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Abstract The authors give a discription of the stable categories of selfinjective algebras of
finite representation type over an algebraically closed field, which admits indecomposable
Calabi-Yau obdjects. For selfinjective algebras with such properties, the ones whose stable
categories are not Calabi-Yau are determined. For the remaining ones, i.e., those selfin-
jective algebras whose stable categories are actually Calabi-Yau, the difference between
the Calabi-Yau dimensions of the indecomposable Calabi-Yau objects and the Calabi-Yau
dimensions of the stable categories is described.

Keywords Selfinjective algebra, Stable category, Calabi-Yau category,
Indecomposable Calabi-Yau object

2000 MR Subject Classification 16G10, 16D50, 16G60, 18E30

1 Introduction

Calabi-Yau categories were introduced by Kontsevich [9]. Such kind of categories have

some good properties as something like “global naturality”. However, in some non-Calabi-Yau

categories, there are objects having similar properties. In other words, they enjoy some kind

of “local naturality”. Inspired by this, Cibils and Zhang introduced the concept of Calabi-Yau

objects in [4].

Let k be a field. For the term algebra, throughout this paper, we mean a finite dimensional

associative k-algebra with identity. For an algebra A, we denote by modA the full subcategory

of the module category over A consisting of finitly generated left modules, and by modA the

stable category of A. If A is selfinjective, then modA is a triangulated category, where the shift

functor is given by the inverse of syzygy functor Ω−1
A , and the distinguished triangles are given

by the exact sequences in modA (see [8]). An important class of selfinjective algebras are those

of finite representation type. It is known that such selfinjective algebras can be divided into two

disjoint classes (see [10]): the standard ones which admit simply connected Galois coverings,

and the remaining non-standard algebras. For the standard ones, there are some invariants (up

to stable equivalence) associated to them. To be more presicely, if A is a non-simple standard
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selfinjective algebra of finite representation type, we may associate a Dynkin graph ∆(A) and

integers s(A) ≥ 1, t(A) ∈ {1, 2, 3} to A (see Section 2). For a Dynkin diagram ∆, we denote

by h∆ the Coxeter number of ∆. The Coxeter numbers of Dynkin diagrams are as follows:

hAn = n + 1, hDn = 2n − 2, hE6 = 12, hE7 = 18, hE8 = 30. The stable categories of the

non-standard selfinjective algebras are all Calabi-Yau (see [3]). Therefore, we only need to

investigate the standard cases.

In [3], Bialkowski and Skowroński gave the classification of selfinjective algebras of finite

representation type whose stable categories are Calabi-Yau. In [4], the authors gave a description

of Calabi-Yau objects in a hom-finite triangulated category. In particular, they classified all

the d-th Calabi-Yau objects in the stable categories of selfinjective Nakayama algebras for

any integer d, and determined all the selfinjective Nakayama algebras whose stable categories

have indecomposable Calabi-Yau objects. Recently, in [6], Dugas computed the Calabi-Yau

dimension of the stable categories of selfinjective algebras of finite representation type and

made corrections to some results in [3].

Let A be a non-simple standard selfinjective algebra of finite representation type. It is easy

to see that modA always has Calabi-Yau objects. The aim of this paper is to give the following

theorem answering the question when modA has indecomposable Calabi-Yau objects. This

includes the related results in [4]. In the following, a stable category of finite type means a

stable category of a selfinjective algebra of finite representation type.

Theorem 1.1 Let A be a non-simple connected standard selfinjective algebra of finite rep-

resentation type. Then modA has indecomposable Calabi-Yau objects if and only if t(A) ≤ 2

and gcd(h̃∆, s) = 1, where h̃∆ = h∆ for ∆ = An (n even), and h̃∆ = h∆

2 for the other cases.

This theorem will be proved in Section 3. After that we shall show that when the stable

categories of finite type is not Calabi-Yau , but they have indecomposable Calabi-Yau objects.

Of course, if a stable category is Calabi-Yau, then every object is a Calabi-Yau object. In this

case, we are interested in the difference between the Calabi-Yau dimension of the category and

the ones of Calabi-Yau objects.

2 Preliminaries

The functor Homk(−, k) is denoted by D in this paper. For an algebra A, we denote by

υA : modA → modA the Nakayama functor DHomA(−, A), and by τA the Auslander-Reiten

translation DTr. It is known that τA ∼= Ω2
A υA ∼= υA Ω2

A, if A is selfinjective.

