Chin. Ann. Math. .
32B(6), 2011, 823-846 Chinese Annals of

DOL: 10.1007 /511401-011-0682-7 Mathematics, Series B
© The Editorial Office of CAM and
Springer-Verlag Berlin Heidelberg 2011

Density Results in Sobolev Spaces Whose Elements
Vanish on a Part of the Boundary

Jean-Marie Emmanuel BERNARD!

Abstract This paper is devoted to the study of the subspace of W™ " of functions that van-
ish on a part 7o of the boundary. The author gives a crucial estimate of the Poincaré con-
stant in balls centered on the boundary of «y. Then, the convolution-translation method,
a variant of the standard mollifier technique, can be used to prove the density of smooth
functions that vanish in a neighborhood of 7, in this subspace. The result is first proved
for m = 1, then generalized to the case where m > 1, in any dimension, in the framework
of Lipschitz-continuous domain. However, as may be expected, it is needed to make ad-
ditional assumptions on the boundary of 7o, namely that it is locally the graph of some
Lipschitz-continuous function.
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1 Introduction

Let © be a bounded domain in R%, d > 2, whose boundary is Lipschitz-continuous. This
article mainly deals with functions of W™ " (§2, vo), where r > 1 and m > 1, which are functions
of W™ () that vanish on an open part 7y of the boundary 9§2. More precisely, we study the
density of smooth functions that vanish on a neighborhood of vy in the space W™ " (2, o). This
density is well-known in particular cases and is used in [1]. It is proven in two dimensions for
m = 1 in [1] by introducing a convolution-translation operator. The aim of the present paper
is to prove the density result in the general case, dimension d > 3 and m > 1, in the same way
as in [1]. Indeed, this method of convolution-translation is very interesting because it allows
us to really construct the approximation by smooth functions and it is understandable also for
nonspecialists. It thus seems useful to give a detailed proof, by a constructive method, within
easy reach, of these significant results.

Let v, denote the complementary set of 7, in the boundary 9. In two dimensions, it is
generally assumed, as in [1], that 5,07, is composed of a finite number of points. In this article,
we assume that the intersection 7, N%; has a finite number of connected components and that
the boundary of g is locally the graph of some Lipschitz-continuous function, which allows us to
derive a basic estimate of the Poincaré constant in balls centered on 7, N7¥,;. We use a modified

mollification technique, initiated by [6] and rediscovered simultaneously in [1, 4], which consists
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in combining a convolution and a translation. First, we localize and establish a partition of
unity, which allows us to distinguish three parts in the boundary. On a neighborhood of a point
of vy, we make a translation outside the domain, in a neighborhood of a point of 71, make a
translation inside the domain, and next apply, in both cases, the mollification technique. On the
third part of the boundary, which is composed of neighborhoods of the connected components
of 7, N7, because of Poincaré’s inequality, we approximate the function by 0.

In dimension d > 3, the neighborhoods of the connected components of 7, N7, are no longer
balls, which complicate the previous approximation by 0: we consider an optimal covering by
balls and a special technique of permutation and partition to deal with the intersections of balls
in the estimates.

In this paper, the main result is Theorem 3.1, which establishes the density in W17 (Q, o),
that is to say the density result for m = 1. The generalization to the case m > 1, which is
Theorem 4.1, is straightforward.

This article is organized as follows. In Section 2, we define the adequate covering of Q and
the partition of unity subordinated to this covering. In Section 3, we prove our main density
result in W17 (Q,v). Finally, Section 4 is devoted to the generalization of this result to the
space W™ (Q,~0), with m > 1.

We end this introduction with some notation that we shall use further on. We recall that Q2
is a bounded domain in R?, d > 2, whose boundary is Lipschitz-continuous. Let v and v; be

two non-empty open parts of 92 that have a finite number of connected components and verify
q
MN=7 Uy, Nmn=0, FN7 = UKk’ (L.1)
k=1
where K, 1 < k < ¢, denote the connected components of 7, N7%; and, for 1 < k < g, let us set
Va>0, Gra={xecR? dx,K;)<a}, (1.2)
where d( -, -) is the Euclidian distance in R?. Afterwards, we choose a such that

1

— i ; i <1. .
21£b%qd(KZ,KJ) and a<1 (1.3)
i# ]

O0<a<aq)=

=

We define for each real r > 1 and each integer m > 1,

m,r — m,r a]/v _ .
W (9770)_{UEW (Q)7 <%> ’Y0_07 .7_07 7m_1}7 (14)
D(Q,7) = {v € D(Q), v is equal to 0 in a neighborhood of ~o}. (1.5)

2 Partition of Unity

2.1 First covering of Q

Since the boundary of 2 is Lipschitz-continuous, for every x € 02, there exist an open
hypercube Cy, which is a neighborhood of x in R?, and new orthogonal coordinates y = (y’, ya),

where y' = (y1,- -+ ,y4—1), such that
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d
(i) Cx= H] — x5, Ox 5.
Jj=1

d—1
(ii) There exists a Lipschitz-continuous function ®* defined in [] ] — axj;, ax,;| of constant
j=1
d—1
Ly, such that Vy' € Hl] — axj, ax,;[, |PX(y')] < =% and
§=
ONCx={y € Cx, ya <P*(y)}, 992N Cx ={y € Cx, ya = 2*(Y)}- (2.1)
Moreover, Vx € v Uv1, Vj = 1,--- ,d, we choose the real numbers ayx ; such that Cx N7y, N7,

= (). Since Yz € 79, Cx N7y, =0 and Vx € 71, Cx N7, = 0, we have

Vx €7, v NCx={yeCx, ya=2*()},
Vx €v1, 71 NCx={y € Cx, ya=2*(y')}.

In addition, for d > 2, denotingy = (y”, ya—1,yd), we assume that, for every x € 7,N7¥;, the

previous open hypercube Cy is such that there exists a second Lipschitz-continuous function U*
d—2 d—2

defined in the set [] |—ax j, ax ;[ of constant My, such that Vy” € []]—ax,;,ax,;[, |¥*(y")| <
j=1 j=1
=L and
YN Cx ={y € Cx, ya=2*(¥'), ya1 > V*(y")}, (2.2)
11 NCx ={y € Cx, ya=P*(y'), ya—1 < V*(y")}. (2.3)

For d = 2, we set 0 in the place of U*(y”) in (2.2) and (2.3).
For every strictly positive real number « verifying (1.3), let us define a finite open covering
of Q as follows.

