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Abstract This paper is devoted to the study of the subspace ofWm,r of functions that van-
ish on a part γ0 of the boundary. The author gives a crucial estimate of the Poincaré con-
stant in balls centered on the boundary of γ0. Then, the convolution-translation method,
a variant of the standard mollifier technique, can be used to prove the density of smooth
functions that vanish in a neighborhood of γ0, in this subspace. The result is first proved
for m = 1, then generalized to the case where m ≥ 1, in any dimension, in the framework
of Lipschitz-continuous domain. However, as may be expected, it is needed to make ad-
ditional assumptions on the boundary of γ0, namely that it is locally the graph of some
Lipschitz-continuous function.
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1 Introduction

Let Ω be a bounded domain in Rd, d ≥ 2, whose boundary is Lipschitz-continuous. This

article mainly deals with functions ofWm,r(Ω, γ0), where r > 1 and m ≥ 1, which are functions

of Wm,r(Ω) that vanish on an open part γ0 of the boundary ∂Ω. More precisely, we study the

density of smooth functions that vanish on a neighborhood of γ0 in the spaceWm,r(Ω, γ0). This

density is well-known in particular cases and is used in [1]. It is proven in two dimensions for

m = 1 in [1] by introducing a convolution-translation operator. The aim of the present paper

is to prove the density result in the general case, dimension d ≥ 3 and m ≥ 1, in the same way

as in [1]. Indeed, this method of convolution-translation is very interesting because it allows

us to really construct the approximation by smooth functions and it is understandable also for

nonspecialists. It thus seems useful to give a detailed proof, by a constructive method, within

easy reach, of these significant results.

Let γ1 denote the complementary set of γ0 in the boundary ∂Ω. In two dimensions, it is

generally assumed, as in [1], that γ0∩γ1 is composed of a finite number of points. In this article,

we assume that the intersection γ0 ∩ γ1 has a finite number of connected components and that

the boundary of γ0 is locally the graph of some Lipschitz-continuous function, which allows us to

derive a basic estimate of the Poincaré constant in balls centered on γ0∩γ1. We use a modified

mollification technique, initiated by [6] and rediscovered simultaneously in [1, 4], which consists
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in combining a convolution and a translation. First, we localize and establish a partition of

unity, which allows us to distinguish three parts in the boundary. On a neighborhood of a point

of γ0, we make a translation outside the domain, in a neighborhood of a point of γ1, make a

translation inside the domain, and next apply, in both cases, the mollification technique. On the

third part of the boundary, which is composed of neighborhoods of the connected components

of γ0 ∩ γ1, because of Poincaré’s inequality, we approximate the function by 0.

In dimension d ≥ 3, the neighborhoods of the connected components of γ0∩γ1 are no longer

balls, which complicate the previous approximation by 0: we consider an optimal covering by

balls and a special technique of permutation and partition to deal with the intersections of balls

in the estimates.

In this paper, the main result is Theorem 3.1, which establishes the density in W 1,r(Ω, γ0),

that is to say the density result for m = 1. The generalization to the case m ≥ 1, which is

Theorem 4.1, is straightforward.

This article is organized as follows. In Section 2, we define the adequate covering of Ω and

the partition of unity subordinated to this covering. In Section 3, we prove our main density

result in W 1,r(Ω, γ0). Finally, Section 4 is devoted to the generalization of this result to the

space Wm,r(Ω, γ0), with m ≥ 1.

We end this introduction with some notation that we shall use further on. We recall that Ω

is a bounded domain in Rd, d ≥ 2, whose boundary is Lipschitz-continuous. Let γ0 and γ1 be

two non-empty open parts of ∂Ω that have a finite number of connected components and verify

∂Ω = γ0 ∪ γ1, γ0 ∩ γ1 = ∅, γ0 ∩ γ1 =

q∪
k=1

Kk, (1.1)

where Kk, 1 ≤ k ≤ q, denote the connected components of γ0∩γ1 and, for 1 ≤ k ≤ q, let us set

∀α > 0, Gk,α = {x ∈ Rd, d(x,Kk) < α}, (1.2)

where d( · , · ) is the Euclidian distance in Rd. Afterwards, we choose α such that

0 < α < α′
0 =

1

2
min

1≤i,j≤q
i ̸=j

d(Ki,Kj) and α ≤ 1. (1.3)

We define for each real r > 1 and each integer m ≥ 1,

Wm,r(Ω, γ0) =
{
v ∈Wm,r(Ω),

( ∂jv
∂nj

)∣∣∣
γ0

= 0, j = 0, · · · ,m− 1
}
, (1.4)

D(Ω, γ0) = {v ∈ D(Ω), v is equal to 0 in a neighborhood of γ0}. (1.5)

2 Partition of Unity

2.1 First covering of Ω

Since the boundary of Ω is Lipschitz-continuous, for every x ∈ ∂Ω, there exist an open

hypercube Cx, which is a neighborhood of x in Rd, and new orthogonal coordinates y = (y′, yd),

where y′ = (y1, · · · , yd−1), such that
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( i ) Cx =
d∏

j=1

]− ax,j , ax,j [.

(ii) There exists a Lipschitz-continuous function Φx defined in
d−1∏
j=1

]− ax,j , ax,j [ of constant

Lx, such that ∀y′ ∈
d−1∏
j=1

]− ax,j , ax,j [, |Φx(y′)| ≤ ax,d

2 and

Ω ∩ Cx = {y ∈ Cx, yd < Φx(y′)}, ∂Ω ∩ Cx = {y ∈ Cx, yd = Φx(y′)}. (2.1)

Moreover, ∀x ∈ γ0 ∪ γ1, ∀j = 1, · · · , d, we choose the real numbers ax,j such that Cx ∩ γ0 ∩ γ1
= ∅. Since ∀x ∈ γ0, Cx ∩ γ1 = ∅ and ∀x ∈ γ1, Cx ∩ γ0 = ∅, we have

∀x ∈ γ0, γ0 ∩ Cx = {y ∈ Cx, yd = Φx(y′)},

∀x ∈ γ1, γ1 ∩ Cx = {y ∈ Cx, yd = Φx(y′)}.

In addition, for d > 2, denoting y = (y′′, yd−1, yd), we assume that, for every x ∈ γ0∩γ1, the
previous open hypercube Cx is such that there exists a second Lipschitz-continuous function Ψx

defined in the set
d−2∏
j=1

]−ax,j , ax,j [ of constantMx, such that ∀y′′ ∈
d−2∏
j=1

]−ax,j , ax,j [, |Ψx(y′′)| ≤
ax,d−1

2 and

γ0 ∩ Cx = {y ∈ Cx, yd = Φx(y′), yd−1 > Ψx(y′′)}, (2.2)

γ1 ∩ Cx = {y ∈ Cx, yd = Φx(y′), yd−1 < Ψx(y′′)}. (2.3)

For d = 2, we set 0 in the place of Ψx(y′′) in (2.2) and (2.3).

For every strictly positive real number α verifying (1.3), let us define a finite open covering

of Ω as follows.

First, we have

∂Ω ⊂
( ∪

x∈γ0∪γ1

Cx

)∪( q∪
k=1

Gk,α2

)
.

Note that, owing to (1.3), Gi,α∩Gj,α = ∅, 1 ≤ i, j ≤ q, i ̸= j. Second, the compactness implies

that there exists a finite open covering of ∂Ω :

∂Ω ⊂
( q∪

k=1

Gk,α2

)∪( rα∪
k=q+1

Cmk,α

)
, (2.4)

where the open sets Cx are defined by (2.1) and Gk,α is defined by (1.2). Moreover, there exists

an open set C0,α, such that

C0,α ⊂ Ω and Ω ⊂ C0,α

∪( q∪
k=1

Gk,α2

)∪( rα∪
k=q+1

Cmk,α

)
, (2.5)

which is an open covering of Ω denoted by Rα.
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2.2 Second covering of Ω and associated partition of unity

Let ρ be a standard mollifier, which means that ρ is a positive C∞ function in Rd supported

in the unit ball, such that
∫
Rd ρ(x)dx = 1. For every p ∈ N∗, we define

∀x ∈ Rd, ρp(x) = pdρ(px). (2.6)

Let φ belong to C1(R+), such that

∀t ∈
[
0,

9

16

]
, φ(t) = 1, ∀t ≥ 11

16
, φ(t) = 0 and ∀t ∈ R+, |φ′(t)| ≤ A.