Let C be a Hom-finite k-category. Recall that a k-linear functor S : C → C is called a right

Serre functor if there are k-isomorphisms ηA,B : HomC (A, B) → DHomC (B, SA) for all A,B

in C , which are natural both at A and B. S is called a Serre functor if it is an equivalence. Such

a functor is unique up to a natural isomorphism. If C is a triangulated category with Serre

functor S, then S is a triangle functor. Let C be a Hom-finite triangulated k-category with

Serre functor S. Denote by [1] the shift functor of C . The category C is called a Calabi-Yau

category if there is a natural isomorphism S ∼= [d] of functors for some d ∈ Z (see [4]). Denote
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by o([1]) the order of [1]. If o([1]) = ∞, then the integer d is unique and is called the Calabi-

Yau dimension of C , otherwise, the Calabi-Yau dimension of C is defined to be the minimal

non-negative integer d such that S ∼= [d]. We denote the Calabi-Yau dimension by CY-dim.

It is known that S = Ω−1
A τA = Ω υA is a Serre functor on modA, where A is a selfinjective

algebra. For a Hom-finite triangulated k-category C , a non-zero object X is called a Calabi-Yau

object (or, more precisely a d-th Calabi-Yau object) (see [4]), if there is a natural isomorphism

HomC (X,−) ∼= DHomC (−, X[d]) for some d ∈ Z. Such a d is unique up to a multiple of the

relative order o([1]X) of [1] with respect to X, where o([1]X) is the minimal positive integer such

thatX[o([1]X)] ∼= X, otherwise, o([1]X) = ∞. Similar to the definition of Calabi-Yau dimension

of a Calabi-Yau category, the Calabi-Yau dimension of a Calabi-Yau object is defined to be the

unique integer d in the equation above, if o([1]X) = ∞ and the minimal non-negative integer

d satisfies the equation otherwise. The Calabi-Yau dimension of an object X is denoted by

CY-dim(X).

From now on, by an algebra, we also assume that it is non-simple, basic and connected.

Moreover, the field k is assumed to be algebraically closed.

We denote by B̂ the repetitive algebra of an algebra B (see [8]). It is a locally bounded

algebra with a complete set of primitive orthogonal idempotents {eλ}λ∈Λ. We define an auto-

morphism of B̂ to be a k-algebra automorphism of B̂, which fixes the set {eλ}λ∈Λ. A group G

of automorphisms of B̂ is said to be admissible, if the action of G on {eλ}λ∈Λ is free and has

finite many orbits. For example, if we define Nakayama automorphism υB̂ of B̂ to be the auto-

morphism of B̂ whose restriction on Bk⊕D(Bk) is the identity Bk⊕D(Bk) → Bk+1⊕D(Bk+1),

then the cyclic group generated by υB̂ is admissible. In fact, υB̂ induces the Nakayama action

on mod B̂. We can get an orbit algebra B̂/G for any admissible group of automorphisms of B̂

(for more details about orbit algebras, we refer to [10]). B̂/⟨υB̂⟩ is just the trivial extension

TB = B nD(B), which is symmetric. An automorphism φ of B̂ is said to be positive (respec-

tively, rigid), if φ(Bk) ⊆
∑
i≥k

Bi (respectively, φ(Bk) = Bk) for all k ∈ Z. An automorphism φ

is said to be strictly positive, if φ is positive but not rigid.

The following theorem gives the classification of standard selfinjective algebras of finite

representation type.

Theorem 2.1 (see [10]) Let A be a non-simple standard selfinjective algebra. The following

conditions are equivalent:

( i ) A is of finite representation type;

(ii) A ∼= B̂/σφs, where B is a tilted algebra of Dynkin type ∆, φ is a strictly positive

primitive root of the Nakayama automorphism υB̂ and σ is a rigid automorphism of B̂ of finite

order.

Therefore, we may associate to any standard selfinjective algebra A ∼= B̂/σφs of finite

representation type the following data: the type of graph ∆(A) = ∆(B) (∆(B) is the Dynkin

graph corresponding to B), the degree e(A) of primitive root φ of υB̂ , the order t(A) of the

automorphism σ, and the power s(A) = s of φ. We define f(A) = s(A)/e(A) to be the

frequency of A, and type(A) = (∆(A), f(A), t(A)) to be the type of A.
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Following from [1], the standard selfinjective algebras of finite representation type are de-

termined up to stable equivalence by their types. Moreover, there are only finite possibles for

the types of standard selfinjective algebras of finite representation type.

