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1 Introduction

The local exact boundary controllability for the quasilinear wave equation, a special form

of second-order quasilinear hyperbolic equations, was obtained in a complete manner (see [1–

6, 9]), and the author of [8] obtained its global exact boundary controllability under certain

restrictions. For the following 1-D quasilinear hyperbolic equation: utt + a(u, ux, ut)utx +

b(u, ux, ut)uxx = c(u, ux, ut), where u is the unknown function of (t, x) and (a2 − 4b)(0, 0, 0) >

0, Zhuang and Shang [13] established the corresponding local exact boundary controllability,

including the quasilinear wave equation as its special case.

For second-order quasilinear hyperbolic systems, there are few results on the exact bound-

ary controllability. Yu [11] established the local exact boundary controllability for the fol-

lowing second-order quasilinear hyperbolic system: utt − A(u, ux, ut)uxx = F (u, ux, ut), where

u = (u1, · · · , un)T is the unknown vector function of (t, x), and matrix A has only n positive

eigenvalues. Later, for second-order quasilinear hyperbolic system utt+(A+B)(u, ux, ut)utx+

AB(u, ux, ut)uxx = F (u, ux, ut), where u = (u1, · · · , un)T is the unknown vector function of

(t, x), matrices A and B have only n positive eigenvalues and n negative eigenvalues, respec-

tively, the local exact boundary controllability was obtained by Yu [12]. When matrices A and

B satisfy A = −B, this conclusion can be obtained from [11].

In this paper, we consider another kind of 1-D second-order quasilinear hyperbolic systems,

which can be rewritten in the form of second-order quasilinear hyperbolic systems discussed in

[12], but restrictions on the eigenvalues of matrices A and B are much weakened. Based on the
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existence and uniqueness of semi-global C1 solution and the local exact boundary controllability

for first-order quasilinear hyperbolic systems, by a constructive method developed by Li (see [2]),

we can obtain the local exact boundary controllability for this kind of second-order quasilinear

hyperbolic systems. The conclusions in [11] and [13] are both of its special cases.

2 A Kind of 1-D Second-Order Quasilinear Hyperbolic Systems

We consider the following second-order quasilinear system:

utt +A(u, ux, ut)utx +B(u, ux, ut)uxx = C(u, ux, ut), (2.1)

where u = (u1, · · · , un)T is the unknown vector function of (t, x), A(u, v, w) and B(u, v, w) are

both n× n matrices with smooth entries aij(u, v, w) and bij(u, v, w) (i, j = 1, · · · , n), and have

n real eigenvalues and a complete set of left eigenvectors on the domain under consideration,

respectively. Suppose that

AB(u, v, w) = BA(u, v, w), (2.2)

and C = C(u, v, w) = (c1(u, v, w), · · · , cn(u, v, w))T is a smooth vector function with

C(0, 0, 0) = 0. (2.3)

Condition (2.2) is equivalent to the fact that matrices A and B can be simultaneously

diagonalizable (see [10]), namely, there exists an invertible n× n matrix L(u, v, w), such that

LAL−1(u, v, w) = diag{λ1, · · · , λn}, (2.4)

LBL−1(u, v, w) = diag{µ1, · · · , µn}, (2.5)

where λ1, · · · , λn and µ1, · · · , µn are the real eigenvalues of matrices A and B, respectively, and

L = (lij) is the matrix composed by the common left eigenvectors of A and B. Furthermore,

we assume that in the domain under consideration

µi(u, v, w) ̸= 0, i = 1, · · · , n (2.6)

and

λ2i − 4µi(u, v, w) > 0, when µi(u, v, w) > 0, i = 1, · · · , n. (2.7)

To illustrate that the second-order quasilinear system under consideration is hyperbolic,

setting

vi =
∂ui
∂x

, wi =
∂ui
∂t

, i = 1, · · · , n, (2.8)

v = (v1, · · · , vn)T, w = (w1, · · · , wn)
T, U =

u
v
w

, (2.9)

we can reduce system (2.1) to the following first-order quasilinear system:

∂u

∂t
= w,

∂v

∂t
− ∂w

∂x
= 0,

∂w

∂t
+B(u, v, w)

∂v

∂x
+A(u, v, w)

∂w

∂x
= C(u, v, w).

(2.10)
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It is easy to see that its characteristic equation is

det

∣∣∣∣∣∣∣
λ̃In 0 0

0 λ̃In In
0 −B λ̃In −A

∣∣∣∣∣∣∣ = λ̃n det

∣∣∣∣∣ λ̃In In
−B λ̃In −A

∣∣∣∣∣ = λ̃n det |λ̃2In − λ̃A+B| = 0. (2.11)

By (2.4)–(2.5), det |λ̃2In − λ̃A + B| = 0 can be rewritten as λ̃2 − λiλ̃ + µi = 0 (i = 1, · · · , n),
whose solutions are

λ̃±i =
λi ±

√
λ2i − 4µi

2
, i = 1, · · · , n. (2.12)

Obviously,

λ̃±i ̸= 0, λ̃+i > λ̃−i , i = 1, · · · , n (2.13)

and

λ̃+i + λ̃−i = λi, λ̃+i λ̃
−
i = µi, i = 1, · · · , n. (2.14)

Then system (2.10) has 3n real eigenvalues

λ̃−i =
λi −

√
λ2i − 4µi

2
, λ̃0i ≡ 0, λ̃+i =

λi +
√
λ2i − 4µi

2
, i = 1, · · · , n. (2.15)

Noting (2.14), it is easy to see that the corresponding left eigenvectors, which constitute a

complete set, can be chosen as

l̃−i = (

n︷ ︸︸ ︷
0, · · · , 0, λ̃+i li, li), l̃0i = (ei,

2n︷ ︸︸ ︷
0, · · · , 0), l̃+i = (

n︷ ︸︸ ︷
0, · · · , 0, λ̃−i li, li), i = 1, · · · , n, (2.16)

in which li is the ith column vector of matrix L, i.e., the ith common left eigenvector of matrices

A and B, and ei = (0, · · · ,
(i)

1 , · · · , 0).
Thus, the first-order quasilinear system (2.10) reduced from the system (2.1) is hyperbolic.

Then, the quasilinear system (2.1) under consideration is a kind of second-order quasilinear

hyperbolic systems.

Remark 2.1 Let

P = L−1diag{λ̃+1 , · · · , λ̃+n }L, Q = L−1diag{λ̃−1 , · · · , λ̃−n }L. (2.17)

By (2.14), we get A = P +Q, B = PQ. Then system (2.1) can be rewritten as

utt + (P +Q)(u, ux, ut)utx + PQ(u, ux, ut)uxx = C(u, ux, ut), (2.18)

which is of the same form of the second-order quasilinear hyperbolic system considered in [12],

but there are much less restrictions on the eigenvalues of the matrices.
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3 Existence and Uniqueness of Semi-Global C2 Solution

For the second-order quasilinear hyperbolic system (2.1), we give the following initial con-

dition:

t = 0 : u = φ(x), ut = ψ(x), 0 ≤ x ≤ L (3.1)

and final condition

t = T : u = Φ(x), ut = Ψ(x), 0 ≤ x ≤ L, (3.2)

where φ=(φ1, · · · , φn)
T and Φ=(Φ1, · · · ,Φn)

T are given C2 vector functions, ψ=(ψ1, · · · , ψn)
T

and Ψ = (Ψ1, · · · ,Ψn)
T are given C1 vector functions.

