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Abstract The generalized maximal operator M in martingale spaces is considered. For
1 < p ≤ q < ∞, the authors give a necessary and sufficient condition on the pair (µ̂, v)
for M to be a bounded operator from martingale space Lp(v) into Lq(µ̂) or weak-Lq(µ̂),
where µ̂ is a measure on Ω×N and v a weight on Ω. Moreover, the similar inequalities for
usual maximal operator are discussed.
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1 Introduction

Let Rn be the n-dimensional real Euclidean space and f a real valued measurable function.
The classical Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
x∈Q

1

|Q|

∫
Q

|f(y)|dy,

where Q runs over the class of non-degenerate cubes with sides parallel to the coordinate axes
and |Q| is the Lebesgue measure of Q. The generalized maximal operator M is defined by

Mf(x, t) = sup
Q

1

|Q|

∫
Q

|f(y)|dy,

where the supremum is taken over the cubes Q in Rn, containing x and having side length at

least t.

Let u, v be two weights, i.e., positive measurable functions. As well known, for p > 1, B.
Muckenhoupt [12] showed that the inequality∫

Rn

(Mf(x))pv(x)dx ≤ C

∫
Rn

|f(x)|pv(x)dx, λ > 0, f ∈ Lp(v)

holds if and only if v satisfies

sup
Q

( 1

|Q|

∫
Q

v(x)dx
)( 1

|Q|

∫
Q

v(x)−
1

p−1 dx
)p−1

< ∞.
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On the other hand, E. T. Sawyer [15] obtained a characterization for the weak-type inequality

λ|{Mf > λ}|
1
q
u ≤ C

(∫
Rn

|f(x)|pv(x)dx
) 1

p

, f ∈ Lp(v).

Also, when 1 < p ≤ q < ∞, a necessary and sufficient condition was established in order that

the weighted inequality(∫
Rn

(Mf(x))qu(x)dx
) 1

q ≤ C
(∫

Rn

|f(x)|pv(x)dx
) 1

p

, f ∈ Lp(v)

hold (see [3, 16]).

Moreover, let µ̂ be a measure on Rn+1
+ and v a weight on Rn. For p > 1, a characterization of

those pairs (µ̂, v) was found in [13] for which the generalized maximal operator M is bounded
from Lp(Rn, v) into weak-Lp(Rn+1

+ , µ̂), and a characterization of those pairs (µ̂, v) was given in

[14] for which M is bounded from Lp(Rn, v) into Lp(Rn+1
+ , µ̂). In [1] and [4], the analogues of

the above results have been developed in spaces of (non-)homogeneous type.

Now let (Ω,F , µ) be a complete probability space and (Fn)n≥0 an increasing sequence of
sub-σ-fields of F with F =

∨
n≥0

Fn. The maximal operator M for martingale f = (fn) is defined

by Mf = sup
n≥0

|fn|. A weight u is a random variable with u > 0 and E(u) < ∞. In this paper,

for p ≥ 1, a martingale f = (fn)n≥0 ∈ Lp(ω) is meant as fn = E(f | Fn), f ∈ Lp(ω).

As well known, in regular martingale spaces, M. Izumisawa and N. Kazamaki [5] character-
ized the inequality (∫

Ω

(Mf)pvdµ
) 1

p ≤ C
(∫

Ω

|f |pvdµ
) 1

p

,

where p > 1 and v is a weight. Comparing with [5], it was found that the regularity is superfluous
(see [10] or [6]). In addition, some characterizations were obtained (see [11]) for the inequalities

λ|{Mf > λ}|
1
q
u ≤ C

(∫
Ω

|f |pvdµ
) 1

p

, f = (fn) ∈ Lp(v)

and (∫
Ω

(Mf)qudµ
) 1

q ≤ C
(∫

Ω

|f |pvdµ
) 1

p

, f = (fn) ∈ Lp(v),

where 1 < p ≤ q < ∞ and (u, v) is a pair of weights. In [9] and [8], interpolation theorems for
the weighted Hardy martingale spaces were also discussed.