Proposition 2.1 (see [1]) The set of types of non-simple standard selfinjective algebras of

finite representation type is the disjoint union of the following sets:

{(An, s/n, 1) | n, s ∈ N}; {(A2p+1, s, 2) | p, s ∈ N}; {(Dn, s, 1) | n, s ∈ N, n ≥ 4};
{(D3m, s/3, 1) | m, s ∈ N,m ≥ 2, 3 - s}; {(Dn, s, 2) | n, s ∈ N, n ≥ 4};
{(D4, s, 3) | s ∈ N}; {(En, s, 1) | n = 6, 7, 8, s ∈ N}; {(E6, s, 2) | s ∈ N}.

3 Stable Categories with Indecomposable Calabi-Yau Objects

For a Hom-finite triangulated category C with Serre functor S, in [4], the authors gave a

description of Calabi-Yau objects via the minimal ones (those Calabi-Yau objects whose proper

direct summands are not Calabi-Yau objects). Actually, there is a bijection between the set of

isomorphism classes of minimal d-th Calabi-Yau objects and the set of all finite ([−d]◦S)-orbits
of indecomposable objects in C , and the direct sum of all the objects in the finite orbit of an

indecomposable object in C is a minimal d-th Calabi-Yau object.

For a standard selfinjective algebra A of finite representaton type, the stable category modA

is a triangulated category with shift Ω−1
A and Serre functor S = Ω−1

A τA = ΩA υA. To investigate

the d-th Calabi-Yau objects in these categories is to investigate the orbits of Ωd−1
A τA or Ωd+1

A υA.

So we need a description of the actions of ΩA, τA and υA. By Theorem 2.1 and Proposition 3.1,

the question is reduced to giving a description of the actions of such functors for the associated

algebra B̂, which will be given in Proposition 3.2.

Proposition 3.1 (see [3]) Let B be a tilted algebra of Dynkin type, G an admissible infinite

cyclic group of automorphisms of B̂ and A = B̂/G. Then the following statements hold:

( i ) Fλ : mod B̂ → modA is exact, dense and induces a bijection between the G-orbits

of isomorphism classes of indecomposable finite dimensional B̂-modules and the isomorphism

classes of indecomposable finite dimensional A-modules;

( ii ) FλΩB̂
∼= ΩAFλ;

(iii) FλτB̂
∼= τAFλ.

For a Dynkin diagram ∆, we put m∆ = h∆ − 1.

Proposition 3.2 (see [3, 7]) Let B be a tilted algebra of Dynkin type ∆. Then we have

equivalences of functors on the category mod B̂ :

( i ) ΩB̂
∼= τ

h∆/2

B̂
for ∆ = A1, Dn (n even), E7, E8;

( ii ) ΩB̂
∼= στ

h∆/2

B̂
for ∆ = An (n ≥ 3 odd), Dn (n odd), E6 and an automorphism σ of order

2;

(iii) ΩB̂
∼= ρτ

m∆/2

B̂
for ∆ = An (n even) and an automorphism ρ with ρ2 = τB̂.

The sketch of the proof was given in [7]. We shall give the proof in details for the convenience

of the readers.
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Proof Let B be a tilted algebra of Dynkin type, that is, B = EndHT where H is a path

algebra whose underlying graph is a Dynkin diagram and T is a tilting H-module. By [8],

we get Db(B) ≃ Db(H). On the other hand, Db(H) ≃ Db(H̃), where H̃ is the path algebra

whose underlying graph is the same as the one of H, while the orientation is given by the

bipartition (see [2]). Since B is of finite global dimension, Db(B) ≃ mod B̂ (see [8]). Therefore,

mod B̂ ≃ Db(H̃). H̃ is a hereditary algebra, and the AR-quiver of Db(H̃) can be deduced from

the one of H̃ (see [8]). Given the AR-quiver of mod B̂, it will be easy to describe the action of

ΩB̂ through τB̂.

Since υB̂ = τB̂Ω
−2

B̂
, the following proposition can be viewed as a corollary of the above

proposition.

Proposition 3.3 (see [3]) Let B be a tilted algebra of Dynkin type ∆. Then υB̂
∼= τ−m∆

B̂

as endofunctors on mod B̂.

