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Weighted Inequalities for the Generalized Maximal
Operator in Martingale Spaces*
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Abstract The generalized maximal operator M in martingale spaces is considered. For
1 < p < ¢ < oo, the authors give a necessary and sufficient condition on the pair (i, v)
for M to be a bounded operator from martingale space LP(v) into L?(fi) or weak-L?(j1),
where [1 is a measure on 2 X N and v a weight on . Moreover, the similar inequalities for
usual maximal operator are discussed.
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1 Introduction

Let R™ be the n-dimensional real Euclidean space and f a real valued measurable function.
The classical Hardy-Littlewood maximal operator M is defined by

Mf(w) = sup cal/(f JIdy,

where () runs over the class of non-degenerate cubes with sides parallel to the coordinate axes
and |@Q| is the Lebesgue measure of Q. The generalized maximal operator M is defined by

1
mesgwémmm

where the supremum is taken over the cubes @ in R™, containing x and having side length at
least t.

Let u,v be two weights, i.e., positive measurable functions. As well known, for p > 1, B.
Muckenhoupt [12] showed that the inequality

/"(Mf(a:))pv(a:)dx <C |f(@)]Pv(z)dx, A >0, fe€ LP(v)

Rn

holds if and only if v satisfies

sup |Q\/ dx |Q|/ Tre 1dx>p71<oo.
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On the other hand, E. T. Sawyer [15] obtained a characterization for the weak-type inequality

s> 3 < o [ If@p@arn)’ fe ),

R"L
Also, when 1 < p < g < 00, a necessary and sufficient condition was established in order that
the weighted inequality

([ ons@raear)’ <o [ 1n@p@a)’, e

hold (see [3, 16]).

Moreover, let i be a measure on RT‘l and v a weight on R™. For p > 1, a characterization of
those pairs (fi,v) was found in [13] for which the generalized maximal operator M is bounded
from LP(R™,v) into weak-LP(R’"', i), and a characterization of those pairs (fi,v) was given in
[14] for which M is bounded from LP(R",v) into LP(R’*, 7). In [1] and [4], the analogues of
the above results have been developed in spaces of (non-)homogeneous type.

Now let (Q, F, ) be a complete probability space and (F,),>0 an increasing sequence of

sub-o-fields of F with F = \/ F,,. The maximal operator M for martingale f = (f,,) is defined
n>0
by M f = sup|f.| A weight u is a random variable with « > 0 and E(u) < oo. In this paper,
n>0

for p > 1, a martingale f = (fn)n>0 € LP(w) is meant as f, = E(f | F), [ € LP(w).
As well known, in regular martingale spaces, M. Izumisawa and N. Kazamaki [5] character-

ized the inequality
1 1
([ uryon)” <c( [ 1rvan)”.
Q Q

where p > 1 and v is a weight. Comparing with [5], it was found that the regularity is superfluous
(see [10] or [6]). In addition, some characterizations were obtained (see [11]) for the inequalities

N1 > i < o [ 1) 7= e )

and
([epman)® <c( [ irun)’. 1= e .

where 1 < p < ¢ < 0o and (u,v) is a pair of weights. In [9] and [8], interpolation theorems for
the weighted Hardy martingale spaces were also discussed.

In this paper, we discuss some weighted inequalities in martingale setting. In Section 2, we
deal with the generalized maximal operator M associated with Carleson measures. To get our
result, we adopt a direct method instead of Marcinkiewicz’s interpolation method. In Section
3, we consider the boundedness of maximal operator by the tailed maximal operator. In fact,
Theorem 3.1 shows that some assumptions in [2] are superfluous. The rest of Section 1 consists
of the preliminaries for the whole paper.

In [10] and [7], Carleson measure was discussed by using martingale theory. Recall that a
nonnegative measure ji on € x N is said to be a Carleson measure, if

su%)_|{7 < oo}\;1|{7 < oo}|s < o0, (1.1)
TE

where
{r <00} ={(w,k): (w,k) e QxN, k>7(w)}
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and 7 is the set of all stopping times with respect to (F,),>0. Let

MP f(w)= sup |fm(w)], V(w,n)eQxN.

n>m>0

It is clear that M() £() is a measurable function on Q x N for every martingale f, and it is said
to be f’s generalized maximal function and denoted by M f.