In this paper, we discuss some weighted inequalities in martingale setting. In Section 2, we
deal with the generalized maximal operator M associated with Carleson measures. To get our
result, we adopt a direct method instead of Marcinkiewicz’s interpolation method. In Section

3, we consider the boundedness of maximal operator by the tailed maximal operator. In fact,
Theorem 3.1 shows that some assumptions in [2] are superfluous. The rest of Section 1 consists
of the preliminaries for the whole paper.

In [10] and [7], Carleson measure was discussed by using martingale theory. Recall that a
nonnegative measure µ̂ on Ω× N is said to be a Carleson measure, if

sup
τ∈T

|{τ < ∞}|−1
µ | ̂{τ < ∞}|µ̂ < ∞, (1.1)

where
̂{τ < ∞} = {(ω, k) : (ω, k) ∈ Ω× N, k ≥ τ(ω)}
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and T is the set of all stopping times with respect to (Fn)n≥0. Let

M(n)f(ω) = sup
n≥m≥0

|fm(ω)|, ∀(ω, n) ∈ Ω× N.

It is clear that M(·)f(·) is a measurable function on Ω×N for every martingale f, and it is said

to be f ’s generalized maximal function and denoted by Mf.

Fix λ > 0, and let τ = inf{n : |fn| > λ}. Then ̂{τ < ∞} = {Mf > λ}. Throughout this

paper, we always suppose that |B × N|µ̂ = 0, if |B|µ = 0.

In addition, Chang [2] introduced the tailed maximal operator. For n ∈ N, let

∗Mnf = sup
m≥n

|fm| (or ∗fn = sup
m≥n

|fm|).

∗Mnf (or ∗fn) is said to be the n-th tailed maximal operator.

2 The Generalized Maximal Operator

Theorem 2.1 Given p and q with 1 < p ≤ q < ∞ and a weight v on Ω, suppose that
σ = v−

1
p−1 ∈ L1(µ) and µ̂ is a nonnegative measure on Ω× N. Then the following statements

are equivalent:

(1) There exists a positive constant C1 such that(∫
̂{τ<∞}

(M(σχ{τ<∞}))
qdµ̂

) 1
q ≤ C1

(∫
{τ<∞}

σdµ
) 1

p

, ∀τ ∈ T ; (2.1)

(2) There exists a positive constant C2 such that(∫
Ω×N

(Mf)qdµ̂
) 1

q ≤ C2

(∫
Ω

|f |pvdµ
) 1

p

, ∀f = (fn) ∈ Lp(v). (2.2)

Proof Note that ̂{τ < ∞} ⊂ Ω × N, and then the necessity of inequality (2.1) follows

immediately if we substitute f = σχ{τ<∞} into (2.2).

To show (1) ⇒ (2). Fix f ∈ Lp(v). For each n ∈ N, k ∈ Z and j ∈ Z, define τ
(n)
k = inf{m ≤

n : |fm| > 2k}, and set

A
(n)
k,j = {τ (n)k < ∞} ∩ {2j < E(σ | F

τ
(n)
k

) ≤ 2j+1},

B
(n)
k,j = {τ (n)k < ∞, τ

(n)
k+1 = ∞} ∩ {2j < E(σ | F

τ
(n)
k

) ≤ 2j+1}.

Trivially, A
(n)
k,j ∈ F

τ
(n)
k

, B
(n)
k,j ⊆ A

(n)
k,j and {τ (n)k < ∞} = {M(n)f > 2k}. Obviously, for each

n ∈ N, {B(n)
k,j }k,j is a family of disjoint sets and

{2k < M(n)f ≤ 2k+1} = {τ (n)k < ∞, τ
(n)
k+1 = ∞} =

∪
j∈Z

B
(n)
k,j .

