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Abstract The authors investigate the tail probability of the supremum of a random
walk with independent increments and obtain some equivalent assertions in the case that
the increments are independent and identically distributed random variables with O-
subexponential integrated distributions. A uniform upper bound is derived for the distri-
bution of the supremum of a random walk with independent but non-identically distributed
increments, whose tail distributions are dominated by a common tail distribution with an
O-subexponential integrated distribution.
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1 Introduction and Main Results

In various applied fields, such as queueing theory and risk theory among others, the model

of a random walk occurs in a natural way. For a nice review, one can refer to [1, 4] among

others. For a random walk, it is important to estimate the tail probability of its supremum.

As applications, in queueing theory, this tail probability is the so-called overflow probability;

and in risk theory, it may be interpreted as the ruin probability. In the case that a random

walk has independent and identically distributed (i.i.d.) increments, many results were derived

(see [3, 5, 8, 9, 11, 14, 15] among others). Recently, Foss et al. [6] studied a random walk

with independent but non-identically distributed increments, and obtained some important

and skillful results. All of the above results required that the integrated distributions of the

increments of a random walk be subexponential (belonging to the class S, see the definition

below), or their tail distributions are dominated by a common tail distribution, whose integrated

distribution belongs to the class S. In this paper, we consider a wider distribution class and

generalize some existing results.

Klüppelberg [7] introduced a weak idempotent distribution class, which extends the class

S. From the view of regular variation, as Shimura and Watanabe [10] stated, it may be more
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appropriate to be called the O-subexponential class (denoted by OS). Shimura and Watanabe

[10] systematically investigated the class OS and obtained some fundamental and important

results, especially on random sums and infinite divisible distributions. However, they did not

deal with the supremum of random walks, which attracts us greatly. In this paper, we establish a

result corresponding to [6, Proposition 2.1] under the condition that the integrated distribution

of the dominant distribution belongs to the classOS. To this end, we need to extend the classical

Pakes-Veraverbeke-Embrechts Theorem (P-V-E Theorem) from the class S to the class OS. In
order to better illuminate some existing results and our main results, we firstly introduce some

notions and notation.

Throughout this paper, all the limits and asymptotic relations hold for x tending to ∞
unless stated otherwise. For two nonnegative functions a(x) and b(x) on (−∞,∞), we write

a(x) = O(b(x)), if lim sup a(x)
b(x) < ∞; a(x) ≈ b(x), if a(x) = O(b(x)) and b(x) = O(a(x));

a(x) ∼ b(x), if lim a(x)
b(x) = 1; a(x) = o(b(x)), if lim a(x)

b(x) = 0. The indicator function of an event

A is denoted by 1A.

Set D = (−∞,∞) or [0,∞). A distribution V on D is said to be proper, if V (∞) = 1.

Denote its tail distribution and integrated distribution by V (x) = 1 − V (x) and V I(x) =

1 − min(1,
∫∞
x
V (y)dy), x ∈ (−∞,∞), respectively. For some γ ≥ 0, a distribution V of

a random variable (r.v.) X is said to belong to the class L(γ), if V (x − y) ∼ eγyV (x) for

any y ∈ (−∞,∞). Especially, the class L(0) is the so-called long-tailed distribution class,

denoted by L. For some γ ≥ 0, V is said to belong to the class S(γ) on [0,∞), if V ∈ L(γ),∫∞
0

eγyV dy < ∞ and V ∗2(x) ∼ 2V (x)
∫∞
0

eγyV dy, where V ∗n denotes the n-fold convolution

of V , n ≥ 2, V ∗1 = V and V ∗0 is the distribution degenerate at zero. V is said to belong to the

class S(γ) on (−∞,∞), if the distribution V+ of X1{X≥0} belongs to the class S(γ). Especially,
S(0) is called the subexponential distribution class, denoted by S. We point out that in the

case γ = 0, V ∈ L on [0,∞) is not necessary, since it can be proved that S ⊂ L.
The classes L(γ) and S(γ) can be naturally extended to the following. A distribution V

is said to belong to the class OL, if V (x − y) = O(V (x)) for any y ∈ (−∞,∞). V is said to

belong to the class OS, if V ∗2
+ (x) = O(V +(x)). Clearly, we have the relations that OS ⊂ OL,

L(γ) ⊂ OL and S(γ) ⊂ OS, but the reverse is not true. For example, the class OS includes

another important distribution class D consisting of all distributions with dominated variation

(V ∈ D, if V (xy) = O(V (x)) for any y ∈ (0, 1)), but D\S ̸= ∅.
Let {ξi : i ≥ 1} be a sequence of random variables. Denote

S0 = 0, Sn =
n∑
i=1

ξi, n ≥ 1.