Let

D± = diag
{ µ1

λ̃±1
, · · · , µn

λ̃±n

}
= diag{λ̃∓1 , · · · , λ̃∓n }. (3.3)

Based on (2.13), according to different signs of λ̃±i (i = 1, · · · , n) in a neighborhood of (u, v, w) =

(0, 0, 0), without loss of generality, we only need to discuss the following three typical cases:

(1) λ̃+i > 0, λ̃−i < 0, i = 1, · · · , n; (3.4)

(2) λ̃±j > 0, λ̃+k > 0, λ̃−k < 0, λ̃±h < 0,

j = 1, · · · , d1, k = d1 + 1, · · · , d2, h = d2 + 1, · · · , n, (3.5)

where d1, d2 are any given integers satisfying 0 ≤ d1 ≤ d2 ≤ n, but excluding the case d1 = n

(which is Case (3)) and the case d1 = 0 and d2 = n (which is Case (1));

(3) λ̃±i > 0, i = 1, · · · , n. (3.6)

Case (1) Equation (3.4) is equivalent to

µi(u, v, w) < 0, i = 1, · · · , n (3.7)

in a neighborhood of (u, v, w) = (0, 0, 0). Then system (2.1) has n positive eigenvalues and

n negative eigenvalues. On the ends x = 0 and x = L, we prescribe the following nonlinear

boundary conditions, respectively:

x = 0 :

{
Gp(u) = Hp(t), p = 1, · · · , l,
Gq(u, ux, ut) = Hq(t), q = l + 1, · · · , n, (3.8)

x = L :

{
Gr(u) = Hr(t), r = 1, · · · ,m,
Gs(u, ux, ut) = Hs(t), s = m+ 1, · · · , n, (3.9)

where Gp, Hp, Gr and Hr are all C2 functions with respect to their arguments, Gq, Hq, Gs

and Hs are all C1 functions with respect to their arguments. For different needs in further

discussions, some or all of the following assumptions will be imposed in different situations:

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



∂G1

∂u1
· · · ∂G1

∂un

...
...

∂Gl

∂u1
· · · ∂Gl

∂un
∂Gl+1

∂u1t
· · · ∂Gl+1

∂unt

...
...

∂Gn

∂u1t
· · · ∂Gn

∂unt


(L−1D−)−



0 · · · 0
...

...
0 · · · 0

∂Gl+1

∂u1x
· · · ∂Gl+1

∂unx

...
...

∂Gn

∂u1x
· · · ∂Gn

∂unx


(L−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

̸= 0, (3.10)
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det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



∂G1

∂u1
· · · ∂G1

∂un

...
...

∂Gl

∂u1
· · · ∂Gl

∂un
∂Gl+1

∂u1t
· · · ∂Gl+1

∂unt

...
...

∂Gn

∂u1t
· · · ∂Gn

∂unt


(L−1D+)−



0 · · · 0
...

...
0 · · · 0

∂Gl+1

∂u1x
· · · ∂Gl+1

∂unx

...
...

∂Gn

∂u1x
· · · ∂Gn

∂unx


(L−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

̸= 0, (3.11)

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



∂G1

∂u1
· · · ∂G1

∂un

...
...

∂Gm

∂u1
· · · ∂Gm

∂un

∂Gm+1

∂u1t
· · · ∂Gm+1

∂unt

...
...

∂Gn

∂u1t
· · · ∂Gn

∂unt


(L−1D−)−



0 · · · 0
...

...
0 · · · 0

∂Gm+1

∂u1x
· · · ∂Gm+1

∂unx

...
...

∂Gn

∂u1x
· · · ∂Gn

∂unx


(L−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

̸= 0, (3.12)

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



∂G1

∂u1
· · · ∂G1

∂un

...
...

∂Gm

∂u1
· · · ∂Gm

∂un

∂Gm+1

∂u1t
· · · ∂Gm+1

∂unt

...
...

∂Gn

∂u1t
· · · ∂Gn

∂unt


(L−1D+)−



0 · · · 0
...

...
0 · · · 0

∂Gm+1

∂u1x
· · · ∂Gm+1

∂unx

...
...

∂Gn

∂u1x
· · · ∂Gn

∂unx


(L−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

̸= 0. (3.13)

Case (2) In this case, system (2.1) has d1 + d2 positive eigenvalues and 2n − (d1 + d2)

negative eigenvalues. Without loss of generality, we assume

d1 + d2 ≤ n, (3.14)

namely, the number of positive eigenvalues is less than or equal to the number of negative

eigenvalues. Correspondingly, on the ends x = 0 and x = L, we prescribe the following nonlinear

boundary conditions, respectively:

x = 0 :

{
Gp(u) = Hp(t), p = 1, · · · , l,
Gq(u, ux, ut) = Hq(t), q = l + 1, · · · , d1 + d2,

(3.15)

x = L :

{
Gr(u) = Hr(t), r = 1, · · · ,m,
Gs(u, ux, ut) = Hs(t), s = m+ 1, · · · , 2n− (d1 + d2),

(3.16)

where Gp, Hp, Gr and Hr are all C2 functions with respect to their arguments, Gq, Hq, Gs

and Hs are all C1 functions with respect to their arguments. For different needs in further

discussions, some or all of the following assumptions will be imposed in different situations:

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



∂G1

∂u1
· · · ∂G1

∂un

...
...

∂Gl

∂u1
· · · ∂Gl

∂un
∂Gl+1

∂u1t
· · · ∂Gl+1

∂unt

...
...

∂Gd1+d2

∂u1t
· · · ∂Gd1+d2

∂unt


((L−1D−){1,d2}

...(L−1D+){1,d1})
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−



0 · · · 0
...

...
0 · · · 0

∂Gl+1

∂u1x
· · · ∂Gl+1

∂unx

...
...

∂Gd1+d2

∂u1x
· · · ∂Gd1+d2

∂unx


((L−1){1,d2}

...(L−1){1,d1})

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

̸= 0, (3.17)

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



∂G1

∂u1
· · · ∂G1

∂un

...
...

∂Gl

∂u1
· · · ∂Gl

∂un
∂Gl+1

∂u1t
· · · ∂Gl+1

∂unt

...
...

∂Gd1+d2

∂u1t
· · · ∂Gd1+d2

∂unt


((L−1D−){d2+1,d2+d1}

...(L−1D+){d1+1,d1+d2})

−



0 · · · 0
...

...
0 · · · 0

∂Gl+1

∂u1x
· · · ∂Gl+1

∂unx

...
...

∂Gd1+d2

∂u1x
· · · ∂Gd1+d2

∂unx


((L−1){d2+1,d2+d1}

...(L−1){d1+1,d1+d2})

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

̸= 0, (3.18)

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



∂G1

∂u1
· · · ∂G1

∂un

...
...

∂Gm

∂u1
· · · ∂Gm

∂un

∂Gm+1

∂u1t
· · · ∂Gm+1

∂unt

...
...

∂G2n−(d1+d2)

∂u1t
· · · ∂G2n−(d1+d2)

∂unt


((L−1D−){d2+1,n}

...(L−1D+){d1+1,n})

−



0 · · · 0
...

...
0 · · · 0

∂Gm+1

∂u1x
· · · ∂Gm+1

∂unx

...
...