First, we have
an( U CX)U(OGk,%).
xEvoUv1 k=1

Note that, owing to (1.3), G; o NGja =0,1 <4,j < g, i # j. Second, the compactness implies

that there exists a finite open covering of OS2 :
q To
o0c (UGk:)U( U Cmn), (2.4)
k=1 k=q+1

where the open sets Cx are defined by (2.1) and Gy, is defined by (1.2). Moreover, there exists

an open set Cj o, such that

Coa @ and O CoulJ( qu Grs ) U( U Cony...); (2.5)
k=1

k=q+1

which is an open covering of ) denoted by R,.
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2.2 Second covering of € and associated partition of unity
Let p be a standard mollifier, which means that p is a positive C> function in R? supported
in the unit ball, such that fRd p(x)dx = 1. For every p € N*, we define
vx €RY, pp(x) = plp(px). (2.6)
Let ¢ belong to C*(R.), such that
9 11 ,
Vit € [0,176}, P)=1,¥t> o, @) =0 and VeeRy, [¢/(1)] <A,
For example, we can choose ¢ defined on [% 18] by o(t) = w, with A = 47. Let us
recall that, for k=1,--- ,gand i =1,--- ,d, x + 0;d(x, K}) belongs to L>(R%) and verifies
Vi=1,---,d, Vx € R? |9;d(x, K;)| <1 (2.7)

(see [4]). Then, we set
(2.8)

1
W 1<k <q, Oap=o(=d(, K)) *pp.
o
with po = [L8] + 1, where [z] denotes the integral part of the real number z, and p, is defined
) d’

by (2.6). This function belongs to D(Gy,q) and verifies, for ¢ =1
=0,

VXGGk,%, Qak( ):17 VX¢G,€7ST«, 0a7k(x)
A (2.9)
vx € R [0i00.1(x)] < =
Considering successively that 8, ; + (1 —64,;) = 1, for j =1,--- , g, we obtain
q—1 q
Oan + (1= a)0az + -+ (TT(1 = 00)) 0+ [T (1 = 0us) =
j=1 j=1
But, since the sets G, are disconnected and since 6, ; belongs to D(G, o), for 1 < j < g, we
k=1
have ( [1(- Ga,j))ank = 0, . Thus, we obtain
j=1
q
Oa + 002+ +0aq+ [
j=1
Hence, we derive, for every u € WH"(Q, o)
(2.10)

1- G(Lj))u.

q
uw="0 1u+aa,2u+-~-+9a,qu+(]_[(

<

Let {fa,;};2y be a partition of unity on Q (see [2] or [3]), subordinated to the covering R

defined by (2.5). Substituting the functions 3, ; in (2.10) yields

Ta q
=010+ 0 0u+--+ 0, u+ Z (H(l - 9a7j))6a7ku.
k=0 j=1
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q
Considering that, for every 1 < k < ¢, [[ (1 —0aj)Bar = 0, since, if x € G 2, O r(z) = 1,
j=1
we obtain

T
u= Z Ca kU, (2.11)
k=0

q
where @, 1, = ( I1a- 9a7j)>ﬂa7k, k=0orqg+1<k<r,and gor =04k 1<k<gq. Thus,
j=1

for a verifying (1.3), Po = {¢a,k}1, is a partition of unity on €2, subordinated to the covering
{Ok,a}z(':o, with

Oo,0 = Coay,  Oka =Gra for1<k<gq,
Oka=Cm,, forqg+1<k<r,, (2.12)

)

where the sets Cp o, G, and Cx are respectively defined by (2.5), (1.2) and (2.1).

3 Density Result in W (£2, )

Theorem 3.1 Let r > 1 be a real number. Let Q be a bounded domain in R? whose
boundary is Lipschitz-continuous and let vo be an open part of OQ verifying (1.1). Let the
spaces WL (Q,v9) and D(, 7o) be defined respectively by (1.4) and (1.5). Then the space
D(Q,7p) is dense in WL (2, 7).

Proof From now on, we suppose that « verifies (1.3), so we can consider the partition
P, defined by (2.12). For every real number ¢ > 0, let us define a real . > 0, such that for
0 < o < a, the partition of unity P, subordinated to the covering {Oj o}~ allows us to
construct an approximation u. € D(2, 7o) of u € WH"(Q, ) in W norm.

Let us prove a first lemma which allows us to define, for every k > 1, an extension v, €
WL (B(0,ka)) of v € WHT(B(0,a)), such that the norm of v, in W7 (B(0, ka)) is bounded
by the norm of v in W17 (B(0, «)) multiplied by a constant independant of a.

Lemma 3.1 For everyy € RY, a > 0 and k > 1, there exists a constant C(k,d,r)
independant of o such that, Yo € WhT(B(y, a)), there exists an extension v, € WL (B(y, ka))
of v wverifying
(ks d,r) vl e By .0

c
(3.1)
C(k,d, )| Vvl Lr(B(y,a))-

||Uo¢ HL"(B(y,koz)) <

IVvallr(B(y.ka)) <

Proof First, considering the map x — v(y + x), we can assume that y = 0. Let us define,
for a < B, the set Cr(a, 8) by

Cr(a,B) = {x € R, a < ||x]| < 8} (3.2)

and the function v,, which extends the function v on B(0, ka) by

Vx € Cr(a, ka), va(x) = v((— 2(k:1— 0 + 22(: : 1)”(%”)x) (3.3)
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This definition is justified because if ||x|| = «, (— SG-T) T 22(2:1) ﬁ)x = x and we can verify
1 2k-1 « a
- (- o)X € Cr(aska) <= x € Cr( 5, a). 3.4
v = ( 2(k—1)+2(k—1)\|xH)xe rla,ka) <= x € Cr(5,a (34)

By taking derivatives in the sense of distributions and applying Green’s formula in the sets
B(0, ) and Cr(a, ka), we prove that v, belongs to W17 (B(0, ka)):

vy ov
Vxe BOa), 0% = 5 ().
Oy _Ov

Vx € Cr(a, ka), oz, (x) = oz, (v(x)),

where y(x) is defined in (3.4). In order to compute the norm in L"(Cr(a, ko)) of v, and Vv,

we consider the mapping

<I>:x»—>y:(— 1 2k —1 a)x

2(k — 1) +2(k71)m

defined on Cr(a, k). Since, for 1 < i <d,

v = =20k — Dy + (2k — 1) 2%
Iyl
we derive
> Y7
OTi () = —o(k — 1) + (2 — Dol — <2k —1) + (2% — 1)a——
Oyi lyll* — Iyl
and, for j # 1,
8xi YilY; (2]6 — l)a
(¥) = —(2k = Da il <
Oy; [l 2|y
Hence, in view of ||y|| > §, we obtain, Yy € Cr(§, ),
vyeor(Sa), |Zig)|<ak-2. [Py <ot (3.5)
2 Ay dy;
In the same way, we derive
8yi k 8yj 2k —1 k
79 < , .
Vx € Cr(a, ka), axi(x)‘_k—l’ axi(x) S-S hod (3.6)