Let Ê(· | F
τ
(n)
k

) be the expectation with respect to
(
Ω,F

τ
(n)
k

, σ
E(σ)dµ

)
, we have

f
τ
(n)
k

= E(f | F
τ
(n)
k

) = Ê(fσ−1 | F
τ
(n)
k

)E(σ | F
τ
(n)
k

).
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It follows that

2kq ≤ essinf
A

(n)
k,j

|f
τ
(n)
k

|q

≤ essinf
A

(n)
k,j

Ê(|f |σ−1 | F
τ
(n)
k

)q esssup
A

(n)
k,j

E(σ | F
τ
(n)
k

)q

≤ 2q essinf
A

(n)
k,j

Ê(|f |σ−1 | F
τ
(n)
k

)q|B(n)
k,j × {n}|−1

µ̂

∫
B

(n)
k,j ×{n}

E(σ | F
τ
(n)
k

)qdµ̂,

provided |B(n)
k,j × {n}|µ̂ ̸= 0.

We now estimate
∫
Ω×N(Mf)qdµ̂ as follows:∫

Ω×N
(Mf)qdµ̂ =

∑
n∈N

∫
Ω×{n}

(M(n)f)qdµ̂

=
∑
n∈N
k∈Z

∫
{2k<M(n)f≤2k+1}×{n}

(M(n)f)qdµ̂

≤ 2q
∑
n∈N
k∈Z

∫
{2k<M(n)f≤2k+1}×{n}

2kqdµ̂

= 2q
∑
n∈N
k∈Z
j∈Z

∫
B

(n)
k,j ×{n}

2kqdµ̂

≤ 4q
∑
n∈N
k∈Z
j∈Z

essinf
A

(n)
k,j

Ê(|f |σ−1 | F
τ
(n)
k

)q
∫
B

(n)
k,j ×{n}

E(σ | F
τ
(n)
k

)qdµ̂.

It is clear that

ϑ(n, k, j) =

∫
B

(n)
k,j ×{n}

E(σ | F
τ
(n)
k

)qdµ̂

is a measure on X = N× Z× Z. For the above f ∈ Lp(v), define

Tf(n, k, j) = essinf
A

(n)
k,j

Ê(|f |σ−1 | F
τ
(n)
k

)q,

and denote

E
(n)
λ = {(k, j) : essinf

A
(n)
k,j

Ê(|f |σ−1 | F
τ
(n)
k

)q > λ},

G
(n)
λ =

∪
(k,j)∈Eλ

A
(n)
k,j ,

τ = inf{m : Ê(|f |σ−1 | Fm) > λ
1
q } for each λ > 0.

Note that τ
(n)
k ≤ n on A

(n)
k,j . Then

E(σχ
G

(n)
λ

| F
τ
(n)
k

)χ
A

(n)
k,j

≤ M(n)(σχ
G

(n)
λ

)χ
A

(n)
k,j

.
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Thus

|{Tf > λ}|ϑ =
∑
n∈N

∑
(k,j)∈E

(n)
λ

∫
B

(n)
k,j ×{n}

E(σ | F
τ
(n)
k

)qdµ̂

=
∑
n∈N

∑
(k,j)∈E

(n)
λ

∫
B

(n)
k,j ×{n}

E(σχ
G

(n)
λ

| F
τ
(n)
k

)qdµ̂

≤
∑
n∈N

∑
(k,j)∈E

(n)
λ

∫
B

(n)
k,j ×{n}

(M(n)(σχ
G

(n)
λ

))qdµ̂

≤
∑
n∈N

∫
G

(n)
λ ×{n}

(M(n)(σχ
G

(n)
λ

))qdµ̂.

When (k, j) ∈ E
(n)
λ , we observe that

λ
1
q χ

A
(n)
k,j

≤ Ê(|f |σ−1 | F
τ
(n)
k

)χ
A

(n)
k,j

= Ê(|f |σ−1 | F
τ
(n)
k

)χ
A

(n)
k,j

χ{τ(n)
k ≤n}

=
( n∑

i=0

Ê(|f |σ−1 | Fi)χ{τ(n)
k =i}

)
χ
A

(n)
k,j

.