Then the sequence {Sn : n ≥ 0} constitutes a random walk. Define the supremum of the

random walk M = sup
n≥0

Sn with distribution W on [0,∞). Denote the upwards first passage

time by τ+ = inf{n ≥ 0 : Sn > 0}, if {n ≥ 0 : Sn > 0} ̸= ∅; otherwise, τ+ = ∞. The random

variable Sτ+ is called the first upwards ladder height of the random walk. If {ξi : i ≥ 1} are

indepentlent and identically distributed random variables with finite mean Eξ1 = −a < 0, it is

well-known that Sτ+ is defective random variable, i.e., 0 < P(Sτ+ <∞) = P(τ+ <∞) = p < 1.

Define G(x) = P(Sτ+ > x | τ+ <∞), x ≥ 0. Then G is a proper distribution.

We firstly introduce some existing results. In the case that {ξi : i ≥ 1} are indepentlent and
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identically distributed random variables, some classical results were derived. For simplicity, we

only state P-V-E Theorem for the heavy-tailed case.

Theorem 1.1 Let {ξi : i ≥ 1} be independent and identically distributed random variables

with common distribution F on (−∞,∞) and finite negative mean Eξ1 = −a. Then, the

following assertions are equivalent:

(i) F I ∈ S; (ii) G ∈ S; (iii) W (x) ∼ a−1F I(x); (iv) W ∈ S.

Theorem 1.1 provides a perfect equivalence result. For the wider class OS, although the

precise equivalence in Theorem 1.1(iii) may not be maintained, a similar weak equivalence result

also holds. As in [10], for a distribution V on [0,∞), denote

l∗(V ) = lim sup
V ∗2(x)

V (x)
.

Theorem 1.2 Let {ξi : i ≥ 1} be the same as those in Theorem 1.1. If F I ∈ OL, then
(a) F I(x) = O(W (x));

(b) (i) F I ∈ OS and (ii) G ∈ OS are equivalent ;

(c) (iii) F I(x) ≈ G(x) ≈W (x) yields (i) or (ii).

If F I ∈ L and a−1
(
l∗(F I

+)− 1
)
< 1, then (i) or (ii) yields (iii). In this case, (i) ((ii) or (iii))

implies W ∈ OS.

Remark 1.1 It is known that the class S is closed under convolution roots, but as remarked

by Shimura and Watanabe [10] that the class OS does not own this property, which essentially

leads to the difference between Theorems 1.1 and 1.2.

Foss et al. [6] considered a random walk with independent but non-identically distributed

increments, and provided a uniform upper bound for the supremum.

Theorem 1.3 Let F be a distribution on (−∞,∞) such that
∫∞
0
F (y)dy < ∞ and its

integrated distribution F I ∈ S. Let α and β be two fixed positive constants. Consider any

sequence {ξi : i ≥ 1} of independent random variables such that, for each i, the distribution Fi
of ξi satisfies the conditions

Fi(x) ≤ F (x) for all x ∈ (−∞,∞), (1.1)∫ ∞

−∞
max(y,−β)Fidy ≤ −α. (1.2)

Then, there exists a positive constant r0, depending only on F, α and β, such that for all

sequences {ξi : i ≥ 1} above,

W (x) ≤ r0F I(x) for all x ∈ (−∞,∞). (1.3)

Along the line of Theorem 1.3, from Theorem 1.2, we can obtain a more general result. To

this end, we require some more notions and notation. Denote by F the class of all distributions

concentrated on (−∞,∞). Denote the light-tailed distribution class by

Kc =
{
V ∈ F :

∫ ∞

0

eαyV dy <∞ for some α > 0
}
,
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and the heavy-tailed distribution class by K = F\Kc. Set

DKc = {V ∈ F : V 1(x) = O(V (x)) for all V1 ∈ Kc}.