Therefore, the one-to-one mapping ® from Cr(a, ka) to Cr(%, a) is of class C' and its inverse
! is also of class C* on Cr(§, ). Moreover, considering the Jacobian determinant J(y) =
det((®71)'(y)), there exists a constant C(k, d) such that

Vy € Cr(%,oz), 1J(y)| < C(k, d). (3.7)

Then, we have

Lo = [ prumiay <ot [

5 Cr(5,a)
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which gives

[vallzr (B(okay < (L4 Ck, d)VI7r(50,0))- (3.8)

Next, we can write, for 1 <i <d, Vx € Cr(a, ka),

(%a 4 v ayj
Z:: 87 8a:i (X)

Holder’s inequality and the estimations (3.6) yield

o] = (33200 "‘)”(Zl%
< () (Sl

Then, owing to (3.7), we obtain

)

Ovg T . )
[l meen(Eyy ewas [ (5 wle
which implies
- Ova | dk r .
Zz_;/cr(a,ka) Ox; ()| dx < (m C(k,d) Z/ dy.

Finally, we have

dk N\
IVvalZr(Bokay) < ((ﬁ) C(k,d) + 1)HVUHET(B(O,0¢))’
and with (3.8) in addition, the lemma follows with C(k,d,r) = ((;2&)" C(k,d) + 1)*.
Let v € W5 (RY) such that v|g belongs to W1 (Q,70). Let y belong to 7, N%,;. The next
lemma proves that the norm of v in L"(B(y, «)) is bounded by the norm of Vv in L"(B(y, «))

with a constant linear with respect to a.

Lemma 3.2 Lety belong to 5,N¥,, where vo and 1 are defined by (1.1), and v € WHT(R?)
such that vlg belongs to WHT(Q,v9). For 0 < a < g, where ag depends on Q, there exists a
constant Cy depending on v, d and §2, such that

||U||Lr(3(y ) = <Cia’ ||VU||LT(B(y a))- (3.9)

Proof First, let us assume d > 2. For all x € 7, N7, we consider the hypercube C} =
d
[T] — %2, “52[, where the real ax j, j =1,--- ,d, are defined in (2.1)—(2.3). The compactness
j=1

of 7, N7, implies that there exists a finite open covering of 7, N 7¥;

YN < | Ch.- (3.10)
i=1
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Therefore, Yy € 7, N7, there exists an integer 4,, denoted ¢ for simplifying the notation, such
that y belongs to C} . Considering aj defined in (1.3), we choose a such that

. 1
0 < a < ap = min(ag, ag, 1), where af = 5 i ag, ;. (3.11)
1<i<s

This choice of «, since y belongs to Oy, yields that

d
= H]yj —a,y; + afC Cy,. (3.12)
j=1
Let us set
M = max (1 max My )7 L = max (1 max Ly, ) (3.13)
1<j<s 1<j<s 7
For every x in C(y, @), let us define the point z = (21, , z4) = z(x) by
Vi<j<d-—2 ! +(1 ! ) (3.14)
=2, %= s R SV )
== T AMIvd-2” ISV YAl
1 3
= —wa+ (1 ) = % (7). 3.15
Zd-1 = gy 1+( L Va1t g A (z') (3.15)
Since x € C(y, «), in view of (2.2), (2.3) and (3.13), we derive
Vi<j<d-1, |z —yl<a
@ « e
_ — _ _ —, d=",y" —. 3.16
Ya-1+ g7 <za-1 <Ya-r1+5p, dzyY) < o (3.16)
Then, we have
[0 (2") = yar| = [ (2") = 0¥ (v")] < My, d(2"¥") < 17
which implies U*i(z") < yq_1 + 737, and, therefore,
zq—1 > UX (Z”). (317)

From (3.16), we derive d(z’,y’) < ¢. Since |zq — ya| = |®*/(z') — ®*i(y')| < Ly, d(Z',y’), we
obtain |zg — y4| < . Hence, with (3.11), (3.16) and (3.17) , we derive the implication

x € Oy,a0) =z € C(y,a) N 0. (3.18)

Next, let us set
Vx € C(yaa)a fl(t) = (t7x2;"' 7xd)a fd(t) = (Zla'” 7Zd717t)v (3]‘9)
V1<Z<d7 fl(t):(zl7 7Zi717tami+1;“' awd)7 (320)

where z is defined by (3.14) and (3.15). Let v belong to W7 (R%). Since Vx € C(y,a),
f1(z4) = z belongs to 7o, that is to say, v(z) = 0 and f1(x1) = x, we can write

v(x)zg(v(fi(mi)) Z/xl ))dt = Z/% 2 () ar
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Hence, we derive

Li 81} r
T r—1
()" < d Z‘/ ey £(0) di (3.21)
Next, we have, for 1 <1 < d,
z; Yita v r
< (x; —y; r=1 f; :
[ ] < e pira | o] a

Integrating with respect to z; yields

Yita T; v
/ / oo (5(1)

where m;(x) = f;(z;). Then, we obtain

/ /13v(fi(t)) de§2a/
Cly.a) !z OTi r Jew,e

On the one hand, Vx € C(y, «), m;(x) belongs to C(y,a). On the other hand, the Jacobian

determinant J; of the transformation m;l is such that

r 2" Yyita o r
o < 200 [T |2 o)
T Jyi—a ox;

ov

dx.
ox; x

(m;(x))

Vi<i<d—1, J;=det((m;"))=A4MLVd—-2)""' J;=8LAMLVd—2)*?

Then, we derive, for 1 < i <d,

/ i Qv
Cly,a)

zi 8:@
Hence, owing to (3.21), we obtain

ov

T
dmi .