Fix A > 0, and let 7 = inf{n : |f,| > A\}. Then {r < oo} = {Mf > A}. Throughout this
paper, we always suppose that |B x N|; =0, if |B|, = 0.

In addition, Chang [2] introduced the tailed maximal operator. For n € N, let

"My f = sup [fm| (or *f, = sup [fml)-

m>n m>

*M,f (or *f,) is said to be the n-th tailed maximal operator.

2 The Generalized Maximal Operator

The?rem 2.1 Given p and q with 1 < p < ¢ < oo and a weight v on §, suppose that
o=v" 71 € LY(u) and i is a nonnegative measure on Q x N. Then the following statements
are equivalent:

(1) There ezists a positive constant Cy such that

([ Mioxprewan)’ <c([  odn)’ wreT: (21)
{r<oco} {r<oo}
(2) There exists a positive constant Co such that
([ ommpan)” <o [ipean)”s w7 =) € ) (22)
QxN Q

Proof Note that {T/<\oo} C Q x N, and then the necessity of inequality (2.1) follows
immediately if we substitute f = ox ;<) into (2.2).

To show (1) = (2). Fix f € LP(v). For each n € N, k € Z and j € Z, define 7™ = inf{m <
n: |fm| > 2%}, and set

AECZ) = {T;g”) <oo}lN {2j < E(o | ]:Tlin)) < 2j+1}7
B,(C"j) = {Tlgn) < oo,Tlgi)l =o0}N {Qj < E(o | }-T;i")) < 2j+1}.
Trivially, A,(g%} € F (m), B,i"} C Afjj? and {Tk") < 00} = {M™f > 25}, Obviously, for each
) Tk N s

n €N, {B,in])}kj is a family of disjoint sets and

{25 < MM f < 251} = {70 < 00, 7™ = o0} = | | B,
JEZ

Let E(- | ]:T;E")) be the expectation with respect to (2, ]:T,E")’ %du), we have

fom = B(f | F ) = E(fo™" | Fo)E(0 | F ).
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It follows that

oka < eSSinf|f (n) |q
A("? Tk
k,j

< essinf B(|flo" | F_ny)?esssup E(o | F, (n))
Al k AL

< essinf B(|flo" | F, )| BL) x {n}];" / E(o | F.on)1df,
Al B{™ x{n} k

kJ

provided |B,(€n]) x {n}|z # 0.
We now estimate [, (M f)4dfi as follows:

(Mf)edf = Z/ﬂ (M fyidz

QxN nen Y 2x{n}

/ (M™ fyadg
nen 2R <M f<ok+1}x {n}
keZ

<29

neN
kEZ

— 94 E :/ 2kqdﬁ
kg x{n}
neN

kEZ
JEL

<473 essint B(|flo~! | F )1 / E(o | F.)1df.
oA 0 b ximy ’“
kEZ
JEZ

/ okadpn
{2k <M f<ok+1}x {n}

It is clear that
k)= [ B | F)da
B x{n} k

is a measure on X = N x Z x Z. For the above f € LP(v), define
Tf(n. k. §) = essinf B(|flo™" | F, )",
AL g
and denote

B = {(k,j) : essinf E(|flo™" | F )" > A},
A n k

k,j

Gg\n) = U Ak 70
(k)])eE/\

r=inf{m: E(|f|lo™" | Fm) > )\%} for each A > 0.

Note that T,En) <non A,(C"J) . Then

E(O’XG(m | .FT(yl))XA(n) < M(n)(UXG<71))XA<71).
By k kg A k.j
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Thus

==Y Y [ Be|Fma

(71
"EN(k,j)EEYL) B, ><{n}

=2 2

B
neN (g jye g™ ;3 in}

IS

neN (k, j)eE(n)

<Z/U ) (0x o))"

neN X{n}

E(UXG;”) | ]:ﬂin) )qdﬁ

(MM (o ym)) i
B(")X{ 1 G\

When (k,j) € Eg\n), we observe that

1
a n < 1 n n
ATX 4 E(|flo~ | F )X 4

=E(fle™" | F, (n))XA<n>X{ <y

n

(Z E(lﬂg_l | fi)X{T’En):i})XAI(;L]).