For example, we can choose φ defined on [ 9
16 ,

11
16 ] by φ(t) =

1+cos(8πt− 9π
2 )

2 , with A = 4π. Let us

recall that, for k = 1, · · · , q and i = 1, · · · , d, x 7→ ∂id(x,Kk) belongs to L
∞(Rd) and verifies

∀i = 1, · · · , d, ∀x ∈ Rd, |∂id(x,Kk)| ≤ 1 (2.7)

(see [4]). Then, we set

∀k, 1 ≤ k ≤ q, θα,k = φ
( 1

α
d( · ,Kk)

)
∗ ρpα (2.8)

with pα = [ 16α ] + 1, where [x] denotes the integral part of the real number x, and ρp is defined

by (2.6). This function belongs to D(Gk,α) and verifies, for i = 1, · · · , d,

∀x ∈ Gk,α2
, θα,k(x) = 1, ∀x /∈ Gk, 3α4

, θα,k(x) = 0,

∀x ∈ Rd, |∂iθα,k(x)| ≤
A

α
.

(2.9)

Considering successively that θα,j + (1− θα,j) = 1, for j = 1, · · · , q, we obtain

θα,1 + (1− θα,1)θα,2 + · · ·+
( q−1∏

j=1

(1− θα,j)
)
θα,q +

q∏
j=1

(1− θα,j) = 1.

But, since the sets Gj,α are disconnected and since θα,j belongs to D(Gj,α), for 1 ≤ j ≤ q, we

have
( k−1∏

j=1

(1− θα,j)
)
θα,k = θα,k. Thus, we obtain

θα,1 + θα,2 + · · ·+ θα,q +

q∏
j=1

(1− θα,j) = 1.

Hence, we derive, for every u ∈W 1,r(Ω, γ0),

u = θα,1u+ θα,2u+ · · ·+ θα,qu+
( q∏

j=1

(1− θα,j)
)
u. (2.10)

Let {βα,j}rαj=0 be a partition of unity on Ω (see [2] or [3]), subordinated to the covering Rα

defined by (2.5). Substituting the functions βα,j in (2.10) yields

u = θα,1u+ θα,2u+ · · ·+ θα,qu+

rα∑
k=0

( q∏
j=1

(1− θα,j)
)
βα,ku.
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Considering that, for every 1 ≤ k ≤ q,
q∏

j=1

(1 − θα,j)βα,k = 0, since, if x ∈ Gk,α2
, θα,k(x) = 1,

we obtain

u =

rα∑
k=0

φα,ku, (2.11)

where φα,k =
( q∏

j=1

(1− θα,j)
)
βα,k, k = 0 or q + 1 ≤ k ≤ rα and φα,k = θα,k, 1 ≤ k ≤ q. Thus,

for α verifying (1.3), Pα = {φα,k}rαk=0 is a partition of unity on Ω, subordinated to the covering

{Ok,α}rαk=0, with

O0,α = C0,α, Ok,α = Gk,α for 1 ≤ k ≤ q,

Ok,α = Cmk,α
for q + 1 ≤ k ≤ rα, (2.12)

where the sets C0,α, Gk,α and Cx are respectively defined by (2.5), (1.2) and (2.1).

3 Density Result in W 1,r(Ω, γ0)

Theorem 3.1 Let r > 1 be a real number. Let Ω be a bounded domain in Rd whose

boundary is Lipschitz-continuous and let γ0 be an open part of ∂Ω verifying (1.1). Let the

spaces W 1,r(Ω, γ0) and D(Ω, γ0) be defined respectively by (1.4) and (1.5). Then the space

D(Ω, γ0) is dense in W 1,r(Ω, γ0).

Proof From now on, we suppose that α verifies (1.3), so we can consider the partition

Pα defined by (2.12). For every real number ε > 0, let us define a real αε > 0, such that for

0 < α ≤ αε, the partition of unity Pα subordinated to the covering {Ok,α}rαk=0 allows us to

construct an approximation uε ∈ D(Ω, γ0) of u ∈W 1,r(Ω, γ0) in W
1,r norm.

Let us prove a first lemma which allows us to define, for every k > 1, an extension vα ∈
W 1,r(B(0, kα)) of v ∈ W 1,r(B(0, α)), such that the norm of vα in W 1,r(B(0, kα)) is bounded

by the norm of v in W 1,r(B(0, α)) multiplied by a constant independant of α.

Lemma 3.1 For every y ∈ Rd, α > 0 and k > 1, there exists a constant C(k, d, r)

independant of α such that, ∀v ∈W 1,r(B(y, α)), there exists an extension vα ∈W 1,r(B(y, kα))

of v verifying

∥vα∥Lr(B(y,kα)) ≤ C(k, d, r)∥v∥Lr(B(y,α)),

∥∇vα∥Lr(B(y,kα)) ≤ C(k, d, r)∥∇v∥Lr(B(y,α)).
(3.1)

Proof First, considering the map x 7→ v(y+ x), we can assume that y = 0. Let us define,

for α ≤ β, the set Cr(α, β) by

Cr(α, β) = {x ∈ Rd, α ≤ ∥x∥ ≤ β} (3.2)

and the function vα, which extends the function v on B(0, kα) by

∀x ∈ Cr(α, kα), vα(x) = v
((

− 1

2(k − 1)
+

2k − 1

2(k − 1)

α

∥x∥

)
x
)
. (3.3)
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This definition is justified because if ∥x∥ = α, (− 1
2(k−1) +

2k−1
2(k−1)

α
∥x∥ )x = x and we can verify

y(x) =
(
− 1

2(k − 1)
+

2k − 1

2(k − 1)

α

∥x∥

)
x ∈ Cr(α, kα) ⇐⇒ x ∈ Cr

(a
2
, α

)
. (3.4)

By taking derivatives in the sense of distributions and applying Green’s formula in the sets

B(0, α) and Cr(α, kα), we prove that vα belongs to W 1,r(B(0, kα)):

∀x ∈ B(0, α),
∂vα
∂xi

(x) =
∂v

∂xi
(x),

∀x ∈ Cr(α, kα),
∂vα
∂xi

(x) =
∂v

∂xi
(y(x)),

where y(x) is defined in (3.4). In order to compute the norm in Lr(Cr(α, kα)) of vα and ∇vα,
we consider the mapping

Φ : x 7→ y =
(
− 1

2(k − 1)
+

2k − 1

2(k − 1)

α

∥x∥

)
x

defined on Cr(α, kα). Since, for 1 ≤ i ≤ d,

xi = −2(k − 1)yi + (2k − 1)
αyi
∥y∥

,

we derive

∂xi
∂yi

(y) = −2(k − 1) + (2k − 1)α

∑
j ̸=i

y2j

∥y∥3
≤ 2(k − 1) + (2k − 1)α

1

∥y∥

and, for j ̸= i,
∂xi
∂yj

(y) = −(2k − 1)α
yiyj
∥y∥3

≤ (2k − 1)α

2∥y∥
.

Hence, in view of ∥y∥ ≥ α
2 , we obtain, ∀y ∈ Cr(α2 , α),

∀y ∈ Cr
(α
2
, α

)
,

∣∣∣∂xi
∂yi

(y)
∣∣∣ ≤ 2(3k − 2),

∣∣∣∂xi
∂yj

(y)
∣∣∣ ≤ 2k − 1. (3.5)

In the same way, we derive

∀x ∈ Cr(α, kα),
∣∣∣ ∂yi
∂xi

(x)
∣∣∣ ≤ k

k − 1
,

∣∣∣∂yj
∂xi

(x)
∣∣∣ ≤ 2k − 1

4(k − 1)
≤ k

k − 1
. (3.6)

Therefore, the one-to-one mapping Φ from Cr(α, kα) to Cr(α2 , α) is of class C
1 and its inverse

Φ−1 is also of class C1 on Cr(α2 , α). Moreover, considering the Jacobian determinant J(y) =

det((Φ−1)′(y)), there exists a constant C(k, d) such that

∀y ∈ Cr
(α
2
, α

)
, |J(y)| ≤ C(k, d). (3.7)

Then, we have∫
Cr(α,kα)

|vα(x)|rdx =

∫
Cr(α2 ,α)

|v(y)|r|J(y)|dy ≤ C(k, d)

∫
Cr(α2 ,α)

|v(y)|rdy,
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which gives

∥vα∥rLr(B(0,kα)) ≤ (1 + C(k, d))∥v∥rLr(B(0,α)). (3.8)

Next, we can write, for 1 ≤ i ≤ d, ∀x ∈ Cr(α, kα),

∂vα
∂xi

(x) =
d∑

j=1

∂v

∂yj
(y(x))

∂yj
∂xi

(x).