(fi(t))dtlrdx < (1)2’“+3L(4ML\/H )a=2a7 /
r Cly

ov

T
dm;,

d
1
/ lo(x)["dx < (f)dT‘12T+3L(4ML\/d —2)d" 27 Z/
Cly,a r i=1

Cly,a)
that is to say
[0l oy < K (ryd, Q)" V]| Lr ey a) (3.22)

where K(r,d,Q) = (+)d" 12" 3 L(4AML/d — 2 )42,
Next, in view of Lemma 3.1, we extend v| g(y.o) € W' (B(y, o)) by va € W (B(y, (Vd)a)).
Owing to (3.22) and considering that

B(y,a) € Cly,a) C By, (Vd)a),

we derive

o]

ET'(B(y,a)) < Jlval 2"(0 (y,a) < K(r,d,Q)a"||[Vva| z"(C(y,a))

S K(T d Q) THV'UD(”Tr B(y f)a
< K(r,d, Q)C(Vd, d,r)a" | Vo[l pry.a))
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and the result of the lemma follows for d > 2, with C; = K (r,d, Q) C(v/d,d,r).
Finally, for d = 2, in view of y; = 0, we set z; = ﬁxl + ﬁa and zo = ®*i(z1), where L is
defined as in (3.13). Then, we obtain 0 < 5% < z1 < a and we still have the implication (3.18).

)

In the same way as the previous, we can write, since v(z) = 0,

1 v T 2 Jv
vx € C(y, a), |v(x)|T§2T_1( / a—xl(t,xg)dt —1—‘/ a—@(zl,t)dt

Yy1+o ov T
< or—1 ((.’171 — Y1+ Oé)r_l/ 7(1&,(52) dt
y—l—a 8$1
Y2t ov r
+ (2o — +a“1/ —(z1,t dt).
(2 — y2 ) oo 83:2( 1,1)

Then, integrating on C(y,«) (note that on the right-hand side, we integrate the first term of

the sum, first with respect to z1, and the second term, first with respect to z2) yields

227"—1 T o r ) r
/ lo(x)|"dx < 706(/ —U(J;l,xg) dx—l—/ —U(zl,xg)‘ d.]?ldl‘g).
C(y,o r Cly,a) |02 Cly,a) |02
In view of dz; = 4Ldz;, we derive
10 (e < K (1,2, [Vl Lr(o(y,a))

22r+1 L

with K (r,2,Q) = , and we end the proof in the same way as the previous.

Let u € WL (R?) be an extension of u € WbT(€2,v9) outside 2. The two previous lemmas

allow us to establish the next lemma which gives an approximation of u by zero in G 4.

Lemma 3.3 For every real number ¢ > 0, there exists a real number a. verifying (1.3)

such that, for every 0 < a < a,

9
Vk=1,---,q, ||0a7kuHW1,r(kaamQ) < 47] (323)

Proof For k = 1,---,q, let {B(x;,a)}}_, be an open optimal covering of Gy o, where
B(x;,a) denotes the open ball with center x; and radius a. This means that there is no
covering of ék,a with less than p balls of radius a. Let i € N* such that 1 <7 < p. Note that
B(xi,@) NGy o # 0 and let z; belong to B(x;, ) NG o. Then, there exists y; € Kj, such that
d(z;,y;) < «, which implies d(x;,y;) < 2a. Hence, we derive

p

Gra C U B(x;,a) C U B(y;, 3a), (3.24)

i=1 i=1
such that the covering {B(x;,«)}?_, is maximal and the covering {B(y;,3a)}}_; verifies, Vi =

17"'7p7

yi belongs to Kj. (3.25)

Note that, ¥x € R?, Vn € N* and Va > 0, there exists a covering {B(x},a) f;f of the ball
B(x,na) with p, 4 = ([nv/d] + 1)¢, where [z] denotes the integral part of the real number z.
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Indeed, the ball of radius na is inscribed in a hypercube of edge 2na and the hypercube of edge
2—\/% is inscribed in a ball of radius a. Let ¢ € N* such that 1 < i < p and let us set

On the one hand, we have

U B(xj,a) C U B(y;,3a) C B(yi,9«) C B(x;,11a).
JEN; JEN;

On the other hand, the previous note implies
Pi11,d
B(x;,11a) C U B(x);, ).
j=1

Since the covering { B(x;, a)}_, of Gy o is maximal, we derive
VieN', 1<i<p, cardN; <piq=([11Vd]+1)%= My, (3.27)
where N; is defined by (3.26). Applying the crucial Lemma 3.2 yields

11 g0 < Cr @IV 5100 (3.28)

where C = 3"C. Then, from (3.24), we derive

p
el ooy < 115G, ) < D NN 5y, 300
i=1

and in view of (3.28), we obtain

p
el aney < Cra” D IVlL 5y, 30))- (3.29)

i=1

Now, we can assume that the integrals ||Vﬂ||Lr(B(yw(i>’3a)) are in decreasing order with

respect to ¢ where 1 is a permutation of the set {1,--- ,p}. To simplify the notation, we still
denote the index i instead of 1 (7). Thus, we assume that, fori =1,--- ;p — 1,
IVUllLr(B(y: 30)) 2 VUl Lr (B(yi11,30))- (3.30)

Next, we construct by finite induction a partition of I = {i € N*, 1 < i < p} in the following
way. We define Ip =1,4; =1 and for k > 1

Je ={j € Iy—1, B(y;,3a) N B(yi,,3a) # 0}, I ={j € Ir_1, B(y;,3a) N B(yi,,3a) = 0}

and i1 = min I if I, # (. Note that 4541 > ix, because, by construction, i1 > i and
ir & I. Let | > 1 such that I; = §) and I;_; # (. Considering that Ij_; = Jy U I} for
k=1,--- 1, we obtain the following partition of I:

l
I=J % (3.31)
k=1
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Moreover, by construction, the balls B(y;,,3a), k = 1,---,1 are disconnected two by two.