Then
λ

1
q χ{τ(n)

k =i}χA
(n)
k,j

≤ Ê(|f |σ−1 | Fi)χ{τ(n)
k =i}χA

(n)
k,j

, 0 ≤ i ≤ n,

which implies

τ(ω) ≤ n, ω ∈ A
(n)
k,j , a.e..

Consequently

|{Tf > λ}|ϑ ≤
∑
n∈N

∫
G

(n)
λ ×{n}

(M(n)(σχ
G

(n)
λ

))qdµ̂

≤
∑
n∈N

∫
G

(n)
λ ×{n}

(M(n)(σχ{τ<∞}))
qdµ̂

=
∑
n∈N

∫
G

(n)
λ ×{n}

(M(σχ{τ<∞}))
qdµ̂

≤
∫

̂{τ<∞}
(M(σχ{τ<∞}))

qdµ̂.

It follows from (2.1) that

|{Tf > λ}|ϑ ≤ Cq
1

(∫
{τ<∞}

σdµ
) q

p

= Cq
1 |{τ < ∞}|

q
p
σ = Cq

1 |{(M̂(|f |σ−1))q > λ}|
q
p
σ ,

where M̂(·) = sup
n≥0

Ê( · | Fn). Therefore

∫
Ω×N

(Mf)qdµ̂ ≤ 4q
∫
X

Tfdϑ = 4q
∫ ∞

0

|{Tf > λ}|ϑdλ

= 4q
∑
l∈Z

∫ 2l+1

2l
|{Tf > λ}|ϑdλ
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≤ 4q
∑
l∈Z

2l|{Tf > 2l}|ϑ

≤ 4qCq
1

∑
l∈Z

2l|{(M̂(|f |σ−1))q > 2l}|
q
p
σ

≤ 4qCq
1

∑
l∈Z

(2
p
q ·l|{(M̂(|f |σ−1))p > 2

p
q ·l}|σ)

q
p

≤ 4qCq
1

(∑
l∈Z

2
p
q ·l|{(M̂(|f |σ−1))p > 2

p
q ·l}|σ

) q
p

= 4q
( 2

p
q

2
p
q − 1

) q
p

Cq
1

(∑
l∈Z

(2
p
q ·l − 2

p
q (l−1))|{(M̂(|f |σ−1))p > 2

p
q ·l}|σ

) q
p

≤ 4q
( 2

p
q

2
p
q − 1

) q
p

Cq
1

(∑
l∈Z

∫ 2
p
q
·l

2
p
q
(l−1)

|{(M̂(|f |σ−1))p > λ}|σdλ
) q

p

≤ 4q
( 2

p
q

2
p
q − 1

) q
p

Cq
1

(∫ ∞

0

|{(M̂(|f |σ−1))p > λ}|σdλ
) q

p

= 4q
( 2

p
q

2
p
q − 1

) q
p

Cq
1

(∫
Ω

(M̂(|f |σ−1))pσdµ
) q

p

, (2.3)

where we have used p ≤ q.
For p > 1, in virtue of Doob’s inequality, we have∫

Ω×N
(Mf)qdµ̂ ≤ (4p′)q

( 2
p
q

2
p
q − 1

) q
p

Cq
1

(∫
Ω

(|f |pσ−p)σdµ
) q

p

= (4p′)q
( 2

p
q

2
p
q − 1

) q
p

Cq
1

(∫
Ω

|f |pvdµ
) q

p

. (2.4)

Whence (2.2) is valid with C2 = 4p′
(

2
p
q

2
p
q −1

) 1
pC1.