Hölder’s inequality and the estimations (3.6) yield

∣∣∣∂vα
∂xi

(x)
∣∣∣r ≤

( d∑
j=1

∣∣∣∂yj
∂xi

(x)
∣∣∣ r
r−1

)r−1( d∑
j=1

∣∣∣ ∂v
∂yj

(y(x))
∣∣∣r)

≤ dr−1
( k

k − 1

)r( d∑
j=1

∣∣∣ ∂v
∂yj

(y(x))
∣∣∣r).

Then, owing to (3.7), we obtain∫
Cr(α,kα)

∣∣∣∂vα
∂xi

(x)
∣∣∣rdx ≤ dr−1

( k

k − 1

)r

C(k, d)
d∑

j=1

∫
Cr(α2 ,α)

∣∣∣ ∂v
∂yj

(y)
∣∣∣rdy,

which implies

d∑
i=1

∫
Cr(α,kα)

∣∣∣∂vα
∂xi

(x)
∣∣∣rdx ≤

( d k

k − 1

)r

C(k, d)
d∑

j=1

∫
Cr(α2 ,α)

∣∣∣ ∂v
∂yj

(y)
∣∣∣rdy.

Finally, we have

∥∇vα∥rLr(B(0,kα)) ≤
(( d k

k − 1

)r

C(k, d) + 1
)
∥∇v∥rLr(B(0,α)),

and with (3.8) in addition, the lemma follows with C(k, d, r) = (( d k
k−1 )

r C(k, d) + 1)
1
r .

Let v ∈W 1,r(Rd) such that v|Ω belongs to W 1,r(Ω, γ0). Let y belong to γ0 ∩ γ1. The next

lemma proves that the norm of v in Lr(B(y, α)) is bounded by the norm of ∇v in Lr(B(y, α))

with a constant linear with respect to α.

Lemma 3.2 Let y belong to γ0∩γ1, where γ0 and γ1 are defined by (1.1), and v ∈W 1,r(Rd)

such that v|Ω belongs to W 1,r(Ω, γ0). For 0 < α ≤ α0, where α0 depends on Ω, there exists a

constant C1 depending on r, d and Ω, such that

∥v∥rLr(B(y,α)) ≤ C1 α
r ∥∇v∥rLr(B(y,α)). (3.9)

Proof First, let us assume d > 2. For all x ∈ γ0 ∩ γ1, we consider the hypercube C ′
x =

d∏
j=1

]− ax,j

2 ,
ax,j

2 [, where the real ax,j , j = 1, · · · , d, are defined in (2.1)–(2.3). The compactness

of γ0 ∩ γ1 implies that there exists a finite open covering of γ0 ∩ γ1

γ0 ∩ γ1 ⊂
s∪

i=1

C ′
xi . (3.10)
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Therefore, ∀y ∈ γ0 ∩ γ1, there exists an integer iy, denoted i for simplifying the notation, such

that y belongs to C ′
xi . Considering α

′
0 defined in (1.3), we choose α such that

0 < α ≤ α0 = min(α′
0, α

′′
0 , 1), where α′′

0 =
1

2
min
1≤j≤d
1≤i≤s

axi,j . (3.11)

This choice of α, since y belongs to C ′
xi , yields that

C(y, α) =
d∏

j=1

]yj − α, yj + α[⊂ Cxi . (3.12)

Let us set

M = max
(
1, max

1≤j≤s
Mxj

)
, L = max

(
1, max

1≤j≤s
Lxj

)
. (3.13)

For every x in C(y, α), let us define the point z = (z1, · · · , zd) = z(x) by

∀1 ≤ j ≤ d− 2, zj =
1

4M L
√
d− 2

xj +
(
1− 1

4M L
√
d− 2

)
yj , (3.14)

zd−1 =
1

8L
xd−1 +

(
1− 1

8L

)
yd−1 +

3α

8L
, zd = Φxi(z′). (3.15)

Since x ∈ C(y, α), in view of (2.2), (2.3) and (3.13), we derive

∀1 ≤ j ≤ d− 1, |zj − yj | < α,

yd−1 +
α

4L
< zd−1 < yd−1 +

α

2L
, d(z′′,y′′) <

α

4ML
. (3.16)

Then, we have

|Ψxi(z′′)− yd−1| = |Ψxi(z′′)−Ψxi(y′′)| ≤Mxi d(z
′′,y′′) ≤ α

4L
,

which implies Ψxi(z′′) ≤ yd−1 +
α
4L , and, therefore,

zd−1 > Ψxi(z′′). (3.17)

From (3.16), we derive d(z′,y′) < α
L . Since |zd − yd| = |Φxi(z′) − Φxi(y′)| ≤ Lxi d(z

′,y′), we

obtain |zd − yd| < α. Hence, with (3.11), (3.16) and (3.17) , we derive the implication

x ∈ C(y, α) =⇒ z ∈ C(y, α) ∩ γ0. (3.18)

Next, let us set

∀x ∈ C(y, α), f1(t) = (t, x2, · · · , xd), fd(t) = (z1, · · · , zd−1, t), (3.19)

∀1 < i < d, fi(t) = (z1, · · · , zi−1, t, xi+1, · · · , xd), (3.20)

where z is defined by (3.14) and (3.15). Let v belong to W 1,r(Rd). Since ∀x ∈ C(y, α),

fd(zd) = z belongs to γ0, that is to say, v(z) = 0 and f1(x1) = x, we can write

v(x) =
d∑

i=1

(v(fi(xi))− v(fi(zi))) =
d∑

i=1

∫ xi

zi

dv

dt
(fi(t)) dt =

d∑
i=1

∫ xi

zi

∂v

∂xi
(fi(t)) dt.
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Hence, we derive

|v(x)|r ≤ dr−1
d∑

i=1

∣∣∣ ∫ xi

zi

∂v

∂xi
(fi(t)) dt

∣∣∣r. (3.21)

Next, we have, for 1 ≤ i ≤ d,∣∣∣ ∫ xi

zi

∂v

∂xi
(fi(t)) dt

∣∣∣r ≤ (xi − yi + α)r−1

∫ yi+α

yi−α

∣∣∣ ∂v
∂xi

(fi(t))
∣∣∣r dt.

Integrating with respect to xi yields∫ yi+α

yi−α

∣∣∣ ∫ xi

zi

∂v

∂xi
(fi(t)) dt

∣∣∣r dxi ≤ 2rαr

r

∫ yi+α

yi−α

∣∣∣ ∂v
∂xi

(mi(x))
∣∣∣rdxi,

where mi(x) = fi(xi). Then, we obtain∫
C(y,α)

∣∣∣ ∫ xi

zi

∂v

∂xi
(fi(t)) dt

∣∣∣rdx ≤ 2rαr

r

∫
C(y,α)

∣∣∣ ∂v
∂xi

(mi(x))
∣∣∣rdx.

On the one hand, ∀x ∈ C(y, α), mi(x) belongs to C(y, α). On the other hand, the Jacobian

determinant Ji of the transformation m−1
i is such that

∀1 ≤ i ≤ d− 1, Ji = det((m−1
i )′) = (4ML

√
d− 2 )i−1, Jd = 8L(4ML

√
d− 2 )d−2.

Then, we derive, for 1 ≤ i ≤ d,∫
C(y,α)

∣∣∣ ∫ xi

zi

∂v

∂xi
(fi(t)) dt

∣∣∣rdx ≤
(1
r

)
2r+3L(4ML

√
d− 2 )d−2αr

∫
C(y,α)

∣∣∣ ∂v
∂xi

(mi)
∣∣∣rdmi.