∂G2n−(d1+d2)

∂u1x
· · · ∂G2n−(d1+d2)

∂unx


((L−1){d2+1,n}

...(L−1){d1+1,n})

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

̸= 0, (3.19)

where (L−1D−){1,d1} indicates the matrix composed of the first column to the d1th column of

matrix (L−1D−), etc.

Case (3) In this case, system (2.1) has 2n positive eigenvalues. Correspondingly, there

need only 2n boundary conditions on the end x = 0:

x = 0 : u = H(t), ux = H(t), (3.20)

where H = (H1, · · · ,Hn)
T is a C2 vector function, H = (H1, · · · ,Hn)

T is a C1 vector function.

First of all, for Case (1), we give the following theorem on the existence and uniqueness of
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semi-global C2 solution to system (2.1).

Theorem 3.1 Suppose that aij, bij, ci, λi, µi, lij, Gq, Gs (i, j = 1, · · · , n; q = l +

1, · · · , n; s = m + 1, · · · , n) are C1 functions with respect to their arguments, Gp, Gr (p =

1, · · · , l; r = 1, · · · ,m) are C2 functions with respect to their arguments, and (Hp,Hq), (Hr,Hs)

(p = 1, · · · , l; q = l+ 1, · · · , n; r = 1, · · · ,m; s = m+ 1, · · · , n) are C2 ×C1 vector functions.

Suppose furthermore that (3.7), (3.10) and (3.13) hold, and the conditions of C2 compatibility

are satisfied at the points (t, x) = (0, 0) and (0, L), respectively. Then, for any given and possibly

quite large T > 0, the forward mixed initial-boundary value problem (2.1), (3.1) and (3.8)–(3.9)

admits a unique semi-global C2 solution u = u(t, x) on the domain R(T ) = {(t, x) | 0 ≤
t ≤ T, 0 ≤ x ≤ L} with small C2 norm, provided that the norms ∥(φ(x), ψ(x))∥C2[0,L]×C1[0,L],

∥(Hp(t),Hq(t))∥C2[0,T ]×C1[0,T ], ∥(Hr(t), Hs(t))∥C2[0,T ]×C1[0,T ] (p = 1, · · · , l; q = l+1, · · · , n; r
= 1, · · · ,m; s = m+ 1, · · · , n) are small enough.

Proof Let U = (u, v, w)T and

V −
i = l̃−i (U)U, Vi = l̃0i (U)U, V +

i = l̃+i (U)U, i = 1, · · · , n. (3.21)

By (2.16), we have V
−
i = λ̃+i liv + liw,
Vi = ui,

V +
i = λ̃−i liv + liw,

(3.22)

i.e., V
− = D−Lv + Lw,

V = u,
V + = D+Lv + Lw.

(3.23)

It is easy to see that

(u, v, w) = 0 ⇔ (V −, V, V +) = 0 (3.24)

and

det
∣∣∣∂(V −, V, V +)

∂(u, v, w)

∣∣∣
(0,0,0)

= det |(D+ −D−)L2|(0,0,0) ̸= 0. (3.25)

Hence, by the implicit function theorem, there exist C1 vector functions G̃ = (G̃1, · · · , G̃n)
T

and H̃ = (H̃1, · · · , H̃n)
T in a neighborhood of U = 0, such that

u = V, v = G̃(V −, V, V +), w = H̃(V −, V, V +) (3.26)

and

G̃(0, 0, 0) = 0, H̃(0, 0, 0) = 0, (3.27)

det
∣∣∣ ∂G̃
∂V −

∣∣∣
(0,0,0)

= det | − L−1(D+ −D−)−1|(0,0,0) ̸= 0,

det
∣∣∣ ∂G̃
∂V +

∣∣∣
(0,0,0)

= det |L−1(D+ −D−)−1|(0,0,0) ̸= 0,

det
∣∣∣ ∂H̃
∂V −

∣∣∣
(0,0,0)

= det |L−1D+(D+ −D−)−1|(0,0,0) ̸= 0,

det
∣∣∣ ∂H̃
∂V +

∣∣∣
(0,0,0)

= det | − L−1D−(D+ −D−)−1|(0,0,0) ̸= 0.

(3.28)
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Noting the conditions of C2 compatibility at the points (t, x) = (0, 0) and (0, L), respectively,

we can replace boundary conditions (3.8) and (3.9) correspondingly by

x = 0 :


n∑

k=1

∂Gp

∂uk
(u)wk = H ′

p(t), p = 1, · · · , l,

Gq(u, v, w) = Hq(t), q = l + 1, · · · , n
(3.29)

and

x = L :


n∑

k=1

∂Gr

∂uk
(u)wk = H

′
r(t), r = 1, · · · ,m,

Gs(u, v, w) = Hs(t), s = m+ 1, · · · , n,
(3.30)

respectively, and reduce the initial condition (3.1) to

t = 0 : u = φ(x), v = φ′(x), w = ψ(x), 0 ≤ x ≤ L. (3.31)

By (3.10) and (3.28), boundary condition (3.29) can be equivalently rewritten as

x = 0 : V +
i = gi(t, V

−, V ) + hi(t), i = 1, · · · , n, (3.32)

in a neighborhood of (u, v, w) = (0, 0, 0), where gi, hi (i = 1, · · · , n) are C1 functions with

respect to their arguments and, without loss of generality,

gi(t, 0, 0) ≡ 0, i = 1, · · · , n. (3.33)

Then

∥(Hp,Hq)∥C2[0,T ]×C1[0,T ] (p = 1, · · · , l; q = l + 1, · · · , n) small enough

⇔ ∥(h1, · · · , hn)∥C1[0,T ] small enough. (3.34)

Similarly, by (3.13) and (3.28), boundary condition (3.30) can be equivalently rewritten as

x = L : V −
i = gi(t, V, V

+) + hi(t), i = 1, · · · , n (3.35)

in a neighborhood of (u, v, w) = (0, 0, 0), where gi, hi (i = 1, · · · , n) are C1 functions with

respect to their arguments and

gi(t, 0, 0) ≡ 0, i = 1, · · · , n. (3.36)

Then

∥(Hr, Hs)∥C2[0,T ]×C1[0,T ] (r = 1, · · · ,m; s = m+ 1, · · · , n) small enough

⇔ ∥(h1, · · · , hn)∥C1[0,T ] small enough. (3.37)

Moreover, it follows easily from the conditions of C2 compatibility of the original mixed initial-

boundary value problem (2.1), (3.1) and (3.8)–(3.9) that the mixed initial-boundary value

problem (2.10), (3.31) and (3.29)–(3.30) satisfies the conditions of C1 compatibility at the

points (t, x) = (0, 0) and (0, L), respectively. Applying directly the existence and uniqueness of

semi-global C1 solution to the mixed initial-boundary value problem for first-order quasilinear

hyperbolic systems (see [2, 3]), we can obtain the existence and uniqueness of the semi-global

C2 solution to the original mixed initial-boundary value problem (2.1), (3.1) and (3.8)–(3.9)

for Case (1), which is the conclusion of Theorem 3.1.
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Remark 3.1 For the backward mixed initial-boundary value problem (2.1), (3.2) and (3.8)–

(3.9), suppose that (3.7) and (3.11)–(3.12) hold and the conditions of C2 compatibility are

satisfied at the points (t, x) = (T, 0) and (T, L), respectively. Similarly, we obtain that there

exists a unique semi-global C2 solution u = u(t, x) on the domain R(T ) = {(t, x) | 0 ≤ t ≤
T, 0 ≤ x ≤ L} with small C2 norm.