Corollary 2.1 Given p, 1 < p < ∞, suppose that v ≡ 1 and µ̂ is a nonnegative measure
on Ω× N. Then the following statements are equivalent:

(1) There exists a positive constant C1 such that∫
̂{τ<∞}

(M(χ{τ<∞}))
pdµ̂ ≤ Cp

1 |{τ < ∞}|µ, ∀τ ∈ T ; (2.5)

(2) There exists a positive constant C2 such that(∫
Ω×N

(Mf)pdµ̂
) 1

p ≤ C2

(∫
Ω

|f |pdµ
) 1

p

, ∀f = (fn) ∈ Lp. (2.6)

Obviously, Corollary 2.1 is a special case of Theorem 2.1. Since

M(χ{τ<∞})χ ̂{τ<∞} = χ ̂{τ<∞},

we have that (2.5) is (1.1), that is, µ̂ is a Carleson measure on Ω× N.

Theorem 2.2 Given p and q with 1 < p ≤ q < ∞ and a weight v on Ω, suppose that
σ = v−

1
p−1 ∈ L1(µ) and µ̂ is a nonnegative measure on Ω× N. Then the following statements

are equivalent:
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(1) There exists a positive constant C3 such that(∫
̂{τ<∞}

|fτ |qdµ̂
) 1

q ≤ C3

(∫
Ω

|f |pvdµ
) 1

p

, ∀f = (fn) ∈ Lp(v), τ ∈ T ; (2.7)

(2) There exists a positive constant C4 such that(∫
̂{τ<∞}

σq
τdµ̂

) 1
q ≤ C4

(∫
{τ<∞}

σdµ
) 1

p

, ∀τ ∈ T ; (2.8)

(3) There exists a positive constant C5 such that

λ|{Mf > λ}|
1
q

µ̂ ≤ C5

(∫
Ω

|f |pvdµ
) 1

p

, ∀f = (fn) ∈ Lp(v), λ > 0. (2.9)

Proof We shall follow the scheme: (2) ⇔ (1) ⇔ (3).

(1) ⇒ (2) Substituting f = σχ{τ<∞} into (2.7), we have (2.8).

(2) ⇒ (1) If τ ≡ n for some n ∈ N, we shall show that (2.7) is valid. Fix f ∈ Lp(v). For
each k ∈ Z and j ∈ Z, let

Bk,j = {2k < |fn| ≤ 2k+1} ∩ {2j < E(σ | Fn) ≤ 2j+1}.

Then Bk,j ∈ Fn. Moreover, {Bk,j}k,j is a family of disjoint sets and

{2k < |fn| ≤ 2k+1} =
∪
j∈Z

Bk,j .

It is easy to check that

2kq ≤ essinf
Bk,j

|fn|q ≤ essinf
Bk,j

Ê(|f |σ−1 | Fn)
q esssup

Bk,j

E(σ | Fn)
q

≤ 2q essinf
Bk,j

Ê(|f |σ−1 | Fn)
q|Bk,j × {m : m ≥ n}|−1

µ̂

∫
Bk,j×{m:m≥n}

E(σ | Fn)
qdµ̂,

provided |B(n)
k,j × {m : m ≥ n}|µ̂ ̸= 0.

We now estimate
∫

̂{τ<∞} |fτ |
qdµ̂. Note that∫

̂{τ<∞}
|fτ |qdµ̂ =

∫
Ω×{m:m≥n}

|fn|qdµ̂ ≤ 2q
∑

k∈Z, j∈Z

∫
Bk,j×{m:m≥n}

2kqdµ̂

≤ 4q
∑

k∈Z, j∈Z

essinf
Bk,j

Ê(|f |σ−1 | Fn)
q

∫
Bk,j×{m:m≥n}

E(σ | Fn)
qdµ̂.

It is obvious that

ϑ(k, j) =

∫
Bk,j×{m:m≥n}

E(σ | Fn)
qdµ̂

is a measure on X = Z2.

For the above f ∈ Lp(v), define

Tf(k, j) = essinf
Bk,j

Ê(|f |σ−1 | Fn)
q
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and denote

Eλ = {(k, j) : essinf
Bk,j

Ê(|f |σ−1 | Fn)
q > λ} and Gλ =

∪
(k,j)∈Eλ

Bk,j for each λ > 0.