Wang et al. [12] gave another representation of DKc, i.e.,

DKc = {V ∈ F : lim eαxV (x) = ∞ for all α > 0}. (1.4)

Theorem 1.4 Under the conditions of Theorem 1.3, replacing F I ∈ S by F I ∈ OS ∩DKc,
(1.3) still holds.

Remark 1.2 We point out that since L ∪ D ⊂ OS ∩ DKc, Theorem 1.4 substantially

generalizes Theorem 1.3. Additionally, it is easy to see that OS ∩ DKc ⊂ K, hence F I in

Theorem 1.4 is heavy-tailed. However, we do not know under what conditions, (1.3) still holds

for some other distributions in OS.

The proofs of Theorems 1.2 and 1.4 will be given in Sections 2 and 3, respectively.

2 Proof of Theorem 1.2

According to the famous Wiener-Hopf factorization (see [11]), we rewrite W (x) as

W (x) = (1− p)
∞∑
n=0

pnG∗n(x), x ≥ 0. (2.1)

Before the proof of Theorem 1.2, it is necessary to make clear the relation between G and F I.

To this end, we give two lemmas below. By the standard argument, we can easily derive the

first lemma.

Lemma 2.1 If F I ∈ OL, then for any constant d1, any positive constant d2 and nonnegative

integer m, it holds that

F I(x) ≈
∞∑
n=m

F (x+ d1 + d2n),

and so does F (x) = O(F I(x)).

Lemma 2.2 Let {ξi : i ≥ 1} be independent and identically distributed random variables

with common distribution F on (−∞,∞) and finite mean Eξ1 = −a < 0. If F I ∈ OL, then
G(x) ≈ F I(x).

Proof We firstly prove F I(x) = O(G(x)) along the line of Zachary [15]. By Eξ1 = −a < 0

and the strong law of large numbers (SLLN), we have that for any ε > 0 and 0 < δ < 1 − p,

there exists a positive constant K such that for all n ≥ 1,

P(Sn > −K − n(a+ ε)) ≥ 1− δ. (2.2)

Denote Mn = max
0≤k≤n

Sk, n ≥ 0. From (2.2), F I ∈ OL and Lemma 2.1, we obtain that for
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sufficiently large x,

P(Sτ+ > x) =
∞∑
n=1

P(Sn > x,Mn−1 = 0)

≥
∞∑
n=1

F (x+K + (n− 1)(a+ ε))P(Mn−1 = 0, Sn−1 > −K − (n− 1)(a+ ε))

≥
∞∑
n=1

F (x+K + (n− 1)(a+ ε))(P(Sn−1 > −K−(n− 1)(a+ ε))−P(Mn−1 > 0))

≥ (1− δ − P(M > 0))
∞∑
n=1

F (x+K + (n− 1)(a+ ε))

= (1− δ − p)
∞∑
n=0

F (x+K + n(a+ ε)) ≈ F I(x). (2.3)

Now we estimate the upper bound of P(Sτ+ > x) by using the ideas in [2] or [13]. Denote

An = {Sj ≤ 0 : j = 0, 1, · · · , n}. Consider the measures H0(B) = 1{0∈B} and Hn(B) =

P(An, Sn ∈ B) with any set B ⊂ (−∞, 0], n ≥ 1. Define the taboo renewal function H(B) =
∞∑
n=0

Hn(B). By Blackwell’s renewal theorem and a > 0, we have

H(−j + (0, 1]) → a−1(1− p), as j → ∞.

Hence, there exists a positive constant C1, such that for all j ≥ 0,

H(−j + (0, 1]) ≤ C1. (2.4)

From Fubini Theorem, (2.4), F I ∈ OL and Lemma 2.1, we derive that

P(Sτ+ > x) =
∞∑
n=0

∫ 0

−∞
F (x− y)P(Sn ∈ dy,An)

=
∞∑
j=0

∫ −j

−j−1

F (x− y)Hdy

≤
∞∑
j=0

F (x+ j)H(−j + (0, 1])

≤ C1

∞∑
j=0

F (x+ j) ≈ F I(x). (2.5)

Therefore, G(x) ≈ F I(x) follows from (2.3) and (2.5).

Now we continue to prove Theorem 1.2. Clearly, (2.1) implies G(x) = O(W (x)), which,

combining with Lemma 2.2, yields that

F I(x) ≈ G(x) = O(W (x)).