Hence, on the one hand, we derive

l

Ivall” o = ) VUl sy, 30 (3.32)
On the other hand, we have
P !
S IVl iy = 30 (D2 IV (a(y, 50 )-
i=1 k=1 jeJ

But, in view of (3.27) and (3.30), we can write

Y VL 5y, 30)) < MallVal

Jj€Jk

Lr(B(y:, 30))"

Thus, we derive
1

p
Z IVUllZr By 30)) < Ma Z IVUllLr By, 30))-
=1 k=1

Then, owing to (3.32), we obtain the crucial estimate

p
Valls e sy 30 < MallVal|” 5 < Mg|Valbeie o
> IVl S MV ) Ml TP

which gives, in view of (3.29),
lullZr Gy aney < C1Mad" IVl 7 g, .- (3.33)

Finally, for ¢ = 1,--- ,d, 0;(0axu) = 0i(0ak)u + 04 x0;u, where 6, is defined by (2.8).
From (2.9) and (3.33), we derive

[19:(0a,)ul

Lr(Gyane) < C1MaA™|| Vil

r
L7 (Grang) < J”U\ L™ (Grose)”

Considering (2.9) again and
||ai(3a,ku)||2r(c:k,amn) < 2T_1(||8i(9a,k)u||2r(ck,am) + ||9a,k3i“|\TLr(Gk,amQ))7
we obtain, for k=1,--- g,

100kl (@ wrgy < NllLr (G, 0y T 277 (C1 Ma A” + 1Dl VallLr 6, ) -

Note that
ﬂ Gi3a = Ky,
a>0
and the measure of K} is 0 in RY. Since @ belongs to W7 (R%), for k= 1,--- , ¢, we have

(}éiir}) 100, xullwr (G nno) = 0.
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Thus, there exists a real a. > 0, such that the inequalities (3.23) and (1.3) are verified.

Let us note that, considering the partition of unity P, defined by (2.12), such that 0 < a <
ae, and in view of 04 1 € D(Gy,a), (3.23) can be written as

€
Vk = ]-7 4, ||()0067kuHW1’T(Q) < an (334)
so that, for every k =1,---, ¢, we can approximate ¢, ju by 0 in Ok o = G a-

We now deal with the case k = 0, that is to say, we want approximate ¢, ou in Op . Let

us recall that ¢, ou has a compact support in O , with 60@ C . Therefore, we have

d(supp (pa,0u), 000,a) = pio > 0, (3.35)

and we can note that ¢, o, belongs to W1 (RY), where the latter denotes the extension by

zero. Then, for every p € N*, we define u, by
Vx € RRY,  up(x) = ((a,0u) * pp)(x) = /3( | Paou(x—y)pp(y)dy,
0,1

where p,, is defined by (2.6). In a standard way, we obtain that

lim u, = paou, in WH(RRY),

p——+oo

which implies that there exists a P. € N*, such that Vp > P,

€

lpa0u = upllwrr(op,0) < 7- (3.36)

Next, concerning the support of u,, we choose p > % and define the set £ = {x €
Oo.a, d(x,000 ) < %"} This implies that Yy € B(0, %) and Vx € E,

d(x —y,supp (¢a,0u)) > d(00g 4, supp (Pa,ou)) — d(x —y,x) — d(x,000,4) > % > 0.

In the same way, we have Vy € B(0, %) and Vx € Q\ O a,

2
d(x = y,5upp (o 0u)) = 52 > 0.

Hence, we derive that u, vanishes on F U (Q\ Oo,0). Setting ue,o = U, , where m, is defined

by m. = max([/%], P.) ([r] is the integral part of r), and considering the supports of ¢, ou and
Ue 0, yield
€ .
||g0a,0u — u570||W1*T(00,aI'TQ) = ||g0a70u — u670||W1,7‘(Q) S Z Wlth U570 S ,D(007a), (337)

where @0@ c Q.
The next lemma gives an approximation of ¢, yu in Oy o for k = ¢+ 1,---,r, such that

my, , € 71, that is, an approximation of u localized around ~;.
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Lemma 3.4 Let a be a real number verifying (1.3). For every real number € > 0 and for

every k =q+1,--- 74, such that my, o, € v1, there exists a function ue € D(QY) with compact
support in Oy o NQ, such that

|Pa,kt — e k|lwrr(0) < (3.38)

dry’
where ro, is defined by (2.4).

Proof For k=q+1, - ,r, with my o € y1, we want to approximate ¢, yu. To simplify
the notations, we drop the indexes, replacing ¢4 1« by u and Oy, by O, so that we may assume

that « has compact support in O N Q and set
d(00 N Q,supp u) = pu > 0. (3.39)

Considering (2.1) and (2.12), we may assume that O is an open hypercube, neighborhood of a

point of 1, such that, in new orthogonal coordinates y = (y’, y4), we have

ONQ={y€0, ya<2y)} and NNO={yc0, ya=2(y)} (3.40)
d—1
where @ is a Lipschitz-continuous function, defined in []] — a;, a;[, of constant L.
j=1

Let n € N*. We set
1
un(y) = U(y’, Ya — E)’ (3.41)
which is a function defined on
1
_ d / -
0 ={y e R (v n) eona}.

The set 2, is obtained by translating O N Q to the direction of positive y;. We denote by u,
the extension of u,, by zero. Considering the support of u, we can see that the restriction of u,,
to O N Q belongs to W1 (O N Q).

Next, since the translation is continuous on L"(R%), we derive

lim ,ﬁn\OﬂQ = u, in LT(O N Q)

n—-+oo

Moreover, as 0;(tinj0onn) = ((ivu)m@m), where the wide latter denotes the extension by zero of
(0su), in ONQ\ Q,, as we can verify by deriving in the sense of distribution, we have the same

convergence for the partial derivatives. Thus, we obtain
lim Upone =u, in WH(ONQ). (3.42)
n—-+oo
For every n € N* and p € N*, we define
Up,p = Un * Pp. (3.43)

The standard properties of the convolution imply

lim w,, = w,, in L"(R%). (3.44)

p—+oo
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Next
8iun7p = 6,1’\1:” * Pp-

We cannot pass to the limit in L"(R?), because, usually, d;i,, is not in L"(RY). First, let us

show that, for p large enough, u,|o, belongs to WhT(0,), where O, is defined by
1
0, ={y e R, dly.0n9) < -}. (3.45)
p
We set

T, = {y e RY, (y Ya — l) € a(m(’)} (3.46)

and thus, we can write

090, =T,UT, with [, NI/, = 0.

We can note that, since Vy € I',, (y',ya — 1) € QN (00),
Vy e, wu,(y)=0. (3.47)

Let us estimate, for every z € I',, the distance d(z, O N Q) = d(z, O N 9N). Indeed, Yy €
oNnQ, [z,y]N(ONIN) # 0.

_ 1 2
vzel,, vy € (©0n09), |z-y|* =z -y|*+( + o) - o) .