Trivially, Bk,j × {m : m ≥ n} = ̂{τk,j < ∞}, where τk,j = nχBk,j
+∞χ{Ω\Bk,j}. Thus

|{Tf > λ}|ϑ =
∑

(k,j)∈Eλ

∫
Bk,j×{m:m≥n}

σq
ndµ̂ =

∑
(k,j)∈Eλ

∫
̂{τk,j<∞}

σq
ndµ̂.

It follows from (2.8) that

|{Tf > λ}|ϑ ≤ Cq
4

∑
(k,j)∈Eλ

|Bk,j |
q
p
σ ≤ Cq

4

( ∑
(k,j)∈Eλ

|Bk,j |σ
) q

p

= Cq
4 |Gλ|

q
p
σ ≤ Cq

4 |{(M̂(|f |σ−1))p > λ}|
q
p
σ .

As we have done in Theorem 2.1, (2.7) is valid with C3 = 4p′
(

2
p
q

2
p
q −1

) 1
pC4.

If τ ∈ T is arbitrary, we shall show that (2.7) is still valid. Fix τ ∈ T , and let

Bk = {τ = k} and τk ≡ k, k ∈ N.

Using p ≤ q, we obtain that∫
̂{τ<∞}

|fτ |qdµ̂ =
∑
k∈N

∫
Bk×{m:m≥k}

|fk|qdµ̂ =
∑
k∈N

∫
Ω×{m:m≥k}

|fkχBk
|qdµ̂

=
∑
k∈N

∫
̂{τk<∞}

E(|fχBk
| | Fk)

qdµ̂ ≤ Cq
3

∑
k∈N

(∫
Ω

|fχBk
|pvdµ

) q
p

≤ Cq
3

(∫
Ω

|f |pvdµ
) q

p

.

(1) ⇒ (3) Fix f ∈ Lp(v) and λ > 0. Let τ = inf{n : |fn| > λ}. It follows from (2.7) that

λq|{Mf > λ}|µ̂ ≤
∫

̂{τ<∞}
|fτ |qdµ̂ ≤ Cq

3

(∫
Ω

|f |pvdµ
) q

p

.

Thus (2.9) holds with C3 = C5.

(3) ⇒ (1) It suffices to prove that (2.7) holds for τ ≡ n, for every n ∈ N. Fix n ∈ N . For
B ∈ Fn, let g = fχB. Trivially, |gn| = |fn|χB. Thus

({|fn| > λ} ∩B)× {m : m ≥ n} ⊂ {Mg > λ}.

In virtue of (2.9), we have

λq

∫
({|fn|>λ}∩B)×{m:m≥n}

dµ̂ ≤ λq

∫
{Mg>λ}

dµ̂ ≤ Cq
5

(∫
Ω

|g|pvdµ
) q

p ≤ Cq
5

(∫
B

|f |pvdµ
) q

p

.
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Thus ∫
̂{τ<∞}

|fτ |qdµ̂ =

∫
Ω×{m:m≥n}

|fn|qdµ̂

=
∑
k∈Z

∫
{2k<|fn|≤2k+1}×{m:m≥n}

|fn|qdµ̂

≤ 2q
∑
k∈Z

2kq
∫
{2k<|fn|≤2k+1}×{m:m≥n}

dµ̂

= 2q
∑
k∈Z

2kq
∫
({|fn|>2k}∩{2k<|fn|≤2k+1})×{m:m≥n}

dµ̂

≤ 2qCq
5

∑
k∈Z

(∫
{2k<|fn|≤2k+1}

|f |pvdµ
) q

p

≤ 2qCq
5

(∑
k∈Z

∫
{2k<|fn|≤2k+1}

|f |pvdµ
) q

p

≤ 2qCq
5

(∫
Ω

|f |pvdµ
) q

p

,

which implies (2.7) with C3 = 2C5.

