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Abstract The author considers the Cauchy problem for quasilinear inhomogeneous hy-
perbolic systems. Under the assumption that the system is weakly dissipative, Hanouzet
and Natalini established the global existence of smooth solutions for small initial data (in
Arch. Rational Mech. Anal., Vol. 169, 2003, pp. 89–117). The aim of this paper is to give
a completely different proof of this result with slightly different assumptions.
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1 Introduction and Main Results

In this paper, we consider the following first order quasilinear inhomogeneous hyperbolic

systems

∂u

∂t
+A(u)

∂u

∂x
+ f(u) = 0, (1.1)

where u = (u1, · · · , un)
T is the unknown vector function of (t, x) and f(u) = (f1(u), · · · , fn(u))T

with C2 functions fi(u) (i = 1, · · · , n). Moreover, A(u) = (aij(u)) is an n× n matrix with C2

elements aij(u) (i, j = 1, · · · , n).
We assume strictly hyperbolicity of the system. For any given u on the domain under

consideration, A(u) has n distinct real eigenvalues

λ1(u) < λ2(u) < · · · < λn(u). (1.2)

Let li(u) = (li1(u), · · · , lin(u)) (resp. ri(u) = (ri1(u), · · · , rin(u))T) be a left (resp. right)

eigenvector corresponding to λi(u) (i = 1, · · · , n):

li(u)A(u) = λi(u)li(u) (resp. A(u)ri(u) = λi(u)ri(u)). (1.3)

We have

det |lij(u)| ̸= 0 (equivalently, det |rij(u)| ̸= 0). (1.4)
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All λi(u), lij(u) and rij(u) have the C2 regularity.

Without loss of generality, we may suppose that

li(u)rj(u) ≡ δij , i, j = 1, · · · , n (1.5)

and

rTi (u)ri(u) ≡ 1, i = 1, · · · , n, (1.6)

where δij stands for the Kronecker’s symbol.

In this paper, we assume

fi(0) = 0, i = 1, · · · , n. (1.7)

Thus, u = 0 is a solution to the system.

For the Cauchy problem of system (1.1) with initial data

t = 0 : u = ϕ(x), (1.8)

where ϕ(x) is a “small” C1 vector function, we shall investigate the global existence of classical

solutions to (1.1) and (1.8).

In the general case of system (1.1), a well-known assumption for the global existence is given

by the total dissipation condition (see [8, 6]):

gii(0) >
∑
j ̸=i

|gij(0)|, i = 1, · · ·n, (1.9)

where

gij(u) =
n∑

l,m=1

lil(u)
∂fl(u)

∂um
rmj(u). (1.10)

Then, In [3], for the special case of diagonal system

A(u) = diag(λ1(u), · · · , λn(u)), (1.11)

the global existence for small initial data is established by only assuming

gii(0) ≥
∑
j ̸=i

|gij(0)|, i = 1, · · ·n (1.12)

and

gii(0) > 0, i = 1, · · ·n. (1.13)

Finally, in [2, 11], for general systems of hyperbolic balance laws with a convex entropy, the glob-

al existence for small initial data is obtained by assuming a suitable version of the Kawashima

condition (see [5]) and a strict entropy dissipative condition. The aim of this paper is to give a

completely different proof of the result in [2] with slightly different assumptions on the system.

Our advantage is that we only assume a weak entropy dissipative condition. The disadvantage

is that we need strictly hyperbolic assumptions. Our key idea of the proof is to use the formula
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on the decomposition of waves and combine it with a technique in [3]. In [6], the formula on

the decomposition of waves was first used to prove the global existence of classical solutions to

quasilinear inhomogeneous hyperbolic systems.

The main assumption of the present paper consists of two parts. The first one is just (1.13),

which is related to the so called Kawashima condition. The second one is the so called entropy

condition. We assume that system (1.1) has a strictly convex entropy S(u) with entropy flux

q(u), such that

n∑
j=1

∂S(u)

∂uj
ajk(u) =

∂q(u)

∂uk
, k = 1, · · ·n (1.14)

and

n∑
j=1

∂S(u)

∂uj
fj(u) ≥ 0. (1.15)

Moreover, we assume

S(0) = 0, S′(0) = 0, S′′(0) > 0. (1.16)

It follows from our assumptions that we have the entropy inequality

S(u)t + q(u)x ≤ 0. (1.17)

Our main result is given in Theorem 1.1.

Theorem 1.1 Suppose that (1.2) holds in a neighborhood of origin, and system (1.1) has

a strictly convex entropy satisfying (1.14)–(1.16). Suppose furthermore that (1.13) is satisfied.