Remark 3.2 In particular, if the boundary conditions are given as

x = 0 : ui = Hi(t), i = 1, · · · , n, (3.38)

x = L : ui = Hi(t), i = 1, · · · , n, (3.39)

it is easy to see that the assumptions (3.10)–(3.13) are simplified to

det |In(L−1D−)|(0,0,0) ̸= 0, (3.10)′

det |In(L−1D+)|(0,0,0) ̸= 0, (3.11)′

det |In(L−1D−)|(0,0,0) ̸= 0, (3.12)′

det |In(L−1D+)|(0,0,0) ̸= 0. (3.13)′

Obviously, they are automatically satisfied.

For Cases (2) and (3), we can similarly obtain the existence and uniqueness of semi-global

C2 solution.

Theorem 3.2 Suppose that aij, bij, ci, λi, µi, lij, Gq, Gs (i, j = 1, · · · , n; q = l +

1, · · · , d1+d2; s = m+1, · · · , 2n− (d1+d2)) are C
1 functions with respect to their arguments,

Gp, Gr (p = 1, · · · , l; r = 1, · · · ,m) are C2 functions with respect to their arguments, and

(Hp, Hq), (Hr, Hs) (p = 1, · · · , l; q = l + 1, · · · , d1 + d2; r = 1, · · · ,m; s = m + 1, · · · , 2n −
(d1 + d2)) are C2 × C1 vector functions. Suppose furthermore that (3.5), (3.14), (3.17) and

(3.19) hold, and the conditions of C2 compatibility are satisfied at the points (t, x) = (0, 0) and

(0, L), respectively. Then, for any given and possibly quite large T > 0, the forward mixed

initial-boundary value problem (2.1), (3.1) and (3.15)–(3.16) admits a unique semi-global C2

solution u = u(t, x) on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L} with small

C2 norm, provided that the norms ∥(φ(x), ψ(x))∥C2[0,L]×C1[0,L], ∥(Hp(t),Hq(t))∥C2[0,T ]×C1[0,T ],

∥(Hr(t), Hs(t))∥C2[0,T ]×C1[0,T ] (p = 1, · · · , l; q = l + 1, · · · , d1 + d2; r = 1, · · · ,m; s = m +

1, · · · , 2n− (d1 + d2)) are small enough.

Remark 3.3 In particular, if the boundary conditions are given as

x = 0 :

{
(Id2 , 0)L(0)u = H(t),

(Id1 , 0)L(0)ux = H̃(t),
(3.40)

x = L :

{
(0, In−d2)L(0)u = H(t),

(0, In−d1)L(0)ux = H̃(t),
(3.41)

where

H(t) = (H1(t), · · · ,Hd2(t)), H̃(t) = (Hd2+1(t), · · · ,Hd1+d2(t)),

H(t) = (H1(t), · · · ,Hn−d2(t)), H̃(t) = (Hn−d2+1(t), · · · , H2n−(d1+d2)(t)),

then the assumptions (3.17) and (3.19) are automatically satisfied.



812 K. Wang

Remark 3.4 Under the assumption (3.14), consider the backward mixed initial-boundary

value problem for system (2.1) with the final condition (3.2) and the following boundary con-

ditions:

x = 0 :

{
Gp(u) = Hp(t), p = 1, · · · , l̃,
Gq(u, ux, ut) = Hq(t), q = l̃ + 1, · · · , 2n− (d1 + d2),

(3.42)

x = L :

{
Gr(u) = Hr(t), r = 1, · · · , m̃,
Gs(u, ux, ut) = Hs(t), s = m̃+ 1, · · · , d1 + d2,

(3.43)

where Gp, Hp, Gr and Hr are C2 functions with respect to their arguments, Gq, Hq, Gs and

Hs are C1 functions with respect to their arguments. Suppose furthermore that the following

conditions are satisfied:

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



∂G1

∂u1
· · · ∂G1

∂un

...
...

∂G
l̃

∂u1
· · · ∂G

l̃

∂un
∂G

l̃+1

∂u1t
· · · ∂G

l̃+1

∂unt

...
...

∂G2n−(d1+d2)

∂u1t
· · · ∂G2n−(d1+d2)

∂unt


((L−1D−){d2+1,n}

...(L−1D+){d1+1,n})

−



0 · · · 0
...

...
0 · · · 0

∂G
l̃+1

∂u1x
· · · ∂G

l̃+1

∂unx

...
...

∂G2n−(d1+d2)

∂u1x
· · · ∂G2n−(d1+d2)

∂unx


((L−1){d2+1,n}

...(L−1){d1+1,n})

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

̸= 0, (3.44)

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



∂G1

∂u1
· · · ∂G1

∂un

...
...

∂Gm̃

∂u1
· · · ∂Gm̃

∂un

∂Gm̃+1

∂u1t
· · · ∂Gm̃+1

∂unt

...
...

∂Gd1+d2

∂u1t
· · · ∂Gd1+d2

∂unt


((L−1D−){1,d2}

...(L−1D+){1,d1})

−



0 · · · 0
...

...
0 · · · 0

∂Gm̃+1

∂u1x
· · · ∂Gm̃+1

∂unx

...
...

∂Gd1+d2

∂u1x
· · · ∂Gd1+d2

∂unx


((L−1){1,d2}

...(L−1){1,d1})

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

̸= 0. (3.45)

Suppose that (3.5) holds and the conditions of C2 compatibility are satisfied at the points

(t, x) = (T, 0) and (T, L), respectively. Similarly, there exists a unique semi-global C2 solution

u = u(t, x) on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L} with small C2 norm.
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In particular, if the boundary conditions are given as

x = 0 :

{
(0, In−d2

)L(0)u = H(t),

(0, In−d1)L(0)ux = H̃(t),
(3.46)

x = L :

{
(Id2 , 0)L(0)u = H(t),

(Id1 , 0)L(0)ux = H̃(t),
(3.47)

the assumptions (3.44)–(3.45) are automatically satisfied.

In particular, if the boundary conditions are given as (3.15) and the following boundary

conditions:

x = 0 :

{
(0, In−(d1+d2))L(0)u = H(t),

(0, In−(d1+d2))L(0)ux = H̃(t),
(3.48)

x = L :

{
(Id2 , 0)L(0)u = H(t),

(Id1 , 0)L(0)ux = H̃(t),
(3.49)

it is easy to see that when (3.18) holds, (3.44)–(3.45) are also satisfied.

Theorem 3.3 Suppose that aij, bij, ci, λi, µi, lij (i, j = 1, · · · , n) are C1 functions with

respect to their arguments, (H(t), H(t)) is a C2 × C1 vector function. Suppose furthermore

that (3.6) holds, and the conditions of C2 compatibility are satisfied at the points (t, x) = (0, 0)

and (0, L), respectively. Then, for any given and possibly quite large T > 0, the forward mixed

initial-boundary value problem (2.1), (3.1) and (3.20) admits a unique semi-global C2 solution

u = u(t, x) on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L} with small C2 norm, provided

that the norms ∥(φ(x), ψ(x))∥C2[0,L]×C1[0,L], ∥(H(t),H(t))∥C2[0,T ]×C1[0,T ] are small enough.