=0

Then )
1 pe —1 .
)\qx{rlgn):i}XAgf; < E(|f|0’ | fi)x{‘r,in):i}XAgf;’ 0<7<mn,

which implies
T(w)<n, we Akj, a.e..

Consequently
[CZERITED DY BN IRT
neN . ><{n}
X [ OO )0
neN ! xdn }
= Z/( ; UX{T<00}))qdﬁ
neN Gy ><{n}
< [ (Mloxreo))d
{r<oo}
It follows from (2.1) that
*Wf>”WSC“AT fm@P—CW#<wH§= CEHI(|flo™)" > A}é.
T<00

where M\() = sup E(- | F»). Therefore
n>0

[ mppa<s [ rrao =10 [7 i > 2yjoan
OxN X 0
2l+1

—a30 [T > Alodn

IEZ
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<41y TS > 2y

< 402 2 [{(VE(flo ) > 2} }

SW#ZX I flo~ ) > 2,3

<4q0q(§2”|{ (Fle~ 7 > 251,)°
:4q(25251)30f(§<2 (T o) > 251,)”
<o) e (Z/ (7o~ > AYotr)

<a( 2 er( [T uarse > a)’
—4q(252:)3’0( | @tsie ypadn)?, 03

where we have used p < q.
For p > 1, in virtue of Doob’s inequality, we have

/QxN(Mf)qdﬁS (4p’)q(2§25_ 1)205(/9(|f|p0p)0du)2
:(4p/)q( ;5 )ch(/st'pvdu)Z. (2.4)

Whence (2.2) is valid with Cy = 4p’ ( 2

<

)Py

-1

Corollary 2.1 Given p, 1 < p < oo, suppose that v = 1 and [i is a nonnegative measure
on Q x N. Then the following statements are equivalent:
(1) There exists a positive constant Cy such that

/{ MOt PARS Ol < ) Ve T (2.5)
T<00

(2) There exists a positive constant Co such that

([ pran)” <ca( [ 1sran)”, = ne (2.6)
QxN Q
Obviously, Corollary 2.1 is a special case of Theorem 2.1. Since

we have that (2.5) is (1.1), that is, i is a Carleson measure on 2 x N.

The({rem 2.2 Given p and q with 1 < p < q < oo and a weight v on ), suppose that
o=v"71 € LY(u) and i is a nonnegative measure on Q x N. Then the following statements
are equivalent:
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(1) There exists a positive constant Cs such that
1 1
([ 1lam)" <ca( [ 1rPodu)’. = () € 7o), TET:
{r<oo} Q
(2) There exists a positive constant Cy such that

([ o)’ <ci( |

{T<o0}

od,u)%, VreT;

T<oo}

(3) There exists a positive constant Cs such that

AMS > M < Co( [ 1fP0dn) = (1) € D7), A> 0.

Proof We shall follow the scheme: (2) < (1) < (3).
(1) = (2) Substituting f = ox{r<o0} into (2.7), we have (2.8).

787

(2.7)

(2.8)

(2.9)

(2) = (1) If 7 = n for some n € N, we shall show that (2.7) is valid. Fix f € LP(v). For

each k € Z and j € Z, let
Bij={2" <|fal <20 {2 < B(o | ) <2741

Then By, j € F,,. Moreover, { By, ;}1,; is a family of disjoint sets and

k k
{28 < |ful <2¢41) = | By
JEZL

It is easy to check that

2k < e%sinf|fn|q < e]sgsinfﬁ(mcf1 | Fr)?esssup E(o | Fp)?
k,j k,j

k.J

<29 e%sinfﬁ(ma_l | F)Y|Br,; x {m :m > n}|§1/ E(o | Fn)dp,
ki

By, j x{m:m>n}

provided |B,(:J) x{m:m >n}|z #0.
We now estimate f{@} | fr]9dfi. Note that

It [ fra<e > f 2447
Qx{m:m>n} B

{T<o0} kez, jez” B x{m:m>n}

<47 3 essintB(|flo! |]-'n)q/ Eo | Fo)odf.
keZ. jEL B, ; By, j x{m:m>n}

It is obvious that
(k) = [ E(o | F)'di
By, j x{m:m>n}

is a measure on X = Z2.
For the above f € LP(v), define

Tf(k,j) = essinf E(|flo ™ | F)"
kyj



788 W. Chen and P. D. Liu

and denote

Eyx ={(k,j): ejs}sinfE(|f|a_1 | Fo)? > A} and Gy = U By; for each A > 0.
g .
’ (k,j)€EX