Let ϕ(x) be a C1 vector function satisfying that

ε , ∥ϕ∥C1(R) + ∥ϕ∥H1(R) < ∞, (1.18)

where ∥ϕ∥C1(R) = sup
x∈R

(|ϕ(x)|+ |ϕ′(x)|) and ∥ϕ∥H1 = ∥ϕ∥L2(R)+ ∥ϕ′∥L2(R). Then there exists an

ε0 > 0 so small that for any given ε ∈ [0, ε0], Cauchy problem (1.1) and (1.8) admits a unique

global C1 solution u = u(t, x) as t ≥ 0.

Finally, we refer to [1, 6–10, 12–14] for related results on the global existence of smooth

solutions to quasilinear hyperbolic systems.

2 Formula on the Decomposition of Waves

The purpose of this section is to derive formula on the decomposition of waves for the

inhomogeneous quasilinear hyperbolic system, and combine it with a technique of [3]. The

formula on the decomposition of waves for the homogenous quasilinear hyperbolic system was

first derived by John in [4]. The inhomogeneous case was first treated by Kong in [6] (see also

[7]).

Without loss of generality, we assume that

A(0) = diag(λ1(0), · · · , λn(0)). (2.1)
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Let

wi = li(u)ux, (2.2)

where li(u) denotes the ith left eigenvector.

By (1.5), it is easy to see that

ux =
n∑

k=1

wkrk(u). (2.3)

Differentiating the equation with respect to x gives

(ux)t + (A(u)ux)x + (ux · ∇u)f(u) = 0. (2.4)

Substituting (2.3) into this equation, we get

n∑
j=1

[(wjrj(u))t + (λj(u)wjrj(u))x + (rj(u) · ∇uf(u))wj ] = 0. (2.5)

Taking inner product with respect to li(u) gives

wit + (λi(u)wi)x = −
n∑

j=1

[li(u) · (rj(u)t + λj(u)rj(u)x) + li(u) · (rj(u) · ∇u)f(u)]wj . (2.6)

We have

(λi(u)wi)x = λi(u)wit + ux · ∇λi(u)wi = λi(u)wit +
n∑

j=1

rj(u) · ∇λi(u)wjwi (2.7)

and

rj(u)t + λj(u)rj(u)x = ut · ∇urj(u) + λj(u)ux · ∇urj(u)

= −(A(u)ux + f(u)) · ∇urj(u) + λj(u)ux · ∇urj(u)

= (λj(u)− λk(u))rk(u) · ∇urj(u)wk − f(u) · ∇urj(u). (2.8)

Let

d

dit
=

∂

∂t
+ λi(u)

∂

∂x
(2.9)

be the directional derivative along the ith characteristic. We finally get

dwi

dit
=

n∑
j,k=1

γijk(u)wjwk −
n∑

j=1

gij(u)wj , i = 1, · · · , n, (2.10)

where

γijk(u) = (λj(u)− λk(u))li(u) · (rk(u) · ∇urj(u))− rj(u) · ∇uλk(u)δik (2.11)

and

gij(u) = gij(u)− li(u) · (f(u) · ∇urj(u)) (2.12)
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with gij(u) being defined by (1.10). At this point, we use a technique similar to that of [3]. For

any j ̸= i, we have

duj

dit
= lj(0) · (ut + λi(u)ux)

= lj(0) · (−A(u)ux − f(u) + λi(u)ux)

=
n∑

k=1

(λi(u)− λk(u))lj(0) · rk(u)wk − fj(u). (2.13)

Noting that lj(0) · rj(0) = 1, for u sufficiently small, we have lj(0) · rj(u) ̸= 0. Therefore, for

j ̸= i, we get

wj =

duj

dit
+ fj(u)

(λi(u)− λj(u))lj(0) · rj(u)
−
∑
k ̸=j

(λi(u)− λk(u))lj(0) · rk(u)
(λi(u)− λj(u))lj(0) · rj(u)

wk. (2.14)

Thus, it follows that∑
j ̸=i

gij(u)wj =
∑
j ̸=i

αij(u)
duj

dit
+

n∑
k=1

bik(u)wk + αi(u), (2.15)

where

αij(u) =
gij(u)

(λi(u)− λj(u))lj(0) · rj(u)
, (2.16)

bik(u) =
∑
j ̸=i
j ̸=k

gij(u)(λi(u)− λk(u))lj(0) · rk(u)
(λi(u)− λj(u))lj(0) · rj(u)

, (2.17)

αi(u) =
∑
j ̸=i

gij(u)fj(u)