Remark 3.5 For the backward mixed initial-boundary value problem (2.1), (3.2) and the

following boundary condition:

x = L : u = H̃(t), ux = H̃(t), (3.50)

where H̃ = (H̃1, · · · , H̃n)
T is a C2 vector function, H̃ = (H̃1, · · · , H̃n)

T is a C1 vector function,

suppose that (3.6) holds and the conditions of C2 compatibility are satisfied at the points

(t, x) = (T, 0) and (T, L), respectively. Similarly, there exists a unique semi-global C2 solution

u = u(t, x) on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L} with small C2 norm.

4 Local Exact Boundary Controllability

First, for Case (1) we consider the corresponding local exact boundary controllability.

Theorem 4.1 (Local Two-Sided Exact Boundary Controllability) Suppose that aij, bij,

ci, λi, µi, lij (i, j = 1, · · · , n) are C1 functions with respect to their arguments. Suppose

furthermore that (3.7), (3.10) and (3.13) hold. Let

T > L max
i=1,··· ,n

{ 1

λ̃+i (0, 0, 0)
,

1

|λ̃−i (0, 0, 0)|

}
. (4.1)

For any given initial data (φ(x), ψ(x)) and final data (Φ(x),Ψ(x)) with small norms ∥(φ(x),
ψ(x))∥C2[0,L]×C1[0,L] and ∥(Φ(x),Ψ(x))∥C2[0,L]×C1[0,L], there exist boundary controls (Hp(t),
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Hq(t)) and (Hr(t),Hs(t)) with small norms ∥(Hp(t),Hq(t))∥C2[0,T ]×C1[0,T ] and ∥(Hr(t),

Hs(t))∥C2[0,T ]×C1[0,T ] (p = 1, · · · , l; q = l + 1, · · · , n; r = 1, · · · ,m; s = m + 1, · · · , n), such
that the mixed initial-boundary value problem (2.1), (3.1) and (3.8)–(3.9) admits a unique C2

solution u = u(t, x) with small C2 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L},
which satisfies exactly the final condition (3.2).

In order to prove Theorem 4.1, it suffices to establish the following lemma (see [2]).

Lemma 4.1 Under the assumptions of Theorem 4.1, for any given initial data (φ,ψ) and fi-

nal data (Φ,Ψ) with small norms ∥(φ(x), ψ(x))∥C2[0,L]×C1[0,L] and ∥(Φ(x),Ψ(x))∥C2[0,L]×C1[0,L],

system (2.1) admits a C2 solution u = u(t, x) with small C2 norm on the domain R(T ) =

{(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies simultaneously the initial condition (3.1) and

the final condition (3.2).

Proof Noting (4.1), there exists an ε > 0 so small that

T > L max
i=1,··· ,n

{
max

|(u,v,w)|≤ε

1

λ̃+i (u, v, w)
, max
|(u,v,w)|≤ε

1

|λ̃−i (u, v, w)|

}
. (4.2)

Let

T1 =
L

2
max

i=1,··· ,n

{
max

|(u,v,w)|≤ε

1

λ̃+i (u, v, w)
, max
|(u,v,w)|≤ε

1

|λ̃−i (u, v, w)|

}
. (4.3)

(1) First, we consider the forward mixed initial-boundary value problem for system (2.1)

with the initial condition (3.1) and the following artificial boundary conditions:

x = 0 : ui = fi(t), i = 1, · · · , n, (4.4)

x = L : ui = gi(t), i = 1, · · · , n, (4.5)

where fi, gi (i = 1, · · · , n) are any given C2 functions with small C2[0, T1] norms, such that the

conditions of C2 compatibility are satisfied at the points (t, x) = (0, 0) and (0, L), respectively.

By Theorem 3.1 and Remark 3.2, this forward problem has a unique semi-global C2 solution

u = uf (t, x) with small C2 norm on the domain Rf = {(t, x) | 0 ≤ t ≤ T1, 0 ≤ x ≤ L}. In

particular, we have

|(uf , ufx, u
f
t )(t, x)| ≤ ε, ∀(t, x) ∈ Rf . (4.6)

Thus, we can determine the corresponding value of (uf , ufx) at x = L
2 as

x =
L

2
: (uf , ufx) = (a(t), a(t)), 0 ≤ t ≤ T1, (4.7)

and ∥(a(t), a(t))∥C2[0,T1]×C1[0,T1] is small enough.

(2) Similarly, we consider the backward mixed initial-boundary value problem for system

(2.1) with the final condition (3.2) and the following artificial boundary conditions:

x = 0 : ui = f i(t), i = 1, · · · , n, (4.8)

x = L : ui = gi(t), i = 1, · · · , n, (4.9)

where f i, gi (i = 1, · · · , n) are any given C2 functions with small C2[T − T1, T ] norms, such

that the conditions of C2 compatibility are satisfied at the points (t, x) = (T, 0) and (T, L),
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respectively. By Remarks 3.1 and 3.2, this backward problem has a unique semi-global C2

solution u = ub(t, x) with small C2 norm on the domain Rb = {(t, x) | T − T1 ≤ t ≤ T, 0 ≤ x ≤
L}. In particular, we have

|(ub, ubx, ubt)(t, x)| ≤ ε, ∀(t, x) ∈ Rb. (4.10)

Thus, we can determine the corresponding value of (ub, ubx) at x = L
2 as

x =
L

2
: (ub, ubx) = (b(t), b(t)), T − T1 ≤ t ≤ T, (4.11)

and ∥(b(t), b(t))∥C2[T−T1,T ]×C1[T−T1,T ] is small enough.

(3) Since 2T1 < T , the two domains Rf and Rb never intersect each other. Then, we can

find a vector function (c(t), c(t))∈C2[0, T ]×C1[0, T ] with small norm ∥(c(t), c(t))∥C2[0,T ]×C1[0,T ],

such that

(c(t), c(t)) =

{
(a(t), a(t)), 0 ≤ t ≤ T1,

(b(t), b(t)), T − T1 ≤ t ≤ T.
(4.12)

Noting (2.6), we change the role of t and x so that system (2.1) can be equivalently rewritten

as

uxx +B−1Autx +B−1utt = B−1C (4.13)

in a neighborhood of (u, v, w) = (0, 0, 0), which still satisfies the commutative condition

B−1B−1A = B−1AB−1.

Consider the leftward mixed initial-boundary value problem for system (4.13) with the final

condition

x =
L

2
: (u, ux) = (c(t), c(t)), 0 ≤ t ≤ T (4.14)

and the boundary conditions coming from the original initial condition (3.1) and final condition

(3.2)

t = 0 : u = φ(x), 0 ≤ x ≤ L

2
, (4.15)

t = T : u = Φ(x), 0 ≤ x ≤ L

2
. (4.16)

By Theorem 3.1 and Remark 3.2, there exists a unique semi-global C2 solution u = ul(t, x)

with small C2 norm on the domain Rl = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L
2 }. In particular, we have

|(ul, ulx, ult)(t, x)| ≤ ε, ∀(t, x) ∈ Rl. (4.17)

(4) Similarly, the rightward mixed initial-boundary value problem for system (4.13) with

the initial condition (4.14) and the boundary conditions coming from the original initial condi-

tion (3.1) and final condition (3.2)

t = 0 : u = φ(x),
L

2
≤ x ≤ L, (4.18)

t = T : u = Φ(x),
L

2
≤ x ≤ L (4.19)
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admits a unique semi-global C2 solution u = ur(t, x) with small C2 norm on the domain

Rr = {(t, x) | 0 ≤ t ≤ T, L2 ≤ x ≤ L}. In particular, we have

|(ur, urx, urt )(t, x)| ≤ ε, ∀(t, x) ∈ Rr. (4.20)

(5) Let

u(t, x) =

{
ul(t, x), (t, x) ∈ Rl,
ur(t, x), (t, x) ∈ Rr.