3 The Maximal Operator

Theorem 3.1 Given p, 1 < p < ∞ and a pair of weights (u, v), suppose that σ = v−
1

p−1 ∈
L1(µ). Then the following statements are equivalent:

(1) There exists a positive constant C1 such that∫
{τ<∞}

(M(σχ{τ<∞}))
pudµ ≤ C1

∫
{τ<∞}

σdµ, ∀τ ∈ T ; (3.1)

(2) There exists a positive constant C2 such that

E(∗σp
nu | Fn) ≤ C2σn, ∀n ∈ N; (3.2)

(3) There exists a positive constant C3 such that∫
Ω

(Mf)pudµ ≤ C3

∫
Ω

|f |pvdµ, ∀f = (fn) ∈ Lp(v). (3.3)

Proof We shall follow the scheme: (1) ⇒ (2) ⇒ (3) ⇒ (1).
(1) ⇒ (2) For B ∈ Fn, let τ = nχB +∞χ{Ω\B}. Then

∗σnχB = ∗Mn(σχB)χB = ∗Mn(σχ{τ<∞})χB ≤ M(σχ{τ<∞}).

Following (3.1), we have∫
B

E(∗σp
nu | Fn)dµ =

∫
B

∗σp
nudµ =

∫
B

∗σp
nχBudµ

≤
∫
{τ<∞}

(M(σχ{τ<∞}))
pudµ

≤ C1

∫
{τ<∞}

σdµ = C1

∫
B

σdµ.
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Noting that B is arbitrary, we obtain (3.2) with C2 = C1.
(2) ⇒ (3) Trivially, (3.2) implies

E((∗Mτσ)
pu | Fτ )χ{τ<∞} ≤ C2στχ{τ<∞} for all τ ∈ T . (3.4)

Fix f ∈ Lp(v). For k ∈ Z, define stopping times τk = inf{n : |fn| > 2k}. Set

Ak,j = {τk < ∞} ∩ {2j < E(σ | Fτk) ≤ 2j+1},
Bk,j = {τk < ∞, τk+1 = ∞} ∩ {2j < E(σ | Fτk) ≤ 2j+1}.

Then Ak,j ∈ Fτk , Bk,j ⊆ Ak,j . Moreover, {Bk,j}k,j is a family of disjoint sets and

{2k < Mf ≤ 2k+1} = {τk < ∞, τk+1 = ∞} =
∪
j∈Z

Bk,j .

Obviously, we have

fτk = E(f | Fτk) = Ê(fσ−1 | Fτk)E(σ | Fτk)

and

2kp ≤ essinf
Ak,j

|fτk |p ≤ essinf
Ak,j

Ê(|f |σ−1 | Fτk)
p esssup

Ak,j

E(σ | Fτk)
p

≤ 2p essinf
Ak,j

Ê(|f |σ−1 | Fτk)
p|Bk,j |−1

u

∫
Bk,j

E(σ | Fτk)
pudµ,

provided |Bk,j |u ̸= 0.

To estimate
∫
Ω
(Mf)pudµ, firstly we have∫

Ω

(Mf)pudµ =
∑
k∈Z

∫
{2k<Mf≤2k+1}

(Mf)pudµ

≤ 2p
∑
k∈Z

∫
{2k<Mf≤2k+1}

2kpudµ = 2p
∑

k∈Z,j∈Z

∫
Bk,j

2kpudµ

≤ 4p
∑
k∈Z
j∈Z

essinf
Ak,j

Ê(fσ−1 | Fτk)
p

∫
Bk,j

E(σ | Fτk)
pudµ.