The properties of @ yield

1 1
- @/_@ I>7_L I_/.
) - e(y) >~ L~y
and if ||z’ —y'|| >

Then, if || —y'|| < 527, we have ||z —y]|

Therefore, we obtain

we have ||z —y|| > 57

| = 2n’ 2nL’ nL

1 1
d(T,,0NN) > min (2n 2nL) (3.48)

Next, we have by definition

Vb € D(O,), (05T ) pi0,) = / T (30)0:9 (x)dx = — /O L (x)dx

P

Since u,, belongs to W1 (€,), Green’s formula yields

(Oitin, V) D(0,) :/ Oiun (X)) (x)dx —/ un (8)1(s) n;ds.
OT,HQ 8(Opmﬂn)
Let us choose
1 . 1 1

Then, owing to (3.48), we have for every y € O,,

1 11
<
Ay, 0N Q) p<m1n(2n M) d(T,, 0N,
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which implies
r,no,=0.

Hence, we obtain

(0, N Q) C(0(0,)U(Q,)NO, C (B(0,) UTE).

Therefore, with (3.47) in addition, u, vanishes on 9(O, N Q). We derive

(Oilim, V) p(0,) = / Byt ()b (x)dx,

0pN,

that is to say,
Uin|o, belongs to W' (0,) and 8,0, = Dy, (3.50)

where the wide latter is the extension by zero of d;u,, € L™ (2, N O,) in O,,.

Second, let us show that, for p large enough, d;uy, p = (’f/un *pp. In view of Fubini’s Theorem,

W EDONQ),  (Brttnp ) piong = — /O )
N

_ /B - o) /O NS ¥)0it)(x)dx ) dy.

Considering (3.50), for every y € B(O0, %), X > Uy (x —y) belongs to W17(O N Q) and

(/B(o 1 Uy (x — Y)pp(}’)d}’) O (x)dx

1 -
Vx e 0N, VyEB(O,E), Oiun(x —y) = Oun(x —y).
Then, Green’s formula and Fubini’s Theorem yield

<8iun,p7w>D(OﬁQ) = /

[@ia]9)

(4(07;) Drtin (x = ¥)pp(y)dy ) (x)lx,
which implies, for every p verifying (3.49),

(9iun,p = @AUJn * Pp-
From the standard properties of the convolution, we derive

Hm (Jstnp)|one = Oun and  L7(ON Q)

p——+o0

and in view of (3.44),

im (unp)lone = n, in WH(ONQ). (3.51)

p—+oo

Then, (3.42) and (3.51) yield that there exists an N, € N* such that, for min(n,p) > N,

3

flu — un,p”WLT(OﬂQ) < i (3.52)
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Finally, we set z,, = (0, 1) and for min(n, p) > % where p is defined by (3.39), we consider
the set
E= {x c0NQ, dx,00N00) < %}

Vx € B, Vy € B(0, %), and we have

d(x —y — 2z, supp u) > d(0O N Q,supp u) — d(x,00N Q) —d(xX,Xx —y —2,) > = > 0.

[SUIRS

In the same way, Vx € Q\ O, Vy € B(0, %), and we have

2
d(x —y — Zn,supp u) > d(x,supp u) —d(X, X —y — Zy,) > ?ﬂ > 0.

Hence, we derive that, for every x € EU (2\ O) and y € B(0, %), X —y — 2z, does not belong
to supp u, which implies u, ,(x) = 0. Thus, the function e = w,_ m., where u, , is defined by
(3.43) and m. by m, = max([g] + 1, N.), belongs to D(Q) with a compact support in O N Q
and verifies

€
llu — Us||W1~T(OmQ) = [lu— us||W1=T(Q) < Ar
Ta
which ends the proof of the lemma.
The next lemma deals with an approximation of ¢, ru in O o for k =g+ 1, -, 74, such

that my o € 70, that is, an approximation of u localized around <y, which is the part of the

boundary where u vanishes.

Lemma 3.5 Let a be a real number verifying (1.3). For every real number e > 0 and for

every k =q+1,--- 1y, such that my o € Yo, there exists a function ue, € D(QN Ok.o), such
that
€
[art = tekllwir@) < 17 (3.53)
TO/,

where ro, is defined by (2.4).

Proof As in the previous lemma, to simplify the notations, we drop the indexes, replacing
fork=q+1, -+ ,7a, @a,ru by uand O o by O, so that we may assume that u has compact

support in O N €, and set
d(00 N Q,supp u) =v > 0. (3.54)

Considering (2.1) and (2.12), we may assume that O is an open hypercube, such that, in new

orthogonal coordinates y = (y’,y4), we have

0NQ={y €0, ya<®y)} and %NO={y €O, ya=2(y)}, (3.55)
d—1
where @ is a Lipschitz-continuous function, defined in []]— a;,a;[ of constant L.
j=1

Let n € N*. We set

un(y) = U(y’, Ya + %) (3.56)
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which is a function defined on
d / 1
0, = {yeR , (y7yd+a> eOmQ}.

The set €2, is obtained by translating O N in the direction of negative y4, that is to say,
contrary to the previous, inside the domain Q. We denote by u,, the extension of u,, by zero
outside ,. Considering the support of u and since u vanishes on g, we can see that the
restriction of u, to O N belongs to WH"(O N Q), and as in the previous lemma, we have

lim Upono =u, n WH(ONQ). (3.57)

n—-+oo

Note that, if % < v, where v is defined by (3.54), then u,, has a compact support in O N§, and
therefore, 1, belongs to W17 (R?). Hence, setting

Un,p = Un * Pp,

we derive

pggloo(un,p)lom = (Un)|ong, in W' (ONQ),

which implies that, in view of (3.57), there exists an N, € N*, such that, for min(n,p) > N/,
€
v — tnpllwirong) < T (3.58)
We set
) il 1

Note that d(0Q2 N O,090,,) = d(0QN O,T%) because Vz € 92N O and Vy € Q,,, [z,y] N[} # 0.
Moreover, in the same way as for I';,, we obtain the analogue of (3.48)
A0 N0, 00,) = d@2N O, T*) > min (i L) s (3.60)
Y n 1+ n) = 2n7 2nL n
We recall that
wnal0 = [ Tyl )dy.
B(0,1)

Let us define the following two sets:

]

E:{xesmo, d(x,am@)gé‘} and F:{erﬁO, d(x,00N Q) <

3

[SSIIN

On the one hand, choosing p > %, Vy € B(0, %) and Vx € E, we have

d(x — y,00,) > d(02 N 0,00,) — d(x,00N 0) — d(x,x — y) > % >0

which implies u,(x —y) = 0. Thus, we obtain

VX € B,y p(x) = 0. (3.61)
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On the other hand, setting z, = (0, ) and choosing n and p large enough, such that %—!—% <z,
Yy € B(0, %) and Vx € E, we have
d(X — ¥y + zn,suppu) > d(OQ N Q,suppu) — d(x,002N Q) —d(x,X —y + 2,,) > g >0,
which implies @, (x —y) = 0 and therefore
Vx € F, upp(x) =0. (3.62)

Thus, since (Q N O) = (00 N Q) U (02N O), owing to (3.61) and (3.62), for n > & and
p > max(&, %) with 6,, defined in (3.60), u, , belongs to D(2 N O). Finally, in view of (3.58),

the function u. = uy_ p_, where

6 6 3
ne = max ([f} + 1,Né) and p. = max ([f} +1, [—} + l,N;),
Y Y min (i’ 2n15L)
belongs to D(£2 N O) and verifies
5
llu— UEHWL"(OOQ) = [lu— Ue”Wlﬂ'(Q) < Ir
e

Hence, the lemma follows.