(4.21)

Obviously, u ∈ C2[R(T )], and it satisfies system (2.1) on the whole domain R(T ).

The only thing left is to prove that u = u(t, x) satisfies the initial condition (3.1) and the

final condition (3.2).

In fact, the C2 solutions u = ul(t, x) (resp., u = ur(t, x)) and u = uf (t, x) satisfy simul-

taneously the one-sided mixed initial-boundary value problem for the same system (2.1) (i.e.,

(4.13)) with the same final (resp., initial) condition

x =
L

2
: (u, ux) = (a(t), a(t)), 0 ≤ t ≤ T1 (4.22)

and the same boundary condition (4.15) (resp., (4.18)). Noting the choice of T1 in (4.3), it is

easy to see that the maximum determinate domain of this one-sided mixed problem contains

the triangular domain {
(t, x)

∣∣∣ 0 ≤ t ≤ 2T1x

L
, 0 ≤ x ≤ L

2

}
(
resp.,

{
(t, x)

∣∣∣ 0 ≤ t ≤ 2T1(L− x)

L
,
L

2
≤ x ≤ L

})
. (4.23)

Then, by the uniqueness of C2 solution to the one-sided mixed initial-boundary value problem

(see [2, 7]), we have that u(t, x) ≡ uf (t, x) on these domains and, in particular, (3.1) holds. In

a similar way, we have (3.2). Thus, u = u(t, x) satisfies all the requirements of Lemma 4.1.

Theorem 4.2 (Local One-Sided Exact Boundary Controllability) Suppose that aij, bij,

ci, λi, µi and lij (i, j = 1, · · · , n) are C1 functions with respect to their arguments. Suppose

furthermore that (3.7), (3.10)–(3.11) and (3.13) hold. Let

T > L
(

max
i=1,··· ,n

1

λ̃+i (0, 0, 0)
+ max

i=1,··· ,n

1

|λ̃−i (0, 0, 0)|

)
. (4.24)

For any given initial data (φ(x), ψ(x)) and final data (Φ(x),Ψ(x)) with small norms ∥(φ(x),
ψ(x))∥C2[0,L]×C1[0,L] and ∥(Φ(x),Ψ(x))∥C2[0,L]×C1[0,L], and for any given boundary functions

(Hp(t), Hq(t)) with small norms ∥(Hp(t),Hq(t))∥C2[0,T ]×C1[0,T ] (p = 1, · · · , l; q = l+1, · · · , n),
such that the conditions of C2 compatibility are satisfied at the points (t, x) = (0, 0) and

(T, 0), respectively, there exist boundary controls (Hr(t), Hs(t)) with small norms ∥(Hr(t),

Hs(t))∥C2[0,T ]×C1[0,T ] (r = 1, · · · ,m; s = m + 1, · · · , n), such that the mixed initial-boundary

value problem (2.1), (3.1) and (3.8)–(3.9) admits a unique C2 solution u = u(t, x) with small

C2 norm in the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies exactly the final

conditions (3.2).

In order to prove Theorem 4.2, it suffices to establish the following lemma (see [2]).
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Lemma 4.2 Under the assumptions of Theorem 4.2, for any given initial data (φ,ψ) and fi-

nal data (Φ,Ψ) with small norms ∥(φ(x), ψ(x))∥C2[0,L]×C1[0,L] and ∥(Φ(x),Ψ(x))∥C2[0,L]×C1[0,L],

for any given boundary functions (Hp(t),Hq(t)) with small norms ∥(Hp(t),Hq(t))∥C2[0,T ]×C1[0,T ]

(p = 1, · · · , l; q = l + 1, · · · , n), such that the conditions of C2 compatibility are satisfied at

the points (t, x) = (0, 0) and (T, 0), respectively, system (2.1) admits a C2 solution u = u(t, x)

with small C2 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies

simultaneously the initial condition (3.1), the final condition (3.2) and the boundary condition

(3.8).

Proof Noting (4.24), there exists an ε > 0 so small that

T > L
(

max
|(u,v,w)|≤ε
i=1,··· ,n

1

λ̃+i (u, v, w)
+ max

|(u,v,w)|≤ε
i=1,··· ,n

1

|λ̃−i (u, v, w)|

)
. (4.25)

Let

Tf = L max
|(u,v,w)|≤ε
i=1,··· ,n

1

|λ̃−i (u, v, w)|
, Tb = L max

|(u,v,w)|≤ε
i=1,··· ,n

1

λ̃+i (u, v, w)
. (4.26)

(1) First, we consider the forward mixed initial-boundary value problem for system (2.1)

with the initial condition (3.1), the boundary condition (3.8) and the artificial boundary con-

dition (4.5) (in which gi(t) (i = 1, · · · , n) satisfy the same assumptions). By Theorem 3.1

and Remark 3.2, and noting (3.10), this forward problem has a unique semi-global C2 solution

u = uf (t, x) with small C2 norm in the domain Rf = {(t, x) | 0 ≤ t ≤ Tf , 0 ≤ x ≤ L}, and
(4.6) holds. Thus, we can determine the corresponding value of (uf , ufx) at x = 0 as

x = 0 : (uf , ufx) = (a(t), a(t)), 0 ≤ t ≤ Tf , (4.27)

∥(a(t), a(t))∥C2[0,Tf ]×C1[0,Tf ] is small enough, and (a(t), a(t), a′(t)) satisfies the boundary con-

dition (3.8) on x = 0 for 0 ≤ t ≤ Tf .

(2) Similarly, considering the backward mixed initial-boundary value problem for system

(2.1) with the final condition (3.2), the boundary condition (3.8) and the artificial boundary

condition (4.9) (in which gi(t) (i = 1, · · · , n) satisfy the same assumptions). Noting (3.11), by

Remarks 3.1 and 3.2, this backward problem has a unique semi-global C2 solution u = ub(t, x)

with small C2 norm on the domain Rb = {(t, x) | T −Tb ≤ t ≤ T, 0 ≤ x ≤ L}, and (4.10) holds.

Thus, we can determine the corresponding value of (ub, ubx) at x = 0 as

x = 0 : (ub, ubx) = (b(t), b(t)), T − Tb ≤ t ≤ T, (4.28)

∥(b(t), b(t))∥C2[T−Tb,T ]×C1[T−Tb,T ] is small enough, and (b(t), b(t), b′(t)) satisfies the boundary

condition (3.8) on x = 0 for T − Tb ≤ t ≤ T .