Trivially, By ; x {m :m >n} = {Tk7<\00}, where 7. j = nxp, ; + °X{a\B,_,}- Thus

== Y o= [ o
B {7k, j<o0}

(ko) €y 7 By {miman} (k) EEA

It follows from (2.8) that

a
P
o

{Tf>Mo<CP > |Biylé < CZ( > Bk

(k,j)EEA (k,j)EEA

= CY|GAlE < CI{(M(flo=1))P > A2

ya
q

As we have done in Theorem 2.1, (2.7) is valid with Cs = 4p' (- )%04.
24 -1
If 7 € T is arbitrary, we shall show that (2.7) is still valid. Fix 7 € T, and let

Br={r=k} and 7=k keN.

Using p < ¢, we obtain that

fldii= / ]9 = / s, |7
{r<o0} k:eZN B x{m:m>k} k:eZN Qx{m:m>k}
=3 [ Bl Fon < s S ( [ 1)’
ken Y {7k <oo} keN

<cy( [ 1nvan)’
Q
(1) = (3) Fix f € LP(v) and A > 0. Let 7 = inf{n : |f,| > A}. It follows from (2.7) that

MM > < [

{r<oo}

ot < 3 [ Irpean)’
Thus (2.9) holds with C3 = Cs.

(3) = (1) It suffices to prove that (2.7) holds for 7 = n, for every n € N. Fix n € N. For
B e F,, let g = fxp. Trivially, |gn| = | falx5. Thus

{Iful > 23N B) x {m:m >n} C{Mg> A}

In virtue of (2.9), we have

aq a
v [ apsx [ an<cr( [lloan)” < ca( [ i)
{Ifnl>A3NB)x{m:m>n} {Mg>A} Q B
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Thus

il [ fulidR
{T<o0} Qx{m:m>n}

| ful?dp

keZ /{2k<|fn |[<2k+1}x {mm>n}

<20 22@/ dp

keZ {2k <| fr| <2kt x {m:m>n}

203" gk / dji

keZ {Ifnl>2F3n{2% <| fn|<26F1}) x {m:m>n}

<zery (| fPvdp)”
kze% {25 <] fu] <2441}

<wci(Y /{ o 1)

kEZ

<2y ( [ |frodu)”.
Q
which implies (2.7) with C5 = 2C5.

3 The Maximal Operator

Theorem 3.1 Given p, 1 < p < oo and a pair of weights (u,v), suppose that o = v €
L'(u). Then the following statements are equivalent:
(1) There exists a positive constant Cy such that

/ (M(0X {r<oo}))Pudp < Cl/ odu, V1 eT; (3.1)
{r<oo} {r<oo}

(2) There exists a positive constant Cy such that
E(*cbu | F,) < Cy0n, YneN; (3.2)
(3) There exists a positive constant Cs such that
/(Mf)pudu < Cg/ |f|Podp, Yf=(fn) € LP(v). (3.3)
Q Q

Proof We shall follow the scheme: (1) = (2) = (3) = (1).
(1) = (2) For B € Fp, let 7 =nxp + ooxqa\n}- Then

*U7LXB = *Mn(O'XB)XB = *Mn(GX{T<oo})XB < M(O-X{T<OO})'

Following (3.1), we have
/ E(obu | Fp)du = / *oPudp = / *oP xpudu
B B B

< / (M0 r<o0))Pudp
{r<oco}

< Cl/ Ud,u:C'l/ odp.
{r<oo} B
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Noting that B is arbitrary, we obtain (3.2) with Cy = C.
(2) = (3) Trivially, (3.2) implies

E(("Mro)Pu | Fr)X{r<oo} < Co0rX{r<oey TforallTeT. (3.4)
Fix f € LP(v). For k € Z, define stopping times 7, = inf{n : |f,| > 2¥}. Set

