωs; lq(D), lq) and the following coercive estimate

holds:

∥D2
xu∥Lp(Ωs;lq) + ∥D2

yu∥Lp(Ωs;lq) + ∥Du∥Lp(Ωs;lq) ≤ C∥f∥Lp(Ωs;lq). (8.4)

Namely, we obtain the estimate (8.3). Moreover, by Theorem 6.2, problem (8.1)–(8.2) for λ = 0

is Fredholm in Lp(Ωs; lq).
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