(3) Since Tf+Tb < T , the two domains Rf and Rb never intersect each other. Then we can

find a vector function (c(t), c(t))∈C2[0, T ]×C1[0, T ] with small norm ∥(c(t), c(t))∥C2[0,T ]×C1[0,T ],

such that

(c(t), c(t)) =

{
(a(t), a(t)), 0 ≤ t ≤ Tf ,

(b(t), b(t)), T − Tb ≤ t ≤ T,
(4.29)

and (u, ux, ut) = (c(t), c(t), c′(t)) satisfies the boundary condition (3.8) on the whole interval

[0, T ].
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Changing the role of t and x, we now consider the rightward mixed initial-boundary value

problem for system (4.13) with the initial condition

x = 0 : u = c(t), ux = c(t), 0 ≤ t ≤ T (4.30)

and the boundary conditions

t = 0 : u = φ(x), 0 ≤ x ≤ L, (4.31)

t = T : u = ψ(x), 0 ≤ x ≤ L. (4.32)

By Theorem 3.1 and Remark 3.2, we get a unique semi-global C2 solution u = u(t, x) with

small C2 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, and

|(u, ux, ut)(t, x)| ≤ ε, ∀(t, x) ∈ R(T ). (4.33)

(4) The C2 solutions u = u(t, x) and u = uf (t, x) satisfy simultaneously the one-sided

mixed initial-boundary value problem for the same system (2.1) (i.e., (4.13)) with the same

initial condition

x = 0 : (u, ux) = (a(t), a(t)), 0 ≤ t ≤ Tf (4.34)

and the same boundary condition (4.31). By the choice of Tf in (4.26), it is easy to see that the

maximum determinate domain of this one-sided mixed problem contains the triangular domain{
(t, x)

∣∣∣ 0 ≤ t ≤ Tf
L

(L− x), 0 ≤ x ≤ L
}
. (4.35)

By the uniqueness of C2 solution to the one-sided mixed initial-boundary value problem (see

[2, 7]), we have u(t, x) ≡ uf (t, x) on this domain and, in particular, (3.1) holds. In a similar

way, we have (3.2). Thus, u = u(t, x) satisfies all the requirements of Lemma 4.2.

Remark 4.1 In Case (1), the number of positive eigenvalues is equal to the number of

negative eigenvalues for system (2.1), we can still realize the one-sided local exact boundary

controllability by suitable boundary controls acting on the end x = 0, provided that assumptions

(3.10)–(3.11) and (3.13) are replaced by assumptions (3.10) and (3.12)–(3.13).

5 Local Two-Sided and One-Sided Exact Boundary Controllabilities
for Other Cases

In Case (2), corresponding local two-sided and one-sided exact boundary controllabilities

are as follows.

Theorem 5.1 (Local Two-Sided Exact Boundary Controllability) Suppose that aij, bij,

ci, λi, µi, lij (i, j = 1, · · · , n) are C1 functions with respect to their arguments. Suppose

furthermore that (3.5), (3.14), (3.17) and (3.19) hold. Let

T > L max
i=1,··· ,n

1

|λ̃±i (0, 0, 0)|
. (5.1)

For any given initial data (φ(x), ψ(x)) and final data (Φ(x),Ψ(x)) with small norms ∥(φ(x),
ψ(x))∥C2[0,L]×C1[0,L] and ∥(Φ(x),Ψ(x))∥C2[0,L]×C1[0,L], there exist boundary controls (Hp(t),
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Hq(t)) and (Hr(t),Hs(t)) with small norms ∥(Hp(t),Hq(t))∥C2[0,T ]×C1[0,T ] and ∥(Hr(t),

Hs(t))∥C2[0,T ] ×C1[0,T ] (p = 1, · · · , l; q = l+1, · · · , d1+d2; r = 1, · · · ,m; s = m+1, · · · , 2n−
(d1 + d2)), such that the mixed initial-boundary value problem (2.1), (3.1) and (3.15)–(3.16)

admits a unique C2 solution u = u(t, x) with small C2 norm on the domain R(T ) = {(t, x) |
0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies exactly the final condition (3.2).

In order to prove Theorem 5.1, it suffices to establish the following lemma.

Lemma 5.1 Under the assumptions of Theorem 5.1, for any given initial data (φ,ψ) and fi-

nal data (Φ,Ψ) with small norms ∥(φ(x),ψ(x))∥C2[0,L]×C1[0,L] and ∥(Φ(x),Ψ(x))∥C2[0,L]×C1[0,L],

system (2.1) admits a C2 solution u = u(t, x) with small C2 norm on the domain R(T ) =

{(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies simultaneously the initial condition (3.1) and

the final condition (3.2).

Proof Noting (5.1), there exists an ε > 0 so small that

T > L max
i=1,··· ,n

max
|(u,v,w)|≤ε

1

|λ̃±i (u, v, w)|
. (5.2)

Let

T1 =
L

2
max

i=1,··· ,n
max

|(u,v,w)|≤ε

1

|λ̃±i (u, v, w)|
. (5.3)

(1) First, we consider the forward mixed initial-boundary value problem for system (2.1)

with the initial condition (3.1) and the following artificial boundary conditions:

x = 0 :

{
(Id2 , 0)L(0)u = f(t),

(Id1
, 0)L(0)ux = f̃(t),

(5.4)

x = L :

{
(0, In−d2)L(0)u = f(t),

(0, In−d1
)L(0)ux = f̃(t),

(5.5)

where

f(t) = (f1(t), · · · , fd2(t)),

f(t) = (f1(t), · · · , fn−d2
(t))

are any given C2 vector functions with small C2[0, T1] norms, and

f̃(t) = (fd2+1(t), · · · , fd1+d2(t)),

f̃(t) = (fn−d2+1(t), · · · , f2n−(d1+d2)(t))

are any given C1 vector functions with small C1[0, T1] norms, such that the conditions of C2

compatibility are satisfied at the points (t, x) = (0, 0) and (0, L), respectively. By Theorem

3.2 and Remark 3.3, this forward problem has a unique semi-global C2 solution u = uf (t, x)

with small C2 norm on the domain Rf = {(t, x) | 0 ≤ t ≤ T1, 0 ≤ x ≤ L}. In particular,

we have (4.6). Thus, we can determine the corresponding value of (uf , ufx) at x = L
2 as

(a(t), a(t)) (0 ≤ t ≤ T1), which satisfies (4.7) and the corresponding conditions.
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(2) Similarly, we consider the backward mixed initial-boundary value problem for system

(2.1) with the final condition (3.2) and the following artificial boundary conditions:

x = 0 :

{
(0, In−d2)L(0)u = g(t),
(0, In−d1)L(0)ux = g̃(t),

(5.6)

x = L :

{
(Id2 , 0)L(0)u = g(t),

(Id1 , 0)L(0)ux = g̃(t),
(5.7)

where g(t) = (g1(t), · · · , gn−d2(t)), g(t) = (g1(t), · · · , gd2
(t)) are any given C2 vector functions

with small C2[T − T1, T ] norms, g̃(t) = (gn−d2+1(t), · · · , g2n−(d1+d2)(t)), g̃(t) = (gd2+1(t), · · · ,
gd1+d2

(t)) are any given C1 vector functions with small C1[T − T1, T ] norms, such that the

conditions of C2 compatibility are satisfied at the points (t, x) = (T, 0) and (T, L), respectively.

By Remark 3.4, this backward problem has a unique semi-global C2 solution u = ub(t, x) with

small C2 norm on the domain Rb = {(t, x) | T − T1 ≤ t ≤ T, 0 ≤ x ≤ L}. In particular,

we have (4.10). Thus, we can determine the corresponding value of (ub, ubx) at x = L
2 as

(b(t), b(t)) (T − T1 ≤ t ≤ T ), which satisfies (4.11) and corresponding conditions.

(3) Since 2T1 < T , the two domains Rf and Rb never intersect each other. Then, we can

find a vector function (c(t), c(t)) ∈ C2[0, T ]×C1[0, T ] with small norm ∥(c(t), c(t))∥C2[0,T ]×C1[0,T ],

such that (4.12) holds. Noting (2.6), we change the role of t and x so that system (2.1) can be

equivalently rewritten to (4.13) in a neighborhood of (u, v, w) = (0, 0, 0).