This completes the proof of (a).
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As for (b), by Lemma 2.2 of this paper and [10, Proposition 2.3(ii)], which is due to K-

lüppelberg [7], we have that F I ∈ OS holds if and only if G ∈ OS, that is, (i) and (ii) are

equivalent.

Now we prove (c). If (iii) holds, then by (2.1) we have that W (x) ≥ (1− p)p2G∗2(x). This

and W (x) ≈ G(x) give

lim sup
G∗2(x)

G(x)
≤ lim sup

W (x)

(1− p)p2G(x)
<∞,

which means (ii) G ∈ OS.
We mainly prove that (i) and (ii) yield (iii) under the additional condition F I ∈ L and

a−1(l∗(F I
+)− 1) < 1. Using similar arguments in [15], we aim to prove W (x) = O(F I(x)).

For any 0 < ε < a and fixed R > 0, define the renewal times 0 ≡ τ0 < τ1 < τ2 < · · · for the

process {Sn : n ≥ 0} by

τ1 = min {n ≥ 1 : Sn > R− n(a− ε)} ≤ ∞,

and for m ≥ 2, τm = ∞ if τm−1 = ∞; otherwise, define

τm = τm−1 +min{n ≥ 1 : Sτm−1+n − Sτm−1 > R− n(a− ε)}.

By Eξ1 = −a < 0 and the SLLN, we have

r = P(τ1 <∞) → 0, as R→ ∞,

Sn
a.s.−→ −∞ ≡ S∞, as n→ ∞.

Since F (x) is non-increasing in x, we have that for sufficiently large x,

P(Sτ1 > x) =
∞∑
n=1

P(Sn > x, τ1 = n)

≤
∞∑
n=1

P(Sn > x, Sn−1 ≤ R− (n− 1)(a− ε))

≤
∞∑
n=1

F (x−R+ (n− 1)(a− ε))

≤ (a− ε)−1F I(x−R− a+ ε). (2.6)

Let {Yi : i ≥ 1} be indepentlent and identically distributed random variables with common tail

distribution P(Y1 > x) = P(Sτ1 > x | τ1 <∞). By (2.6) and F I ∈ L, for the above ε > 0, there

exists a positive constant x0 = x0(R), such that for all x ≥ x0,

F I(x−R− a+ ε) ≤ (1 + ε)F I(x).

Hence, if we choose

L(x) =

{
(1 + ε)r−1(a− ε)−1F I(x), x ≥ x0,

1, x < x0,
(2.7)
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then L(x) is a distribution on [x0,∞), which may depend on R, satisfying P(Y1 > x) ≤ L(x)

for any x ∈ (−∞,∞), and

L(x) ∼ (1 + ε)r−1(a− ε)−1F I(x). (2.8)

Denote the distribution of Y1 by FY . Let F−1
Y (y) = sup{x : FY (x) ≤ y} be the generalized

inverse of FY , and define L−1 similarly. For each n, Yn can be rewritten as F−1
Y (FY (Yn)) a.s.,

and FY (Yn) is a random variable with uniform distribution on the unit interval [0, 1] almost

surely. Let

Zn = L−1(FY (Yn)), n ≥ 1.

Then, the independent and identically distributed random variables Zn have a common distri-

bution L and Yn ≤ Zn a.s., because of FY (x) ≤ L(x) for all x ∈ (−∞,∞). Furthermore, define

two random variables

n0 = min{n : Sn =M} and m0 = max{n : τn ≤ n0}.

If τm0 < n0, then from the definition of m0, it holds that M − Sτm0
= Sn0 − Sτm0

≤ R− (n0 −
τm0)(a− ε) < R; if τm0 = n0, then M − Sτm0

= 0 < R is trivial. Thus,

M = Sτm0
+ (M − Sτm0

) < Sτm0
+R.

Hence, we have that for all x > R,

W (x) ≤ P(Sτm0
> x−R) ≤

∞∑
n=1

rnP(Y1 + · · ·+ Yn > x−R) ≤
∞∑
n=1

rnL∗n(x−R). (2.9)

It follows from L ∈ OS and [10, Proposition 2.4] that there exist two positive constants C2 =

C2(R) and λ = λ(R), such that

L∗n(x)

L(x)
≤ C2λ

n (2.10)

holds uniformly for all n ≥ 1 and all x ≥ 0, where λ = l∗(L) + ε− 1 and l∗(L) = lim sup L∗2(x)

L(x)
.