Hence, owing to (3.21), we obtain∫
C(y,α

|v(x)|rdx ≤
(1
r

)
dr−12r+3L(4ML

√
d− 2 )d−2αr

d∑
i=1

∫
C(y,α)

∣∣∣ ∂v
∂xi

(mi)
∣∣∣rdmi,

that is to say

∥v∥rLr(C(y,α)) ≤ K(r, d,Ω)αr∥∇v∥Lr(C(y,α)), (3.22)

where K(r, d,Ω) = ( 1r )d
r−12r+3L(4ML

√
d− 2 )d−2.

Next, in view of Lemma 3.1, we extend v|B(y,α)∈W 1,r(B(y, α)) by vα∈W 1,r(B(y, (
√
d )α)).

Owing to (3.22) and considering that

B(y, α) ⊂ C(y, α) ⊂ B(y, (
√
d )α),

we derive

∥v∥rLr(B(y,α)) ≤ ∥vα∥rLr(C(y,α)) ≤ K(r, d,Ω)αr∥∇vα∥rLr(C(y,α))

≤ K(r, d,Ω)αr∥∇vα∥rLr(B(y,(
√
d)α))

≤ K(r, d,Ω)C(
√
d, d, r)αr∥∇v∥rLr(B(y,α))
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and the result of the lemma follows for d > 2, with C1 = K(r, d,Ω)C(
√
d, d, r).

Finally, for d = 2, in view of y1 = 0, we set z1 = 1
4Lx1 +

3
4Lα and z2 = Φxi(z1), where L is

defined as in (3.13). Then, we obtain 0 < α
2L < z1 < α and we still have the implication (3.18).

In the same way as the previous, we can write, since v(z) = 0,

∀x ∈ C(y, α), |v(x)|r ≤ 2r−1
(∣∣∣ ∫ x1

z1

∂v

∂x1
(t, x2) dt

∣∣∣r + ∣∣∣ ∫ x2

z2

∂v

∂x2
(z1, t) dt

∣∣∣r)
≤ 2r−1

(
(x1 − y1 + α)r−1

∫ y1+α

y−1−α

∣∣∣ ∂v
∂x1

(t, x2)
∣∣∣r dt

+ (x2 − y2 + α)r−1

∫ y2+α

y2−α

∣∣∣ ∂v
∂x2

(z1, t)
∣∣∣r dt).

Then, integrating on C(y, α) (note that on the right-hand side, we integrate the first term of

the sum, first with respect to x1, and the second term, first with respect to x2) yields∫
C(y,α

|v(x)|rdx ≤ 22r−1αr

r

(∫
C(y,α)

∣∣∣ ∂v
∂x2

(x1, x2)
∣∣∣rdx+

∫
C(y,α)

∣∣∣ ∂v
∂x2

(z1, x2)
∣∣∣rdx1dx2).

In view of dx1 = 4Ldz1, we derive

∥v∥rLr(C(y,α)) ≤ K(r, 2,Ω)αr∥∇v∥Lr(C(y,α))

with K(r, 2,Ω) = 22r+1L
r , and we end the proof in the same way as the previous.

Let ũ ∈ W 1,r(Rd) be an extension of u ∈ W 1,r(Ω, γ0) outside Ω. The two previous lemmas

allow us to establish the next lemma which gives an approximation of u by zero in Gk,α.

Lemma 3.3 For every real number ε > 0, there exists a real number αε verifying (1.3)

such that, for every 0 < α ≤ αε,

∀k = 1, · · · , q, ∥θα,ku∥W 1,r(Gk,α∩Ω) ≤
ε

4q
. (3.23)

Proof For k = 1, · · · , q, let {B(xi, α)}pi=1 be an open optimal covering of Gk,α, where

B(xi, α) denotes the open ball with center xi and radius α. This means that there is no

covering of Gk,α with less than p balls of radius α. Let i ∈ N∗ such that 1 ≤ i ≤ p. Note that

B(xi, α)∩Gk,α ̸= ∅ and let zi belong to B(xi, α)∩Gk,α. Then, there exists yi ∈ Kk, such that

d(zi,yi) ≤ α, which implies d(xi,yi) < 2α. Hence, we derive

Gk,α ⊂
p∪

i=1

B(xi, α) ⊂
p∪

i=1

B(yi, 3α), (3.24)

such that the covering {B(xi, α)}pi=1 is maximal and the covering {B(yi, 3α)}pi=1 verifies, ∀i =
1, · · · , p,

yi belongs to Kk. (3.25)

Note that, ∀x ∈ Rd, ∀n ∈ N∗ and ∀α > 0, there exists a covering {B(x′
i, α)}

pn,d
i=1 of the ball

B(x, nα) with pn,d = ([n
√
d ] + 1)d, where [x] denotes the integral part of the real number x.
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Indeed, the ball of radius nα is inscribed in a hypercube of edge 2nα and the hypercube of edge
2α√
d
is inscribed in a ball of radius α. Let i ∈ N∗ such that 1 ≤ i ≤ p and let us set

Ni = {j ∈ N∗, 1 ≤ j ≤ p,B(yj , 3α) ∩B(yi, 3α) ̸= ∅}. (3.26)

On the one hand, we have∪
j∈Ni

B(xj , α) ⊂
∪

j∈Ni

B(yj , 3α) ⊂ B(yi, 9α) ⊂ B(xi, 11α).

On the other hand, the previous note implies

B(xi, 11α) ⊂
p11,d∪
j=1

B(x′
j , α).

Since the covering {B(xi, α)}pi=1 of Gk,α is maximal, we derive

∀i ∈ N∗, 1 ≤ i ≤ p, cardNi ≤ p11,d = ([11
√
d ] + 1)d =Md, (3.27)

where Ni is defined by (3.26). Applying the crucial Lemma 3.2 yields

∥ũ∥rL(B(yi,3α)
≤ C ′

1 α
r∥∇ũ∥rL(B(yi,3α)

, (3.28)

where C ′
1 = 3rC1. Then, from (3.24), we derive

∥u∥rLr(Gk,α∩Ω) ≤ ∥ũ∥rLr(Gk,α) ≤
p∑

i=1

∥ũ∥rLr(B(yi,3α))
,

and in view of (3.28), we obtain

∥u∥rLr(Gk,α∩Ω) ≤ C ′
1α

r

p∑
i=1

∥∇ũ∥rLr(B(yi,3α))
. (3.29)

Now, we can assume that the integrals ∥∇ũ∥Lr(B(yψ(i),3α)) are in decreasing order with

respect to i where ψ is a permutation of the set {1, · · · , p}. To simplify the notation, we still

denote the index i instead of ψ(i). Thus, we assume that, for i = 1, · · · , p− 1,

∥∇ũ∥Lr(B(yi,3α)) ≥ ∥∇ũ∥Lr(B(yi+1,3α)). (3.30)

Next, we construct by finite induction a partition of I = {i ∈ N∗, 1 ≤ i ≤ p} in the following

way. We define I0 = I, i1 = 1 and for k ≥ 1

Jk = {j ∈ Ik−1, B(yj , 3α) ∩B(yik , 3α) ̸= ∅}, Ik = {j ∈ Ik−1, B(yj , 3α) ∩B(yik , 3α) = ∅}

and ik+1 = min Ik if Ik ̸= ∅. Note that ik+1 > ik, because, by construction, ik+1 ≥ ik and

ik /∈ Ik. Let l ≥ 1 such that Il = ∅ and Il−1 ̸= ∅. Considering that Ik−1 = Jk ∪ Ik for

k = 1, · · · , l, we obtain the following partition of I:

I =
l∪

k=1

Jk. (3.31)
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Moreover, by construction, the balls B(yik , 3α), k = 1, · · · , l are disconnected two by two.

Hence, on the one hand, we derive

∥∇ũ∥r
Lr
( p∪
i=1

B(yi,3α)
) ≥

l∑
k=1

∥∇ũ∥rLr(B(yik ,3α))
. (3.32)

On the other hand, we have

p∑
i=1

∥∇ũ∥rLr(B(yi,3α))
=

l∑
k=1

( ∑
j∈Jk

∥∇ũ∥rLr(B(yj ,3α))

)
.

But, in view of (3.27) and (3.30), we can write∑
j∈Jk

∥∇ũ∥rLr(B(yj ,3α))
≤Md∥∇ũ∥rLr(B(yik ,3α))

.