Consider the leftward mixed initial-boundary value problem for system (4.13) with the

final condition (4.14) and the following boundary conditions coming from the original initial

condition (3.1) and final condition (3.2):

t = 0 :

{
(0, In−d2)L(0)u = (0, In−d2)L(0)φ(x),

(0, In−d1)L(0)ut = (0, In−d1)L(0)ψ(x),
0 ≤ x ≤ L

2
, (5.8)

t = T :

{
(Id2 , 0)L(0)u = (Id2 , 0)L(0)Φ(x),

(Id1 , 0)L(0)ut = (Id1 , 0)L(0)Ψ(x),
0 ≤ x ≤ L

2
. (5.9)

By Remark 3.4, there exists a unique semi-global C2 solution u = ul(t, x) with small C2 norm

on the domain Rl = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L
2 }. In particular, we have (4.17).

(4) Similarly, by Remark 3.3, the rightward mixed initial-boundary value problem for

system (4.13) with the initial condition (4.14) and the following boundary conditions coming

from the original initial condition (3.1) and final condition (3.2):

t = 0 :

{
(Id2 , 0)L(0)u = (Id2 , 0)L(0)φ(x),

(Id1 , 0)L(0)ut = (Id1 , 0)L(0)ψ(x),

L

2
≤ x ≤ L, (5.10)

t = T :

{
(0, In−d2)L(0)u = (0, In−d2)L(0)Φ(x),

(0, In−d1)L(0)ut = (0, In−d1)L(0)Ψ(x),

L

2
≤ x ≤ L (5.11)

admits a unique semi-global C2 solution u = ur(t, x) with small C2 norm on the domain

Rr = {(t, x) | 0 ≤ t ≤ T, L2 ≤ x ≤ L}. In particular, we have (4.20).

(5) Let u(t, x) be defined by (4.21). Obviously, u ∈ C2[R(T )] and it satisfies system (2.1)

on the whole domain R(T ). The only thing left is to prove that u = u(t, x) satisfies the initial

condition (3.1) and the final condition (3.2).
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In fact, the C2 solutions u = ul(t, x) (resp., u = ur(t, x)) and u = uf (t, x) satisfy simul-

taneously the one-sided mixed initial-boundary value problem for the same system (2.1) (i.e.,

(4.13)) with the same final (resp., initial) condition (4.22) and the same boundary condition

(5.8) (resp., (5.10)). Noting the choice of T1 in (5.3), it is easy to see that the maximum deter-

minate domain of this one-sided mixed problem contains the triangular domain (4.23). Then,

by the uniqueness of C2 solution to the one-sided mixed initial-boundary value problem (see

[2, 7]), we have u(t, x) ≡ uf (t, x) on these domains, and in particular, (3.1) holds. In a similar

way, we have (3.2). Thus, u = u(t, x) satisfies all the requirements of Lemma 5.1.

Theorem 5.2 (Local One-Sided Exact Boundary Controllability) Suppose that aij, bij,

ci, λi, µi and lij (i, j = 1, · · · , n) are C1 functions with respect to their arguments. Suppose

furthermore that (3.5), (3.14) and (3.17)–(3.19) hold. Let

T > L
(

max
j=1,··· ,d1

k=d1+1,··· ,d2

{ 1

λ̃±j (0, 0, 0)
,

1

λ̃+k (0, 0, 0)

}
+ max

k=d1+1,··· ,d2
h=d2+1,··· ,n

{ 1

|λ̃−k (0, 0, 0)|
,

1

|λ̃±h (0, 0, 0)|

})
. (5.12)

For any given initial data (φ(x), ψ(x)) and final data (Φ(x),Ψ(x)) with small norms ∥(φ(x),
ψ(x))∥C2[0,L]×C1[0,L] and ∥(Φ(x),Ψ(x))∥C2[0,L]×C1[0,L], and for any given boundary functions

(Hp(t), Hq(t)) with small norms ∥(Hp(t),Hq(t))∥C2[0,T ]×C1[0,T ] (p = 1, · · · , l; q = l+1, · · · , d1+
d2), such that the conditions of C2 compatibility are satisfied at the points (t, x) = (0, 0) and

(T, 0), respectively, there exist boundary controls (Hr(t), Hs(t)) with small norms ∥(Hr(t),

Hs(t))∥C2[0,T ]×C1[0,T ] (r = 1, · · · ,m; s = m+1, · · · , 2n−(d1+d2)), such that the mixed initial-

boundary value problem (2.1), (3.1) and (3.15)–(3.16) admits a unique C2 solution u = u(t, x)

with small C2 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies

exactly the final condition (3.2).

Remark 5.1 The proof of Theorem 5.2 is similar to that of Theorem 4.2. Noting (3.14)

and (3.18), in the second step, we need to solve the backward mixed initial-boundary value

problem for system (2.1) with the final condition (3.2), the boundary condition (3.15) and the

following artificial boundary conditions:

x = 0 :

{
(0, In−(d1+d2))L(0)u = g(t),

(0, In−(d1+d2))L(0)ux = g̃(t),
(4.9)′

x = L :

{
(Id2 , 0)L(0)u = g(t),

(Id1 , 0)L(0)ux = g̃(t).
(5.13)

By Remark 3.4, if the corresponding norms of g(t), g̃(t), g(t) and g̃(t) are small enough and the

conditions of C2 compatibility are satisfied at the points (t, x) = (0, 0) and (T, 0), respectively,

then we can get the existence and uniqueness of the semi-global C2 solution. The other steps

are similar to those in the proof of Theorem 4.2.

For Case (3), we need only to consider the local one-sided exact boundary controllability

with controls acting on the end x = 0. A similar conclusion can be obtained.

Theorem 5.3 (Local One-Sided Exact Boundary Controllability on the End x = 0) Sup-

pose that aij, bij, ci, λi, µi, lij (i, j = 1, · · · , n) are C1 functions with respect to their arguments.
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Suppose furthermore that (3.6) holds. Let

T > L max
i=1,··· ,n

1

λ̃−i (0, 0, 0)
. (5.14)

For any given initial data (φ(x), ψ(x)) and final data (Φ(x),Ψ(x)) with small norms ∥(φ(x),
ψ(x))∥C2[0,L]×C1[0,L] and ∥(Φ(x),Ψ(x))∥C2[0,L]×C1[0,L], there exist boundary controls (H(t),

H(t)) with small norm ∥(H(t),H(t))∥C2[0,T ]×C1[0,T ], such that the mixed initial-boundary value

problem (2.1), (3.1) and (3.20) admits a unique C2 solution u = u(t, x) with small C2 norm on

the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies exactly the final condition

(3.2).

Remark 5.2 The second-order quasilinear hyperbolic equation utt+a(u, ux, ut)utx+b(u, ux,

ut)uxx = c(u, ux, ut) considered in [13], where u is the unknown function of (t, x), is a special

form of system (2.1) for n = 1.

Remark 5.3 The second-order quasilinear hyperbolic system utt −A(u, ux, ut)uxx = F (u,

ux, ut) considered in [11], where u = (u1, · · · , un)T is the unknown vector function of (t, x), is

also a special form of system (2.1). The conclusions obtained in this paper can also be applied

to this kind of second-order quasilinear hyperbolic systems.
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