(λi(u)− λj(u))lj(0) · rj(u)
. (2.18)

Noting that j ̸= k, lj(0) · rk(0) = 0, we get

bik(0) = 0. (2.19)

Let

ai(u) =
∑
j ̸=i

αij(u)uj . (2.20)

We get ∑
j ̸=i

αij(u)
duj

dit
=

dai(u)

dit
−
∑
j ̸=i

du

dit
· ∇uαij(u)uj

=
dai(u)

dit
−
∑
j ̸=i

(−A(u)ux − f(u) + λi(u)ux) · ∇uαij(u)uj

=
dai(u)

dit
−
∑
j ̸=i

[
− f(u) · ∇uαij(u)uj

+
n∑

k=1

(λi(u)− λk(u))rk(u) · ∇uαij(u)ujwk

]
. (2.21)
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Thus, we get

dwi

dit
+ gii(u)wi = −dai(u)

dit
+

n∑
j,k=1

γijk(u)wjwk +

n∑
k=1

bik(u)wk + gi(u), (2.22)

where

bik(u) = bik(u) +
∑
j ̸=i

(λi(u)− λk(u))rk(u) · ∇uαij(u)uj , (2.23)

gi(u) = −
∑
j ̸=i

f(u) · ∇uαij(u)uj + αi(u). (2.24)

Finally, let

zi = wi + ai(u). (2.25)

We get

dzi
dit

+ gii(u)zi =
n∑

j,k=1

γijk(u)wjwk +
n∑

k=1

bik(u)wk + gi(u), (2.26)

where

gi(u) = gi(u) + gii(u)ai(u). (2.27)

We have

bik(0) = 0, ∀ i, k = 1, · · · , n, (2.28)

gi(0) = 0, ∀ i = 1, · · · , n. (2.29)

3 Proof of Theorem 1.1

By the local existence and uniqueness of C1 solutions, we only need to get a priori estimate

on the C1 norm of the solution in order to get the global existence. For that purpose, we use a

bootstrap argument. We first assume that on the existence domain D = {(t, x) | 0 ≤ t ≤ T, x ∈
R}, we have

sup
x∈R

(|u(t, x)|+ |ux(t, x)|) ≤
√
ε, ∀ 0 ≤ t ≤ T. (3.1)

We shall use this to prove

sup
x∈R

(|u(t, x)|+ |ux(t, x)|) ≤
1

2

√
ε, ∀ 0 ≤ t ≤ T. (3.2)

Then, (3.1) will always be valid, and the proof will be done.

First of all, we use entropy inequality (1.17) to get

d

dt

∫ +∞

−∞
S(u(t, x))dx ≤ 0. (3.3)
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Thus ∫ +∞

−∞
S(u(t, x))dx ≤

∫ +∞

−∞
S(ϕ(x))dx. (3.4)

By (1.16), there exists two positive constant λ and Λ, such that

λ|u|2 ≤ S(u) ≤ Λ|u|2. (3.5)

Then it follows that

∥u(t)∥2L2(R) ≤
Λ

λ
∥ϕ∥2L2(R). (3.6)

Therefore, we get

∥u(t)∥L2(R) ≤ Cε, ∀ 0 ≤ t ≤ T. (3.7)

Here and hereafter, C will denote a positive constant independent of ε, and its meaning may

change from line to line.

Next, we estimate L2 norm of the derivatives of the solutions. By (2.3), it is enough to

estimate L2 norm of w = (w1, · · · , wn)
T. For that purpose, we first rewrite (2.26) as

∂zi
∂t

+ λi(u)
∂zi
∂x

+ gii(u)zi =
n∑

j,k=1

γijk(u)wjwk +
n∑

k=1

bik(u)wk + gi(u). (3.8)

We multiply the equation by zi and integration by parts to get

1

2

d

dt

∫ +∞

−∞
z2i dx+

∫ +∞

−∞
gii(u)z

2
i dx

=
1

2

∫ +∞

−∞
λi(u)xz

2
i dx+

∫ +∞

−∞

n∑
j,k=1

γijk(u)wjwkzidx

+

∫ +∞

−∞

n∑
k=1

bik(u)wkzidx+

∫ +∞

−∞
gi(u)zidx. (3.9)

We have ∫ +∞

−∞
λi(u)xz

2
i dx =

∫ +∞

−∞
ux · ∇uλi(u)z

2
i dx

≤ C∥ux∥C0∥zi∥2L2(R) ≤ C
√
ε∥zi∥2L2(R), (3.10)∫ +∞

−∞

n∑
j,k=1

γijk(u)wjwkzidx ≤ C∥zi∥C0∥w∥2L2(R)