We can now complete the proof of Theorem 3.1. Let € > 0 be a given real number. Lemma
3.3 leads us to define a partition of unity P, with o < a, where P, is defined by (2.12). Next,

(3.37), Lemmas 3.4 and 3.5 allow us to construct a function u. of D(§2) defined by
Ue = Ue o + Z Ue - (3.63)
q+1<k<rq
Then, we have

lu = uellwrr@) < ll@aot — tcollwrr@y + > [Pamn — tekllurre
q+1<k<rq

q
+ Z 60k wllwr @)
k=1

which implies, in view of (3.34), (3.37)—(3.38) and (3.53),
lu — ucllwrr) <e. (3.64)

Moreover, owing to Lemma 3.4, we obtain that, for every k = ¢+1,--- ,r, with my o, € 1 (note

that by construction O o N7y = Cm, . N7 = 0), uc r belongs to D(£, 7o) and, consequently,

ue belongs to D(2, 7o), where D(£2, 7o) is defined by (1.5). Thus, Theorem 3.1 is proved.

4 Density Result in W™"(Q,~,)

Let & > 1 be an integer and let us suppose that the boundary 99 is of class C*!, which
means that, for every x € 99, the functions ®*, defined by (2.1), are of class C**. The following

theorem generalizes Theorem 3.1.
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Theorem 4.1 Let r > 1 be a real number, and m > 1 be an integer. Let ) be a bounded
domain in R? whose boundary is of class C*1, where k is an integer such that k+1 > m, and

let o be an open part of O verifying (1.1). Let the spaces W™ (2, v9) and D(Q, o) be defined

respectively by (1.4) and (1.5). Then the space D(€, 7o) is dense in W™ (2, o).

Proof Let us prove the result for m = 2, the extension to the general case is straightforward.
We suppose that u belongs to W27 (£,79). The proof of this theorem is analogous to that of
Theorem 3.1. Indeed, we use the same covering {Oy o },>, defined by (2.12), and an associated
partition of unity P, analogous to P,, defined as follows.

First, we define the functions aa,ka fork=1,---,q, by

/1
Vk, 1<k<gq, Oup= gp(ad( . ,Kk)> % Py (4.1)

with po = [8]+1 and p,, defined by (2.6), where the function @ belongs to C?(RT) and verifies

9 - 11 _ . o
vie [0.zc], BB =1 vz E®)=0 and WeR., [FOI<A |P'()<B.

For example, we can choose @ defined on [19—6, %] by

T 0\ 2 1112
() = 15(16" (ff)(ff)d.
o(t) 5(16%) /t e-16) (e 15) d=
Since the boundary is at least of class C':!, the first and second order partial derivatives of the
function x — d(x, K}) belong to L (R?) (see [5]). Setting M = [|8%d( -, K)|| . (ra), we derive
the following estimations for the functions ga,k € D(Gk,o) and its derivatives, for k=1,--- ,q

and for i, =1,--- ,d,

Vx € G}c,%, 9a’}€(x) =1, Vx ¢ Gk,z%x7 ga,k(x) =0,

_ - (4.2)
Vx €RY, [0 far(0)] < 2 (0080 r(0)] < S

where G, o is defined by (1.2) and C = B+ AM.

Second, we set P, = {Pa,k 112y with

q
Goase = (10 = 00))Bass k=00rq+1<k<r,,
j=1 (4.3)

Gak =0ak, 1<k<q.

/

<, allowing us to

As previously discussed, for every real €, we must compute a parameter «
construct an adequate partition of unity P, with a < al. Thus, we prove an analogous lemma

to Lemma 3.3.

Lemma 4.1 For every real number ¢ > 0, there exists a real number o verifying (1.3)

such that, for every 0 < a < al,

€

<5 (4.4)

vk = 17 4, ||90¢,/€UHW2”"(G;€YGQQ)
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Proof In the same way as in Lemma 3.3, using an extension u € W?2"(R?) of u €

W2T(Q,7), we prove
i% ||9a7ku\|W1,T(GkﬂmQ) =0. (45)

On the one hand, for j =1,--- ,d and i = 1,--- ,p, 0;u vanishes on B(x;, 2c) N ~p, which

has a strictly positive measure, and we can use Poincaré’s inequality to deduce
~ 2~
VUl (B(xi,20) < CL 107U T (B(xs 200

where C is the constant defined in (3.28). As in the proof of Lemma 3.3, setting the integrals

||8217||Lr(3(xi,2a) in decreasing order, by an analogous method, we obtain
IVally g, < Cra” Mal|0*tlz g, ,.)» (4.6)

where My is defined by (3.27). Moreover, owing to (3.33), we derive

ullZr(cpann) <47 C12a27'M3H‘?%HET(GMMy (4.7)

On the other hand, we can write
(91‘81' (ga,k U) = 81'(9]' (ga,k) u + 8i(5a,k)8ju + (9j (goé,k) O;u + (5a,k)8¢8ju.
Then, in view of (4.2), (4.6) and (4.7), we obtain
10 B w17 (0 o) < 47 ((AC)™ (A CrL Ma)? +2d Cy Mg A” + 1)[|0%E7 6, .-

Hence, since

01t1—>H10 107Ul L (G 16a) = 05
we derive
B (102 (0ak ) (G a0y = O,

which implies, owing to (4.5),

lim ||5a,ku\|wzm(c:k,amﬂ) =0,
and the result of the lemma follows.