From the description of the types of the non-simple standard selfinjective algebras of finite

representation type, we can see that the number m∆(A)/e(A) are integers for all cases. There-

fore, we may associate the number o(A) = s(A)t(A)m∆(A)/e(A) to any non-simple standard

selfinjective algebra of finite representation type. It is easy to check that o(A) is the smallest

non-negative integer, such that τ
o(A)
A X ∼= X for any object X in modA (see also [3]).

Now, we can prove the main theorem of this paper.

Proof of Theorem 1.1 Let A = B̂/σφs, with ∆ = An (n odd), Dn (n odd), E6. We know

that ΩA
∼= σAτ

h∆/2
A for some automorphism σA of order 2. If t(A) = 2, then it can be seen

from the AR-quiver that the action on modA induced from the automorphism σ of B̂ is just

the automorphism σA of modules mentioned above. In the following, we shall denote by σ both

the automorphism of algebras and the automorphism of modules.

Case 1 ∆ = An (n even), i.e., A is of the type (An, s/n, 1), n, s ∈ N.
In this case, o(A) = s and h̃∆ = h∆. If there is an indecomposable Calabi-Yau objec-

t X in modA with dimension d, then Ωd−1
A τAX ∼= X. On the other hand, Ωd−1

A τAX =

(ρτ
n/2
A )d−1τAX = ρhAn (d−1)+2X. So ρhAn (d−1)+2X ∼= X, o(A)X | hAn(d−1)/2+1, where o(A)X

denotes the relative order of the Auslander-Reiten translation with respect to X. From the AR-

quiver, we can see that o(A)X = o(A), and hence s | hAn(d − 1)/2 + 1. So gcd(hAn , s) = 1.

Conversely, if gcd(hAn , s) = 1, then there is some d1, such that s | hd1 + 1. Let d = 2d1 + 1.

Then for any object X in modA,

Ωd−1
A τAX = (ρτ

n/2
A )d−1τAX = ρd−1τ

n(d−1)/2+1
A X = ρ2d1τnd1+1

A X

= τd1

A τnd1+1
A X = τhd1+1

A X ∼= X.

This shows that every object in modA is a Calabi-Yau object.

Case 2 ∆ = A1, Dn (n even), E7, E8.

Here, h̃∆ = h∆/2, and o(A)X = o(A) for all indecomposable objects in modA.

(i) t(A) = 1. If there is an indecomposable Calabi-Yau object X in modA with dimension d,
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then by Propositions 3.2 and 3.3 and a similar discussion in the previous case, we can conclude

that o(A) | h∆(d− 1)/2+ 1, hence, s | h∆(d− 1)/2+ 1, so gcd(h̃∆, s) = 1. Conversely, suppose

gcd(h̃∆, s) = 1, i.e., gcd(h∆/2, s) = 1. Since gcd(h∆/2,m∆) = 1, we have gcd(h∆/2, o(A)) = 1.

There is some d1 such that o(A) | d1h∆/2 + 1. Put d = d1 + 1. For any object X in modA,

Ωd−1
A τAX = (τ

h∆/2
A )d−1τAX = τ

(d−1)h∆/2+1
A X ∼= X.

We conclude that every object in modA is a Calabi-Yau object.

(ii) t(A) = 2. A is of type (A1, s, 2), s ∈ N or (Dn, s, 2), n, s ∈ N, n ≥ 4.

h̃∆ = h∆/2 is odd, hence gcd(s, h̃) = 1 if and only if gcd(st(A), h̃) = 1 if and only if

gcd(o(A), h̃) = 1. By a similar discussion, we can conclude that modA has indecomposable

Calabi-Yau objects if and only if gcd(s, h̃) = 1.

(iii) t(A) = 3, i.e., A is of type (D4, s, 3), s ∈ N.
We need to prove that there is no Calabi-Yau object in this case. h̃ = hD4/2 = 3, mD4 = 5.

If there is some indecomposable object X, which is a Calabi-Yau object with dimension d, then

we have Ωd−1
A τAX = (τ3A)

d−1τAX = τ
3(d−1)+1
A X ∼= X. But o(A)X = o(A) = st(A)mD4 = 15s

which cannot divide 3(d−1)+1, which is a contradiction. Therefore, modA has no Calabi-Yau

objects.

Case 3 ∆ = An (n odd), Dn (n odd), E6.

In this case, h̃∆ = h∆/2.