Thus, we derive
p∑

i=1

∥∇ũ∥rLr(B(yi,3α))
≤Md

l∑
k=1

∥∇ũ∥rLr(B(yik ,3α))
.

Then, owing to (3.32), we obtain the crucial estimate

p∑
i=1

∥∇ũ∥rLr(B(yi,3α))
≤Md∥∇ũ∥r

Lr
( p∪
i=1

B(yi,3α)
) ≤Md∥∇ũ∥rLr(Gk,3α),

which gives, in view of (3.29),

∥u∥rLr(Gk,α∩Ω) ≤ C ′
1Mdα

r∥∇ũ∥rLr(Gk,3α). (3.33)

Finally, for i = 1, · · · , d, ∂i(θα,ku) = ∂i(θα,k)u + θα,k∂iu, where θα,k is defined by (2.8).

From (2.9) and (3.33), we derive

∥∂i(θα,k)u∥rLr(Gk,α∩Ω) ≤
Ar

αr
∥u∥rLr(Gk,α∩Ω) ≤ C ′

1MdA
r∥∇ũ∥rLr(Gk,3α).

Considering (2.9) again and

∥∂i(θα,ku)∥rLr(Gk,α∩Ω) ≤ 2r−1(∥∂i(θα,k)u∥rLr(Gk,α∩Ω) + ∥θα,k∂iu∥rLr(Gk,α∩Ω)),

we obtain, for k = 1, · · · , q,

∥θα,ku∥rW 1,r(Gk,α∩Ω) ≤ ∥ũ∥rLr(Gk,3α) + 2r−1 (C ′
1MdA

r + 1)d∥∇ũ∥rLr(Gk,3α).

Note that ∩
α>0

Gk,3α = Kk

and the measure of Kk is 0 in Rd. Since ũ belongs to W 1,r(Rd), for k = 1, · · · , q, we have

lim
α→0

∥θα,ku∥W 1,r(Gk,α∩Ω) = 0.
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Thus, there exists a real αε > 0, such that the inequalities (3.23) and (1.3) are verified.

Let us note that, considering the partition of unity Pα defined by (2.12), such that 0 < α ≤
αε, and in view of θα,k ∈ D(Gk,α), (3.23) can be written as

∀k = 1, · · · , q, ∥φα,ku∥W 1,r(Ω) ≤
ε

4q
, (3.34)

so that, for every k = 1, · · · , q, we can approximate φα,ku by 0 in Ok,α = Gk,α.

We now deal with the case k = 0, that is to say, we want approximate φα,0u in O0,α. Let

us recall that φα,0u has a compact support in O0,α with O0,α ⊂ Ω. Therefore, we have

d(supp (φα,0u), ∂O0,α) = µ0 > 0, (3.35)

and we can note that φ̃α,0u belongs to W 1,r(Rd), where the latter denotes the extension by

zero. Then, for every p ∈ N∗, we define up by

∀x ∈ RRd, up(x) = ((φ̃α,0u) ∗ ρp)(x) =
∫
B(0, 1p )

φ̃α,0u(x− y)ρp(y)dy,

where ρp is defined by (2.6). In a standard way, we obtain that

lim
p→+∞

up = φ̃α,0u, in W 1,r(RRd),

which implies that there exists a Pε ∈ N∗, such that ∀p ≥ Pε,

∥φα,0u− up∥W 1,r(O0,α) ≤
ε

4
. (3.36)

Next, concerning the support of up, we choose p ≥ 3
µ0

and define the set E =
{
x ∈

O0,α, d(x, ∂O0,α) ≤ µ0

3

}
. This implies that ∀y ∈ B(0, 1p ) and ∀x ∈ E,

d(x− y, supp (φα,0u)) ≥ d(∂O0,α, supp (φα,0u))− d(x− y,x)− d(x, ∂O0,α) ≥
µ0

3
> 0.

In the same way, we have ∀y ∈ B(0, 1p ) and ∀x ∈ Ω \ O0,α,

d(x− y, supp (φα,0u)) ≥
2µ0

3
> 0.

Hence, we derive that up vanishes on E ∪ (Ω \ O0,α). Setting uε,0 = umε , where mε is defined

by mε = max([ 3
µ0
], Pε) ([r] is the integral part of r), and considering the supports of φα,0u and

uε,0, yield

∥φα,0u− uε,0∥W 1,r(O0,α∩Ω) = ∥φα,0u− uε,0∥W 1,r(Ω) ≤
ε

4
with uε,0 ∈ D(O0,α), (3.37)

where O0,α ⊂ Ω.

The next lemma gives an approximation of φα,ku in Ok,α for k = q + 1, · · · , rα such that

mk,α ∈ γ1, that is, an approximation of u localized around γ1.
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Lemma 3.4 Let α be a real number verifying (1.3). For every real number ε > 0 and for

every k = q+ 1, · · · , rα, such that mk,α ∈ γ1, there exists a function uε,k ∈ D(Ω) with compact

support in Ok,α ∩ Ω, such that

∥φα,ku− uε,k∥W 1,r(Ω) ≤
ε

4 rα
, (3.38)

where rα is defined by (2.4).

Proof For k = q + 1, · · · , rα with mk,α ∈ γ1, we want to approximate φα,ku. To simplify

the notations, we drop the indexes, replacing φα,k u by u and Ok,α by O, so that we may assume

that u has compact support in O ∩ Ω and set

d(∂O ∩ Ω, supp u) = µ > 0. (3.39)

Considering (2.1) and (2.12), we may assume that O is an open hypercube, neighborhood of a

point of γ1, such that, in new orthogonal coordinates y = (y′, yd), we have

O ∩ Ω = {y ∈ O, yd < Φ(y′)} and γ1 ∩ O = {y ∈ O, yd = Φ(y′)}, (3.40)

where Φ is a Lipschitz-continuous function, defined in
d−1∏
j=1

]− aj , aj [, of constant L.

Let n ∈ N∗. We set

un(y) = u
(
y′, yd −

1

n

)
, (3.41)

which is a function defined on

Ωn =
{
y ∈ Rd,

(
y′, yd −

1

n

)
∈ O ∩ Ω

}
.

The set Ωn is obtained by translating O ∩ Ω to the direction of positive yd. We denote by ũn

the extension of un by zero. Considering the support of u, we can see that the restriction of ũn

to O ∩ Ω belongs to W 1,r(O ∩ Ω).

Next, since the translation is continuous on Lr(Rd), we derive

lim
n→+∞

ũn|O∩Ω = u, in Lr(O ∩ Ω).

Moreover, as ∂i(ũn|O∩Ω) = (∂̃iu)n|O∩Ω, where the wide latter denotes the extension by zero of

(∂iu)n in O∩Ω\Ωn, as we can verify by deriving in the sense of distribution, we have the same

convergence for the partial derivatives. Thus, we obtain

lim
n→+∞

ũn|O∩Ω = u, in W 1,r(O ∩ Ω). (3.42)

For every n ∈ N∗ and p ∈ N∗, we define

un,p = ũn ∗ ρp. (3.43)

The standard properties of the convolution imply

lim
p→+∞

un,p = ũn, in Lr(Rd). (3.44)
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Next

∂iun,p = ∂iũn ∗ ρp.

We cannot pass to the limit in Lr(Rd), because, usually, ∂iũn is not in Lr(Rd). First, let us

show that, for p large enough, ũn|Op belongs to W 1,r(Op), where Op is defined by

Op =
{
y ∈ Rd, d(y,O ∩ Ω) <

1

p

}
. (3.45)

We set

Γn =
{
y ∈ Rd,

(
y′, yd −

1

n

)
∈ ∂Ω ∩ O

}
, (3.46)

and thus, we can write

∂Ωn = Γn ∪ Γ′
n with Γn ∩ Γ′

n = ∅.

We can note that, since ∀y ∈ Γ′
n, (y

′, yd − 1
n ) ∈ Ω ∩ (∂O),

∀y ∈ Γ′
n, un(y) = 0. (3.47)

Let us estimate, for every z ∈ Γn, the distance d(z,O ∩ Ω) = d(z,O ∩ ∂Ω). Indeed, ∀y ∈
O ∩ Ω, [z,y] ∩ (O ∩ ∂Ω) ̸= ∅.