≤ C
√
ε∥w∥2L2(R)

≤ C
√
ε
( n∑

j=1

∥zj∥2L2(R) + ∥u∥2L2(R)

)
≤ C

√
ε

n∑
j=1

∥zj∥2L2(R) + Cε
5
2 , (3.11)
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−∞

n∑
k=1

bik(u)wkzidx ≤ C∥zi∥C0∥w∥L2∥u∥L2

≤ C
√
ε(∥w∥2L2(R) + ∥u∥2L2(R))

≤ C
√
ε
( n∑

j=1

∥zj∥2L2(R) + ∥u∥2L2(R)

)
≤ C

√
ε

n∑
j=1

∥zj∥2L2(R) + Cε
5
2 . (3.12)

Finally, ∫ +∞

−∞
gi(u)zidx ≤ C∥u∥L2(R)∥zi∥L2(R)

≤ δ∥zi∥2L2(R) +
C

δ
∥u∥2L2(R)

≤ δ∥zi∥2L2(R) +
C

δ
ε2, (3.13)

where δ is to be chosen later. By our assumption

gii(0) = gii(0) > 0, (3.14)

there exists a positive constant µ, such that

gii(u) ≥ µ, ∀ i = 1, · · · , n, (3.15)

provided that |u| is sufficiently small. Therefore, we get

1

2

d

dt
∥zi(t, · )∥2L2(R) + µ∥zi(t, · )∥2L2(R) ≤ (C

√
ε+ δ)

n∑
i=1

∥zi(t, · )∥2L2(R) + C(δ)ε2. (3.16)

Summing up for i, we get

1

2

d

dt

n∑
i=1

∥zi(t, · )∥2L2(R) + µ

n∑
i=1

∥zi(t, · )∥2L2(R)

≤ (C
√
ε+ nδ)

n∑
i=1

∥zi(t, · )∥2L2(R) + C(δ)ε2. (3.17)

Taking

δ =
µ

4n
, (3.18)

C
√
ε ≤ µ

4
, (3.19)

we obtain

d

dt

n∑
i=1

∥zi(t, · )∥2L2(R) + µ
n∑

i=1

∥zi(t, · )∥2L2(R) ≤ Cε2. (3.20)
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Solving this differential inequality, we get

n∑
i=1

∥zi(t, · )∥2L2(R) ≤ Cε2e−µt + C(1− e−µt)ε2 ≤ Cε2. (3.21)

Noting

∥wi∥L2(R) ≤ ∥zi∥L2(R) + ∥ai(u)∥L2(R) ≤ ∥zi∥L2(R) + Cε, (3.22)

we finally get

∥w(t, · )∥L2(R) ≤ Cε, ∀ 0 ≤ t ≤ T. (3.23)

This implies

∥ux(t, · )∥L2(R) ≤ Cε, ∀ 0 ≤ t ≤ T. (3.24)

By Sobolev embedding theorem, we have

∥u(t, ·)∥C0(R) ≤ Cε, ∀ 0 ≤ t ≤ T. (3.25)

We now estimate the derivatives of u. For that purpose, we multiply (2.26) by sgn(zi) to obtain

d|zi|
dit

+ gii(u)|zi| = sgn(zi)
( n∑

j,k=1

γijk(u)wjwk +
n∑

k=1

bik(u)wk + gi(u)
)

≤ C∥w(t, · )∥2C0(R) + C∥u(t, · )∥C0(R)∥w(t, · )∥C0(R) + C∥u(t, · )∥C0(R)

≤ C(
√
ε)2 + Cε

3
2 + Cε

≤ Cε. (3.26)

Thus, we get

d|zi|
dit

+ µ|zi| ≤ Cε. (3.27)

Integrating this inequality along characteristics yields

|zi(t, x)| ≤ Cεe−µt + C(1− e−µt)ε ≤ Cε. (3.28)

Noting

|wi(t, x)| ≤ |zi(t, x)|+ |ai(u)(t, x)| ≤ |zi(t, x)|+ Cε, (3.29)

we get

|wi(t, x)| ≤ Cε. (3.30)

Taking supreme for (t, x) ∈ D and i = 1, · · · , n, we get

sup
0≤t≤T

∥w(t, · )∥C0(R) ≤ Cε. (3.31)

Combining this with (3.25), we finally get

sup
0≤t≤T

∥u(t, · )∥C1(R) ≤ Cε. (3.32)

This again implies (3.2) provided that ε is sufficiently small. This completes the proof of

Theorem 1.1.
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