(i) t(A) = 1. Here, o(A)X = o(A) for all indecomposable objects in modA.

LetX be an indecomposable Calabi-Yau object with dimension d. One case is that σX ∼= X.

We have Ωd−1
A τAX = τ

(d−1)h∆/2+1
A X, and hence o(A)X | (d−1)h∆/2+1 and gcd(o(A)X , h∆/2)

=1, so gcd(s, h∆/2)=1. The other case is that σX�X. We have Ωd−1
A τAX=(στ

h∆/2
A )d−1τAX

= σd−1τ
(d−1)h∆/2+1
A X ∼= X. So d−1 is even, and o(A)X | (d−1)h∆/2+1. We can also conclude

that gcd(h∆/2, s) = 1. Conversely, if gcd(h∆/2, s) = 1, then gcd(h∆/2, o(A)) = 1. There is

some integer d1, such that o(A) | d1h∆/2 + 1. Put d = d1 + 1. Choose an indecomposable

object X in modA such that σX ∼= X. Then Ωd−1
A τAX = τ

(d−1)h∆/2+1
A X = τ

d1h∆/2+1
A X ∼= X.

Hence X is an indecomposable object in modA.

(ii) t(A) = 2. Here o(A)X � o(A) for some indecomposable object in modA. Let X be

an indecomposable Calabi-Yau object. If σX ∼= X, then Ωd−1
A τAX = τ

(d−1)h∆/2+1
A X, and

hence o(A)X | (d − 1)h∆/2 + 1. Actually, o(A)X = sm∆/2. So gcd(o(A)X , h∆/2) = 1 in-

duces gcd(s, h∆/2) = 1. Otherwise, σX � X. Here o(A)X = o(A). We have Ωd−1
A τAX =

(στ
h∆/2
A )d−1τAX = σd−1τ

(d−1)h∆/2+1
A X ∼= X, hence τ

2((d−1)h∆/2+1)
A X ∼= X. We have o(A) =

2sm∆/e. Then sm∆/e | (d − 1)h∆/2 + 1, which induces gcd(s, h∆/2) = 1. Conversely,

if gcd(h∆/2, s) = 1, then gcd(h∆/2, o(A)X) = 1 for some indecomposable object X with

σX ∼= X. By a similar discussion as above, we can see that there is some integer d, such

that Ωd−1
A τAX ∼= X. So X is an indecomposable Calabi-Yau object.

Now we have exhibited all cases of non-simple standard selfinjective algebras. Hence the

proof is completed.

Corollary 3.1 Let A be a non-simple standard selfinjective algebra. If the type of A is one

of the two following cases:
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(1) {(An, s/n, 1)}, s ∈ N, n = 4l−3, for integer l ≥ 2, gcd(s, 4l−2) ̸= 1, gcd(s, 2l−1) = 1;

(2) {(A2p+1, s, 2)}, s ∈ N and is an odd, p = 2l, for integer l ≥ 1, gcd(s, 2l + 1) = 1,

the stable category modA is not a Calabi-Yau category, but it has indecomposable Calabi-Yau

objects.

Proof We keep the notations as in the proof of Theorem 1.1. It is sufficient to prove that

if the type of A is one of the types mentioned in the corollary, then there are indecomposable

objects in modA which are not Calabi-Yau objects.

(1) Let A be of type (An, s/n, 1) such that n = 4l − 3, l ≥ 2, gcd(s, 4l − 2) ̸= 1 and

gcd(s, 2l − 1) = 1. We claim that if X is an indecomposable object in modA such that

σX � X, then X is not a Calabi-Yau object. Let d be an integer. We have

Ωd−1
A τAX = (στ

h∆/2
A )d−1τAX = σd−1τ

(d−1)h∆/2+1
A X.

Therefore, if Ωd−1
A τAX ∼= X, then d− 1 is even and o(A)X | (d− 1)h∆/2 + 1. We have

o(A)X = o(A) = sn.

Since gcd(s, 4l − 2) ̸= 1 and gcd(s, 2l − 1) = 1, the integer s is even. Thus s cannot divide

(d− 1)h∆/2 + 1. So X is not a Calabi-Yau object.

(2) Let A be of type (A2p+1, s, 2) such that s is odd, p = 2l for some integer l ≥ 1 and

gcd(s, 2l+1) = 1. Let X be an indecomposable object in modA such that σX � X. Similarly,

if X is a Calabi-Yau object of dimension d, then

X ∼= Ωd−1
A τAX = σd−1τ

(d−1)h∆/2+1
A X = σd−1τ

(d−1)(p+1)+1
A X.