∀z ∈ Γn, ∀y ∈ (O ∩ ∂Ω), ∥z− y∥2 = ∥z′ − y′∥2 +
( 1

n
+Φ(z′)− Φ(y′)

)2

.

The properties of Φ yield

1

n
+Φ(z′)− Φ(y′) ≥ 1

n
− L∥z′ − y′∥.

Then, if ∥z′−y′∥ ≤ 1
2nL , we have ∥z−y∥ ≥ 1

2n , and if ∥z′−y′∥ ≥ 1
2nL , we have ∥z−y∥ ≥ 1

2nL .

Therefore, we obtain

d(Γn,O ∩ Ω) ≥ min
( 1

2n
,

1

2nL

)
. (3.48)

Next, we have by definition

∀ψ ∈ D(Op), ⟨∂iũn, ψ⟩D(Op) = −
∫
Op
ũn(x)∂iψ(x)dx = −

∫
Op∩Ωn

un(x)∂iψ(x)dx.

Since un belongs to W 1,r(Ωn), Green’s formula yields

⟨∂iũn, ψ⟩D(Op) =

∫
Op∩Ωn

∂iun(x)ψ(x)dx−
∫
∂(Op∩Ωn)

un(s)ψ(s)nids.

Let us choose

1

p
< min

( 1

2n
,

1

2nL

)
. (3.49)

Then, owing to (3.48), we have for every y ∈ Op,

d(y,O ∩ Ω) ≤ 1

p
< min

( 1

2n
,

1

2nL

)
≤ d(Γn,O ∩ Ω),
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which implies

Γn ∩ Op = ∅.

Hence, we obtain

∂(Op ∩ Ωn) ⊂ (∂(Op) ∪ ∂(Ωn)) ∩ Op ⊂ (∂(Op) ∪ Γ′
n ).

Therefore, with (3.47) in addition, unψ vanishes on ∂(Op ∩ Ωn). We derive

⟨∂iũn, ψ⟩D(Op) =

∫
Op∩Ωn

∂iun(x)ψ(x)dx,

that is to say,

ũn|Op belongs to W 1,r(Op) and ∂iũn|Op = ∂̃iun, (3.50)

where the wide latter is the extension by zero of ∂iun ∈ Lr(Ωn ∩ Op) in Op.

Second, let us show that, for p large enough, ∂iun,p = ∂̃iun∗ρp. In view of Fubini’s Theorem,

∀ψ ∈ D(O ∩ Ω), ⟨∂iun,p, ψ⟩D(O∩Ω) = −
∫
O∩Ω

(∫
B(0, 1p )

ũn(x− y)ρp(y)dy
)
∂iψ(x)dx

= −
∫
B(0, 1p )

ρp(y)
(∫

O∩Ω

ũn(x− y)∂iψ(x)dx
)
dy.

Considering (3.50), for every y ∈ B(0, 1p ), x 7→ ũn(x− y) belongs to W 1,r(O ∩ Ω) and

∀x ∈ O ∩ Ω, ∀y ∈ B
(
0,

1

p

)
, ∂iũn(x− y) = ∂̃iun(x− y).

Then, Green’s formula and Fubini’s Theorem yield

⟨∂iun,p, ψ⟩D(O∩Ω) =

∫
O∩Ω

(∫
B(0, 1p )

∂̃iun(x− y)ρp(y)dy
)
ψ(x)dx,

which implies, for every p verifying (3.49),

∂iun,p = ∂̃iun ∗ ρp.

From the standard properties of the convolution, we derive

lim
p→+∞

(∂iun,p)|O∩Ω = ∂̃iun and Lr(O ∩ Ω)

and in view of (3.44),

lim
p→+∞

(un,p)|O∩Ω = ũn, in W 1,r(O ∩ Ω). (3.51)

Then, (3.42) and (3.51) yield that there exists an Nε ∈ N∗ such that, for min(n, p) ≥ Nε,

∥u− un,p∥W 1,r(O∩Ω) ≤
ε

4 rα
. (3.52)
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Finally, we set zn = (0, 1
n ) and for min(n, p) ≥ 6

µ where µ is defined by (3.39), we consider

the set

E =
{
x ∈ O ∩ Ω, d(x, ∂O ∩ Ω) ≤ µ

3

}
.

∀x ∈ E, ∀y ∈ B(0, 1p ), and we have

d(x− y − zn, supp u) ≥ d(∂O ∩ Ω, supp u)− d(x, ∂O ∩ Ω)− d(x,x− y − zn) ≥
µ

3
> 0.

In the same way, ∀x ∈ Ω \ O, ∀y ∈ B(0, 1p ), and we have

d(x− y − zn, supp u) ≥ d(x, supp u)− d(x,x− y − zn) ≥
2µ

3
> 0.

Hence, we derive that, for every x ∈ E ∪ (Ω \ O) and y ∈ B(0, 1p ), x− y − zn does not belong

to suppu, which implies un,p(x) = 0. Thus, the function uε = umε,mε
, where un,p is defined by

(3.43) and mε by mε = max([ 6µ ] + 1, Nε), belongs to D(Ω) with a compact support in O ∩ Ω

and verifies

∥u− uε∥W 1,r(O∩Ω) = ∥u− uε∥W 1,r(Ω) ≤
ε

4 rα
,

which ends the proof of the lemma.

The next lemma deals with an approximation of φα,ku in Ok,α for k = q + 1, · · · , rα, such
that mk,α ∈ γ0, that is, an approximation of u localized around γ0, which is the part of the

boundary where u vanishes.

Lemma 3.5 Let α be a real number verifying (1.3). For every real number ε > 0 and for

every k = q + 1, · · · , rα, such that mk,α ∈ γ0, there exists a function uε,k ∈ D(Ω ∩ Ok,α), such

that

∥φα,ku− uε,k∥W 1,r(Ω) ≤
ε

4 rα
, (3.53)

where rα is defined by (2.4).

Proof As in the previous lemma, to simplify the notations, we drop the indexes, replacing

for k = q + 1, · · · , rα, φα,k u by u and Ok,α by O, so that we may assume that u has compact

support in O ∩ Ω, and set

d(∂O ∩ Ω, supp u) = ν > 0. (3.54)

Considering (2.1) and (2.12), we may assume that O is an open hypercube, such that, in new

orthogonal coordinates y = (y′, yd), we have

O ∩ Ω = {y ∈ O, yd < Φ(y′)} and γ0 ∩ O = {y ∈ O, yd = Φ(y′)}, (3.55)

where Φ is a Lipschitz-continuous function, defined in
d−1∏
j=1

]− aj , aj [ of constant L.

Let n ∈ N∗. We set

un(y) = u
(
y′, yd +

1

n

)
, (3.56)
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which is a function defined on

Ωn =
{
y ∈ Rd,

(
y′, yd +

1

n

)
∈ O ∩ Ω

}
.

The set Ωn is obtained by translating O ∩ Ω in the direction of negative yd, that is to say,

contrary to the previous, inside the domain Ω. We denote by ũn the extension of un by zero

outside Ωn. Considering the support of u and since u vanishes on γ0, we can see that the

restriction of ũn to O ∩ Ω belongs to W 1,r(O ∩ Ω), and as in the previous lemma, we have

lim
n→+∞

ũn|O∩Ω = u, in W 1,r(O ∩ Ω). (3.57)

Note that, if 1
n ≤ ν, where ν is defined by (3.54), then un has a compact support in O∩Ω, and

therefore, ũn belongs to W 1,r(Rd). Hence, setting

un,p = ũn ∗ ρp,

we derive

lim
p→+∞

(un,p)|O∩Ω = (ũn)|O∩Ω, in W 1,r(O ∩ Ω),

which implies that, in view of (3.57), there exists an N ′
ε ∈ N∗, such that, for min(n, p) ≥ N ′

ε,

∥u− un,p∥W 1,r(O∩Ω) ≤
ε

4 rα
. (3.58)

We set

Γ∗
n =

{
y ∈ Rd,

(
y′, yd +

1

n

)
∈ ∂Ω ∩ O

}
. (3.59)

Note that d(∂Ω∩O, ∂Ωn) = d(∂Ω∩O,Γ∗
n) because ∀z ∈ ∂Ω∩O and ∀y ∈ Ωn, [z,y]∩ Γ∗

n ̸= ∅.
Moreover, in the same way as for Γn, we obtain the analogue of (3.48)

d(∂Ω ∩ O, ∂Ωn) = d(∂Ω ∩ O,Γ∗
n) ≥ min

( 1

2n
,

1

2nL

)
= δn. (3.60)

We recall that

un,p(x) =

∫
B(0, 1p )

ũn(x− y)ρp(y)dy.