We consider a partition of unity P, defined by (4.1) with 0 < a < o, subordinated to the
covering {Oy o }12, defined by (2.12), where o is defined in Lemma 4.1. Since gk)a belongs to
D(Gk,a), (4.4) can be written as, with the notation of the partition Pa,

~ 9
V]{ = 17 ce. )q’ ||S0047kuHW2T(Q) S Zq’ (4.8)

so that, for every k =1,--- , ¢, we can approximate o ru by 0 in O o = Gi.a-
We now deal with the case k = 0, that is to say, we want approximate ¢, ou in Op . In the
same way as in the proof of Theorem 3.1, we set u,, = (@, ou)*pp, where the wide latter denotes

the extension by zero. In a standard way, considering that @, ou € W27 (R%), we obtain that

. = . 2, d
pglfoo Up = Pa,ou, in W="(RY),
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which implies that there exists a P/ € N*, such that Vp > P/,
~ €
1Pacou = upllwar(0q.0) < - (4.9)
Then considering u( = d(supp(@a,o v), 000.o) > 0 and setting ue o = Uy, where m. is defined
by m. = max([l%], P!) ([r] is the integral part of ), yield
0

~ ~ € .
||§0a,ou — uE,OHWz’T(Oo,aﬁQ) = ||g0a70u — u€,0||W2””(Q) S Z Wlth U570 € D(Oo7a), (410)

where O o C .

Next, we are taking an approximation of @ ru in O for k = ¢+ 1,--- 74, such that
my, o € 71, that is, an approximation of u localized around ;. As in Lemma 3.4, to simplify the
notations, we drop the indexes, replacing ¢, 1 u by v and O, by O, so that we may assume

that « has compact support in O N Q and set
d(00 N Q,supp u) = ' > 0. (4.11)

We define u,,, 2, by (3.41) and denote by w,, the extension of u,, by zero. We can verify, by
deriving in the sense of distribution, that

—_—

9i(tinjone) = (0it) yjonq:  050i(tnjone) = (9;0:u),, 0nq;

where the wide latter denotes the extension by zero in O N Q\ Q,, which implies that the
restriction of u, to O N belongs to W27 (O N Q) and the following convergence:

lim Upono =u, in W>"(ONQ). (4.12)

n——+0o

Next, we define u, ;, by (3.43) and in the same way as in Lemma 3.4, we prove that u, o,
belongs to W*"(0,), where O, is defined by (3.45), and 8;0;1i,0, = m, where the wide
latter is the extension by zero of 0;0;u, € L"(Q, N Op) in Op. Moreover, as in the proof of
(3.51), we can show that for p verifying (3.49),

0;0iun p = 0;0;up * pp, almost everywhere in O N Q,
and we obtain

lim (un,p)|long = Un, in W2"(ONQ).

p—>+0oo
Hence, with (4.12), we derive that there exists an N! € N*, such that for min(n,p) > N.,
€
[lu— un,p||W2»T(OmQ) < m (4.13)
Thus, the function ue = U/ 1., where m_ is defined by
/ 6 !
mL = max ([;} + 1, NE)

with z/ defined by (4.11), belongs to D(Q) with a compact support in O N Q and verifies

[|w — Us”W?vT(OﬁQ) = lu— us||W2=T(Q) < -—.
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Then, with the initial notation, we obtain, for every k = ¢ +1,--- ,rq, such that my , € 71,

[Pk v = te k[l w2r(0n0) < (4.14)

1r,’
where the function u. ; belongs to D(Q) with compact support in Ok,a N Q, which ends the
problem of the approximation of u localized around ~;.

Finally, we still have an approximation of $q ;v in O o to do, for k = ¢+ 1,--- ,ry, such
that my , € 70, that is, an approximation of u localized around ~yy, which is the part of the
boundary where u vanishes.

As previously done, to simplify the notations, we replace, for k =q+1, -+ , 74, Qa,ru by u

and Ok o by O, so that we may assume that u has compact support in O N and set
d(00 N Q,supp u) =/ > 0. (4.15)
We again define u,, by (3.56) and %, again denotes the extension of w, by zero. In the same

way as in the proof of Lemma 3.5, we have

lim U,lono =u, in W*"(ONQ) (4.16)

n——+oo

and for % < V', uy has a compact support in O N Q. Moreover, setting again u, , = w, * pp
yields that there exists an N/ € N*, such that for min(n,p) > N7,

€
o=t p 2 c0my < 7 (417)
Ta
Then, the function ue = uy/ p, where
/ 6 1 / 6 3 "
= mos{[8] 4102}t o =ma{[S] #1.[— 2] 1,
v v min (ﬁ> o L)
belongs to D(2 N O) and verifies
€
[|w — ua||w2w(om) = lu— ua||w2vr(n) < i
Ta
With the initial notation, we obtain, for every k = ¢ +1,--- ,rq, such that my , € 7o,
- €
[Pa,k t — e k|| w2r ) < oo (4.18)
Ta

where the function wu. ; belongs to D(Q2 N Oy, o), which ends the problem of the approximation
of u localized around .

We can complete the proof of Theorem 4.1. Let £ > 0 be a given real number. Lemma 4.1
leads us to define an adequate partition of unity P,, with 0 < o < a.. Next (4.9), (4.14) and

(4.18) allow us to construct a function u. of D(2) defined by
Ue = Ug,0 + Z Ue K
q+1<k<rq
that verifies
||u — u€||W2,r(Q) S E.

With the same argument as at the end of the proof of Theorem 3.1, we prove that u. belongs

to D(€2,70), where D(, 7o) is defined by (1.5). Thus, Theorem 4.1 is proved.



846

J. M. E. Bernard

References

(1]

(4]

(5]

[6]

Blouza, A. and Le Dret, H., An up-to the boundary version of Friedrichs’s lemma and applications to the
linear Koiter shell model, SIAM J. Math. Anal., 33, 2001, 877-895.

Brezis, H., Analyse Fonctionnelle, Théorie et Applications, Masson, Paris, 1992.

Girault, V. and Raviart, P. A., Finite Element Approximation for Navier-Stokes Equations, Theory and
Algorithms, Springer-Verlag, Berlin, 1986.

Girault, V. and Scott, L. R., Analysis of two-dimensional grade-two fluid model with a tangential boundary
condition, J. Math. Pures Appl., 78, 1999, 981-1011.

Girault, V. and Scott, L. R., Analysis of two-dimensional grade-two fluid model with a tangential boundary
condition, Research Report UH/MD-246, Department of Mathematics, University of Houston, Texas, 1998,
1-35.

Puel, J. P. and Roptin, M. C., Lemme de Friedrichs, théoréme de densité résultant du lemme de Friedrichs,
Rapport de stage dirigé par C. Goulaouic, Diplome d’Etudes Approfondies, Université de Rennes, Rennes,
1967.