It is obvious that

ϑ(k, j) =

∫
Bk,j

E(σ | Fτk)
pudµ

is a measure on X = Z2. For the above f ∈ Lp(v), we define

Tf(k, j) = essinf
Ak,j

Ê(|f |σ−1 | Fτk)
p

and denote

Eλ = {(k, j) : essinf
Ak,j

Ê(|f |σ−1 | Fτk)
p > λ},

Gλ =
∪

(k,j)∈Eλ

Ak,j ,

τ = inf{m : Ê(|f |σ−1 | Fm) > λ
1
q } for each λ > 0.
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When (k, j) ∈ Eλ, we observe that τχ{τk<∞} ≤ τkχ{τk<∞}. Thus

|{Tf > λ}|ϑ =
∑

(k,j)∈Eλ

∫
Bk,j

E(σ | Fτk)
pudµ

=
∑

(k,j)∈Eλ

∫
Bk,j

E(σχGλ
| Fτk)

pudµ

≤
∫
Gλ

(∗Mτ (σχGλ
))pudµ. (3.5)

It follows from Gλ ⊆ {τ < ∞} and (3.4) that

|{Tf > λ}|ϑ ≤ C2

∫
{τ<∞}

σdµ = C2|{(M̂(|f |σ−1))p > λ}|σ.

Therefore∫
Ω

(Mf)pudµ ≤ 4p
∑

k∈Z,j∈Z

essinf
Ak,j

Ê(|f |σ−1 | Fτk)
p

∫
Bk,j

E(σ | Fτk)
pudµ

= 4p
∫
X

Tfdϑ = 4pC2

∫ ∞

0

|Tf > λ|ϑdλ

≤ 4pC2

∫ ∞

0

|(M̂(|f |σ−1))p > λ|σdλ = 4pC2

∫
Ω

(M̂(|f |σ−1))pσdµ

≤ (4p′)pC2

∫
Ω

(|f |σ−1)pσdµ = (4p′)pC2

∫
Ω

|f |pσ1−pdµ

= (4p′)pC2

∫
Ω

|f |pvdµ,

which is (3.3) with C3 = (4p′)pC2.

(3) ⇒ (1) It is trivial.

The proof is completed.

Theorem 3.2 Given p and q with 1 < p ≤ q < ∞ and a pair of weights (u, v), suppose

σ = v−
1

p−1 ∈ L1(µ). Then the following statements are equivalent:

(1) There exists a positive constant C1 such that(∫
{τ<∞}

(M(σχ{τ<∞}))
qudµ

) 1
q ≤ C1

(∫
{τ<∞}

σdµ
) 1

p

, ∀τ ∈ T ; (3.6)

(2) There exists a positive constant C2 such that(∫
{τ<∞}

(∗Mτ (σχ{τ<∞}))
qudµ

) 1
q ≤ C2

(∫
{τ<∞}

σdµ
) 1

p

, ∀τ ∈ T ; (3.7)

(3) There exists a positive constant C3 such that(∫
Ω

(Mf)qudµ
) 1

q ≤ C3

(∫
Ω

|f |pvdµ
) 1

p

, ∀f = (fn) ∈ Lp(v). (3.8)

Proof It is easy to check that (1) ⇒ (2) and (3) ⇒ (1) and we omit them.
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For (2) ⇒ (3), we proceed like in the proof of Theorem 3.1 just up to (3.5) with slight
modifications. After this we continue as follows:

|{Tf > λ}|ϑ ≤
∫
Gλ

(∗Mτ (σχGλ
))pudµ

≤
∫
{τ<∞}

(∗Mτ (σχ{τ<∞}))
pudµ

≤ Cq
2

(∫
{τ<∞}

σdµ
) q

p

= Cq
2 |{τ < ∞}|

q
p
σ .

In the same way as (2.3) and (2.4), we have∫
Ω

(Mf)qudµ ≤ 4q
∫
X

Tfdϑ ≤ (4p′)q
( 2

p
q

2
p
q − 1

) q
p

Cq
2

(∫
Ω

|f |pvdµ
) q

p

,

which implies (3.8) with C3 = 4p′
(

2
q
q

2
p
q −1

) 1
pC2.
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