Let us define the following two sets:

E =
{
x ∈ Ω ∩ O, d(x, ∂Ω ∩ O) ≤ δn

3

}
and F =

{
x ∈ Ω ∩ O, d(x, ∂O ∩ Ω) ≤ ν

3

}
.

On the one hand, choosing p ≥ 3
δn
, ∀y ∈ B(0, 1p ) and ∀x ∈ E, we have

d(x− y, ∂Ωn) ≥ d(∂Ω ∩ O, ∂Ωn)− d(x, ∂Ω ∩ O)− d(x,x− y) ≥ δn
3
> 0,

which implies ũn(x− y) = 0. Thus, we obtain

∀x ∈ E, un,p(x) = 0. (3.61)



Density Results in Sobolev Spaces 841

On the other hand, setting zn = (0, 1
n ) and choosing n and p large enough, such that 1

n+
1
p ≤ ν

3 ,

∀y ∈ B(0, 1p ) and ∀x ∈ E, we have

d(x− y + zn, suppu) ≥ d(∂Ω ∩ Ω, suppu)− d(x, ∂Ω ∩ Ω)− d(x,x− y + zn) ≥
ν

3
> 0,

which implies ũn(x− y) = 0 and therefore

∀x ∈ F, un,p(x) = 0. (3.62)

Thus, since ∂(Ω ∩ O) = (∂O ∩ Ω) ∪ (∂Ω ∩ O), owing to (3.61) and (3.62), for n ≥ 6
ν and

p ≥ max( 6ν ,
3
δn
) with δn defined in (3.60), un,p belongs to D(Ω ∩O). Finally, in view of (3.58),

the function uε = unε,pε , where

nε = max
([6
ν

]
+ 1, N ′

ε

)
and pε = max

([6
ν

]
+ 1,

[ 3

min
(

1
2nε

, 1
2nεL

)]+ 1, N ′
ε

)
,

belongs to D(Ω ∩ O) and verifies

∥u− uε∥W 1,r(O∩Ω) = ∥u− uε∥W 1,r(Ω) ≤
ε

4 rα
.

Hence, the lemma follows.

We can now complete the proof of Theorem 3.1. Let ε > 0 be a given real number. Lemma

3.3 leads us to define a partition of unity Pα, with α ≤ αε, where Pα is defined by (2.12). Next,

(3.37), Lemmas 3.4 and 3.5 allow us to construct a function uε of D(Ω) defined by

uε = uε,0 +
∑

q+1≤k≤rα

uε,k. (3.63)

Then, we have

∥u− uε∥W 1,r(Ω) ≤ ∥φα,0u− uε,0∥W 1,r(Ω) +
∑

q+1≤k≤rα

∥φα,k u− uε,k∥W 1,r(Ω)

+

q∑
k=1

∥φα,k u∥W 1,r(Ω),

which implies, in view of (3.34), (3.37)–(3.38) and (3.53),

∥u− uε∥W 1,r(Ω) ≤ ε. (3.64)

Moreover, owing to Lemma 3.4, we obtain that, for every k = q+1, · · · , rα with mk,α ∈ γ1 (note

that by construction Ok,α ∩ γ0 = Cmk,α
∩ γ0 = ∅), uε,k belongs to D(Ω, γ0) and, consequently,

uε belongs to D(Ω, γ0), where D(Ω, γ0) is defined by (1.5). Thus, Theorem 3.1 is proved.

4 Density Result in Wm,r(Ω, γ0)

Let k ≥ 1 be an integer and let us suppose that the boundary ∂Ω is of class Ck,1, which

means that, for every x ∈ ∂Ω, the functions Φx, defined by (2.1), are of class Ck,1. The following

theorem generalizes Theorem 3.1.
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Theorem 4.1 Let r > 1 be a real number, and m ≥ 1 be an integer. Let Ω be a bounded

domain in Rd whose boundary is of class Ck,1, where k is an integer such that k + 1 ≥ m, and

let γ0 be an open part of ∂Ω verifying (1.1). Let the spaces Wm,r(Ω, γ0) and D(Ω, γ0) be defined

respectively by (1.4) and (1.5). Then the space D(Ω, γ0) is dense in Wm,r(Ω, γ0).

Proof Let us prove the result form = 2, the extension to the general case is straightforward.

We suppose that u belongs to W 2,r(Ω, γ0). The proof of this theorem is analogous to that of

Theorem 3.1. Indeed, we use the same covering {Ok,α}rαk=0 defined by (2.12), and an associated

partition of unity P̃α analogous to Pα, defined as follows.

First, we define the functions θ̃α,k, for k = 1, · · · , q, by

∀k, 1 ≤ k ≤ q, θ̃α,k = φ̃
( 1

α
d( . ,Kk)

)
∗ ρpα (4.1)

with pα = [ 16α ]+1 and ρp defined by (2.6), where the function φ̃ belongs to C2(R+) and verifies

∀t ∈
[
0,

9

16

]
, φ̃(t) = 1, ∀t ≥ 11

16
, φ̃(t) = 0 and ∀t ∈ R+, |φ̃′(t)| ≤ A, |φ̃′′(t)| ≤ B.

For example, we can choose φ̃ defined on [ 9
16 ,

11
16 ] by

φ̃(t) = 15(164)

∫ 11
16

t

(
x− 9

16

)2(
x− 11

16

)2

dx.

Since the boundary is at least of class C1,1, the first and second order partial derivatives of the

function x 7→ d(x,Kk) belong to L∞(Rd) (see [5]). SettingM = ∥∂2d( · ,Kk)∥L∞(Rd), we derive

the following estimations for the functions θ̃α,k ∈ D(Gk,α) and its derivatives, for k = 1, · · · , q
and for i, j = 1, · · · , d,

∀x ∈ Gk,α2
, θ̃α,k(x) = 1, ∀x /∈ Gk, 3α4

, θ̃α,k(x) = 0,

∀x ∈ Rd, |∂iθ̃α,k(x)| ≤
A

α
, |∂i∂j θ̃α,k(x)| ≤

C

α2
,

(4.2)

where Gk,α is defined by (1.2) and C = B +AM .

Second, we set P̃α = {φ̃α,k}rαk=0 with

φ̃α,k =
( q∏

j=1

(1− θ̃α,j)
)
βα,k, k = 0 or q + 1 ≤ k ≤ rα,

φ̃α,k = θ̃α,k, 1 ≤ k ≤ q.

(4.3)

As previously discussed, for every real ε, we must compute a parameter α′
ε, allowing us to

construct an adequate partition of unity P̃α with α ≤ α′
ε. Thus, we prove an analogous lemma

to Lemma 3.3.

Lemma 4.1 For every real number ε > 0, there exists a real number α′
ε verifying (1.3)

such that, for every 0 < α ≤ α′
ε,

∀k = 1, · · · , q, ∥θ̃α,ku∥W 2,r(Gk,α∩Ω) ≤
ε

4q
. (4.4)
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Proof In the same way as in Lemma 3.3, using an extension ũ ∈ W 2,r(Rd) of u ∈
W 2,r(Ω, γ0), we prove

lim
α→0

∥θ̃α,ku∥W 1,r(Gk,α∩Ω) = 0. (4.5)

On the one hand, for j = 1, · · · , d and i = 1, · · · , p, ∂j ũ vanishes on B(xi, 2α) ∩ γ0, which
has a strictly positive measure, and we can use Poincaré’s inequality to deduce

∥∇ũ∥rLr(B(xi,2α)
≤ C1α

r∥∂2ũ∥rLr(B(xi,2α)
,

where C1 is the constant defined in (3.28). As in the proof of Lemma 3.3, setting the integrals

∥∂2ũ∥Lr(B(xi,2α) in decreasing order, by an analogous method, we obtain

∥∇ũ∥rLr(Gk,α) ≤ C1α
rMd∥∂2ũ∥rLr(Gk,4α), (4.6)

where Md is defined by (3.27). Moreover, owing to (3.33), we derive

∥u∥rLr(Gk,α∩Ω) ≤ 4r C2
1α

2rM2
d∥∂2ũ∥rLr(Gk,16α). (4.7)

On the other hand, we can write

∂i∂j(θ̃α,k u) = ∂i∂j(θ̃α,k)u+ ∂i(θ̃α,k)∂ju+ ∂j(θ̃α,k) ∂iu+ (θ̃α,k)∂i∂ju.