Apj={m <oc}nN{2! < E(o | F,,) < 2T}

By = {mk < 00, Tkp1 = 00} N {27 < B(o | Fr,) < 27T

Then Ay ; € Fr,, B; C Ag j. Moreover, { By ;}1,; is a family of disjoint sets and

{2F < Mf < 2" = {7 < 00, Tpy1 = 00} = U By ;.
jez
Obviously, we have
Fro = E(f| Fr) = E(fo™" | Fr)E(o | Fr)

and

2k < eisinf|ffk|p < eisinfﬁ(|f|cf*1 | Fr, )P esssup E(o | Fr, )P
ko kg

k.J

< 2essint B(|flo" | Fo Bl [ Elo] Fo)udp,
k,j Bk,j

provided |By, | # 0.
To estimate [, (M f)Pudy, firstly we have

[oesruan=3" [ (M f)Pudy
Q ren (2R <M p<okt1y
<2P / 2kPydp = 2P Z / 2Pudp
kez /{2F<Mf<2rt1} kez,jez” Br.i
<4 essinfE(fot | Fr, )P / E(o | Fr, )Pudp.
Ak,j By .
kEZ k,j
jeL.

It is obvious that
I(k,j) = / E(0 | Fr)Pudp
Br.j
is a measure on X = Z?. For the above f € LP(v), we define
Tf(k.j) = essind E(|flo™" | Fr,)"
and denote
Ex = {(k,j): est‘ski,rjle(|f|a*1 | Fo)? > AL,

Gy = U Ar 4,

(k.j)EEA

r=inf{m: E(|flo"" | Fn) > A%} for each A > 0.
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When (k,j) € Ex, we observe that Tx(r, <oo} < ThX{r,<oc}- Lhus
HTf> M= ) E(o | Fr.)Pudp
(k.g)EEy ¥ Bri

= Z E(oxa, | Fr,)Pudp
(koj)EEy 7 Brod

< [ CM.(oxe)Pud (3.5)
Gx
It follows from G C {7 < oo} and (3.4) that

TS > Mo <Ca [ odu =Cal{(B(Slo™ )P > Mo

{T<oc0}

Therefore

/(Mf)pudu < 4P Z eisinfE(ma_l | ka)p/ E(o | Fr)Pudp
Q Bu,;

kezjez 7
= 41’/ TfdY = 4?02/ ITf > Agd\
X 0
= 4p02/ (M (| flo™1)” > ModX = 4PC, / (M(|flo~Y))Podu
0 Q
< (4p")PCy / (Ifloe™HPodu = (4p')PCs / |flPo'Pdp
Q Q
= (4p)Cy / |FPodp,
Q
which is (3.3) with C5 = (4p")PCs.

(3) = (1) It is trivial.
The proof is completed.

Theorem 3.2 Given p and q with 1 < p < ¢ < 0o and a pair of weights (u,v), suppose
c=vTFT € L'(u). Then the following statements are equivalent:
(1) There exists a positive constant Cy such that

(/{T<DQ}(M<UX{T<00}))qudM); < Cl(/ Udu)%, VreT, (3.6)

{r<0}

(2) There exists a positive constant Cy such that

(/ (*MT(UX{T<OO}))quH) ‘ < 02(/ O’d‘LL) Ea VT € T; (37)
{r<oo} {r<oo}
(3) There exists a positive constant Cs such that
( / (M f)tudu) " < Cs( / Pudu)”, VS = (fa) € LP(0). (3.8)
Q Q

Proof It is easy to check that (1) = (2) and (3) = (1) and we omit them.
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For (2) = (3), we proceed like in the proof of Theorem 3.1 just up to (3.5) with slight
modifications. After this we continue as follows:

{TF > MY < / ("M (oxg,))Pudy

G

< / (*MT(UX{T<OO}))pud,u
{T<o0}

SCS( crd;L)5 = CJ|{r < o0}|2.
{r<oco}

In the same way as (2.3) and (2.4), we have

Jounman<ar [ wra0 < @iy (2= s [ o).

Q X 29 —1 Q

which implies (3.8) with Cy = 4p/ (—2*—)
29 —1

=

Cs.
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