So there is some integer a, such that (d − 1)(p + 1) + 1 = as(2p + 1) and a and d − 1 have

the same parity. But this cannot happen when s is odd and p is even. Therefore, X is not a

Calabi-Yau object.

Remark 3.1 {(An, s/n, 1)} is just the Nakayama selfinjective algebra Λ(s, n + 1) investi-

gated in [4]. The conclusions we get here coincide with the ones there.

Let us give an example as below.

Example 3.1 A = kΓ/I, where Γ is the quiver as follows:

1
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−1

α−2

��

0
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2
β2

;;wwwwww
−2

β−2
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and I is the ideal generated by relations: β2α2α1 − β−2α−2α−1, α−2α−1β2α2, α2α1β−2α−2,

α1β2 and α−1β−2. Then A is of type (A5, 1, 2).

modA is not a Calabi-Yau category, but it has indecomposable Calabi-Yau objects. The

AR-quiver of modA is as follows (the indecomposable modules are denoted by their composition
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The indecomposable Calabi-Yau objects are just the modules in the dotted line, and their

Calabi-Yau dimensions are 4.

Remark 3.2 Let A be a selfinjective algebra with ∆ = Dn (n odd), E6, An (n = 4k−1, k ≥
1). Comparing the main theorem with [6, Propositions 7.3, 7.4 and 9.6], we obtain that modA is

a Calabi-Yau category if and only if it has indecomposable Calabi-Yau objects. However, there

are examples that the Calabi-Yau dimension of the category and the Calabi-Yau dimension

of some indecomposable Calabi-Yau objects are different. Actually, we have the following

description of the Calabi-Yau dimension of the categories and the indecomposable Calabi-Yau

objects respectively. The Calabi-Yau dimension of the categories was given in [6].

Let A = B̂/σφs be a selfinjective algebra in the above cases. If t(A) = 1, then CY-

dim(modA) = 2d1 + 1, where d1 is the least non-negative integer, such that m∆s/e divides

h∆d1 + 1. However, for an indecomposable module X such that σX = X (σ is the auto-

morphism in Proposition 3.2), the Calabi-Yau dimension of X is d2 + 1, where d2 is the least

non-negative integer such that m∆s/e divides h∆d2/2 + 1. For the case t(A) = 2, there are

also indecomposable Calabi-Yau objects X of CY-dim(X) = d2 + 1 with d2 the least non-

negative integer, such that m∆s/e divides h∆d2/2 + 1. If ∆(A) ̸= An (n = 4l − 3, l ≥ 1), then

CY-dim(modA) = 2d1, where d1 is the least non-negative integer such that m∆s/e divides

h∆(2d1 − 1)/2 + 1. If ∆(A) = An (n = 4l − 3, l ≥ 1), then CY-dim(modA) = d1 + 1, where

d1 is the least nonnegtive odd integer which can be written as the form lm∆s/e for some odd

integer l.

Example 3.2 If A = kΓ/I, where Γ is the quiver as follows:

1
α1

))SSS
SSSS

SSSS
SS

2
α2

// 3
α3��

5

β1

ZZ4444444444 β2

OO

4
α4

oo
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and I is the ideal generated by relations: all path of length 5 and α1β1 −α2β2, β2α4α3α1 and

β1α4α3α2, then A is of type (D5, 1, 1).

modA is Calabi-Yau with CY-dim(modA) = 13, but the indecomposable objects on the

dotted lines have Calabi-Yau dimension 6.
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Let A be a selfinjective algebra. Note that even if every object in modA is a Calabi-Yau

object of dimension d, the category modA is not necessarily a Calabi-Yau category of dimension

d. We have the following example from [5].

Example 3.3 Let A = kQ/I, where Q is the following quiver:

1α ::

β
''
2

γ

gg

and I is the ideal generated by the relations: α2 − γβ and βγ. The type of A is (D6, 1/3, 1).

The algebra A is symmetric. Every object X in modA satisfies that Ω3X ∼= X. If the

characteristic of the field is not 2, then we have Ω3 � id, Ω6 ∼= id. Therefore, we have that

modA is a Calabi-Yau category of dimension 5, but every object in modA is a Calabi-Yau

object of dimension 2.
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