Then, in view of (4.2), (4.6) and (4.7), we obtain

∥∂2(θ̃α,k u)∥rLr(Gk,α∩Ω) ≤ 4r−1((4C)r (dC1Md)
2 + 2dC1MdA

r + 1)∥∂2ũ∥rLr(Gk,16α).

Hence, since

lim
α→0

∥∂2ũ∥Lr(Gk,16α) = 0,

we derive

lim
α→0

∥∂2(θ̃α,k u)∥Lr(Gk,α∩Ω) = 0,

which implies, owing to (4.5),

lim
α→0

∥θ̃α,ku∥W 2,r(Gk,α∩Ω) = 0,

and the result of the lemma follows.

We consider a partition of unity P̃α defined by (4.1) with 0 < α ≤ α′
ε, subordinated to the

covering {Ok,α}rαk=0, defined by (2.12), where α′
ε is defined in Lemma 4.1. Since θ̃k,α belongs to

D(Gk,α), (4.4) can be written as, with the notation of the partition P̃α,

∀k = 1, · · · , q, ∥φ̃α,ku∥W 2,r(Ω) ≤
ε

4q
, (4.8)

so that, for every k = 1, · · · , q, we can approximate φ̃α,ku by 0 in Ok,α = Gk,α.

We now deal with the case k = 0, that is to say, we want approximate φ̃α,0u in O0,α. In the

same way as in the proof of Theorem 3.1, we set up = (˜̃φα,0u)∗ρp, where the wide latter denotes
the extension by zero. In a standard way, considering that ˜̃φα,0u ∈W 2,r(Rd), we obtain that

lim
p→+∞

up = ˜̃φα,0u, in W 2,r(Rd),
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which implies that there exists a P ′
ε ∈ N∗, such that ∀p ≥ P ′

ε,

∥φ̃α,0u− up∥W 2,r(O0,α) ≤
ε

4
. (4.9)

Then considering µ′
0 = d(supp(φ̃α,0 u), ∂O0,α) > 0 and setting uε,0 = um′

ε
, where m′

ε is defined

by m′
ε = max([ 3

µ′
0
], P ′

ε) ([r] is the integral part of r), yield

∥φ̃α,0u− uε,0∥W 2,r(O0,α∩Ω) = ∥φ̃α,0u− uε,0∥W 2,r(Ω) ≤
ε

4
with uε,0 ∈ D(O0,α), (4.10)

where O0,α ⊂ Ω.

Next, we are taking an approximation of φ̃α,k u in Ok,α for k = q + 1, · · · , rα, such that

mk,α ∈ γ1, that is, an approximation of u localized around γ1. As in Lemma 3.4, to simplify the

notations, we drop the indexes, replacing φ̃α,k u by u and Ok,α by O, so that we may assume

that u has compact support in O ∩ Ω and set

d(∂O ∩ Ω, supp u) = µ′ > 0. (4.11)

We define un, Ωn by (3.41) and denote by ũn the extension of un by zero. We can verify, by

deriving in the sense of distribution, that

∂i(ũn|O∩Ω) = (̃∂iu)n|O∩Ω, ∂j∂i(ũn|O∩Ω) = ˜(∂j∂iu)n|O∩Ω,

where the wide latter denotes the extension by zero in O ∩ Ω \ Ωn, which implies that the

restriction of ũn to O ∩ Ω belongs to W 2,r(O ∩ Ω) and the following convergence:

lim
n→+∞

ũn|O∩Ω = u, in W 2,r(O ∩ Ω). (4.12)

Next, we define un,p by (3.43) and in the same way as in Lemma 3.4, we prove that ũn|Op

belongs to W 2,r(Op), where Op is defined by (3.45), and ∂j∂iũn|Op = ∂̃j∂iun, where the wide

latter is the extension by zero of ∂j∂iun ∈ Lr(Ωn ∩ Op) in Op. Moreover, as in the proof of

(3.51), we can show that for p verifying (3.49),

∂j∂iun,p = ∂̃j∂iun ∗ ρp, almost everywhere in O ∩ Ω,

and we obtain

lim
p→+∞

(un,p)|O∩Ω = ũn, in W 2,r(O ∩ Ω).

Hence, with (4.12), we derive that there exists an N ′
ε ∈ N∗, such that for min(n, p) ≥ N ′

ε,

∥u− un,p∥W 2,r(O∩Ω) ≤
ε

4 rα
. (4.13)

Thus, the function uε = um′
ε,m

′
ε
, where m′

ε is defined by

m′
ε = max

([ 6

µ′

]
+ 1, N ′

ε

)
with µ′ defined by (4.11), belongs to D(Ω) with a compact support in O ∩ Ω and verifies

∥u− uε∥W 2,r(O∩Ω) = ∥u− uε∥W 2,r(Ω) ≤
ε

4 rα
.
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Then, with the initial notation, we obtain, for every k = q + 1, · · · , rα, such that mk,α ∈ γ1,

∥φ̃α,k u− uε,k∥W 2,r(O∩Ω) ≤
ε

4 rα
, (4.14)

where the function uε,k belongs to D(Ω) with compact support in Ok,α ∩ Ω, which ends the

problem of the approximation of u localized around γ1.

Finally, we still have an approximation of φ̃α,k u in Ok,α to do, for k = q + 1, · · · , rα, such
that mk,α ∈ γ0, that is, an approximation of u localized around γ0, which is the part of the

boundary where u vanishes.

As previously done, to simplify the notations, we replace, for k = q+1, · · · , rα, φα,k u by u

and Ok,α by O, so that we may assume that u has compact support in O ∩ Ω and set

d(∂O ∩ Ω, supp u) = ν′ > 0. (4.15)

We again define un by (3.56) and ũn again denotes the extension of un by zero. In the same

way as in the proof of Lemma 3.5, we have

lim
n→+∞

ũn|O∩Ω = u, in W 2,r(O ∩ Ω) (4.16)

and for 1
n ≤ ν′, un has a compact support in O ∩ Ω. Moreover, setting again un,p = ũn ∗ ρp

yields that there exists an N ′′
ε ∈ N∗, such that for min(n, p) ≥ N ′′

ε ,

∥u− un,p∥W 2,r(O∩Ω) ≤
ε

4 rα
. (4.17)

Then, the function uε = un′
ε,p

′
ε
, where

n′ε = max
{[ 6

ν′

]
+ 1, N ′′

ε

}
and p′ε = max

{[ 6

ν′

]
+ 1,

[ 3

min
(

1
2n′
ε
, 1
2n′
εL

)]+ 1, N ′′
ε

}
,

belongs to D(Ω ∩ O) and verifies

∥u− uε∥W 2,r(O∩Ω) = ∥u− uε∥W 2,r(Ω) ≤
ε

4 rα
.

With the initial notation, we obtain, for every k = q + 1, · · · , rα, such that mk,α ∈ γ0,

∥φ̃α,k u− uε,k∥W 2,r(Ω) ≤
ε

4 rα
, (4.18)

where the function uε,k belongs to D(Ω ∩Ok,α), which ends the problem of the approximation

of u localized around γ0.

We can complete the proof of Theorem 4.1. Let ε > 0 be a given real number. Lemma 4.1

leads us to define an adequate partition of unity P̃α, with 0 < α ≤ αε. Next (4.9), (4.14) and

(4.18) allow us to construct a function uε of D(Ω) defined by

uε = uε,0 +
∑

q+1≤k≤rα

uε,k

that verifies

∥u− uε∥W 2,r(Ω) ≤ ε.

With the same argument as at the end of the proof of Theorem 3.1, we prove that uε belongs

to D(Ω, γ0), where D(Ω, γ0) is defined by (1.5). Thus, Theorem 4.1 is proved.
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