According to (2.7) and F I ∈ L, we have that for any fixed R and sufficiently large x,

l∗(L) = 1 + lim sup
(∫ x−x0

x0

+

∫ x

x−x0

)L(x− t)

L(x)
dL(t)

= 1 + lim sup
(
(1 + ε)r−1(a− ε)−1

∫ x−x0

x0

F I(x− t)

F I(x)
dF I(t) +

∫ x

x−x0

1

F I(x)
dF I(t)

)
≤ 1 + (1 + ε)r−1(a− ε)−1 lim sup

∫ x

0

F I
+(x− t)

F I
+(x)

dF I
+(t)

= 1 + (1 + ε)r−1(a− ε)−1 lim sup
( (F I

+)
∗2(x)

F I
+(x)

− 1
)

= 1 + (1 + ε)r−1(a− ε)−1(l∗(F I
+)− 1),

which implies

λ ≤ (1 + ε)r−1(a− ε)−1(l∗(F I
+)− 1) + ε,
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not depending on R. By a−1(l∗(F I
+)− 1) < 1, we can choose ε small enough, such that

rλ ≤ (1 + ε)(a− ε)−1
(
l∗(F I

+)− 1
)
+ ε < 1.

Thus, fixing R, we obtain from (2.8)–(2.10) and F I ∈ L that for sufficiently large x,

lim sup
W (x)

F I(x)
≤

∞∑
n=1

rn lim sup
L∗n(x−R)

L(x−R)
· L(x−R)

F I(x−R)
· F

I(x−R)

F I(x)

≤ C2(1 + ε)(a− ε)−1
∞∑
n=1

rn−1λn <∞. (2.11)

By (2.1), we get thatW (x) ≥ G(x), which, together with Lemma 2.2, implies lim sup F I(x)

W (x)
<∞.

This and (2.11) lead to W (x) ≈ F I(x). Again by Lemma 2.2, we prove (iii).

Finally, each of (i), (ii) and (iii) in Theorem 1.2 implies W ∈ OS according to [10, Proposi-

tion 2.3(ii)]. This completes the proof of Theorem 1.2.

Remark 2.1 When we deal with (2.1), we do not use [10, Proposition 3.1], which needed

some stronger conditions, such as sup
{
x ≥ 1 :

∞∑
n=0

λnx
n < ∞

}
= ∞ with λn ≥ 0, n ≥ 0

and
∞∑
n=0

λn = 1. Indeed, the proof of (i) + (ii) ⇒ (iii) does not depend on λn, here, λn =

(1− p)pn, n ≥ 0. This shows the advantage of the ideas of Zachary [15].

3 Proof of Theorem 1.4

We start this section by a simple lemma below.

Lemma 3.1 Let X1 and X2 be two nonnegative independent random variables with distri-

butions V1 and V2, respectively. Suppose that Vi(x) = O(V (x)), i = 1, 2, where V is also a

distribution. If V ∈ OS, then V1 ∗ V2(x) = O(V (x)).

We still follow the line of the proof of Proposition 2.1 in [6] to prove Theorem 1.4. For

simplicity, somewhere we directly utilize some results in [6]. Without loss of generality, assume

that ξn ≥ −β a.s. for all n. By (1.1), there exist indepentlent and identically distributed

random variables {ηn : n ≥ 1} with common distribution F , such that for all n ≥ 1, ξn ≤ ηn
a.s. Choose a constant y∗ > 0 sufficiently large, such that

m ≡ Eη11{η1>y∗} ≤ α

4
. (3.1)

Denote F (y∗) = ε, K0 = mε−1 + 1. Clearly, y∗ ≤ mε−1 < K0. For each i ≥ 1, define random

variables δi = 1{ηi>y∗}, φi = ξi(1−δi)+K0δi, ψi = (ηi−K0)δi. Then, (1.2), (3.1) and ξn ≥ −β
a.s. imply

Eφi ≤ Eξi + (β +K0)Eδi ≤ −α+ ε+m ≤ −α
2
, (3.2)

Eψi = m−K0ε = −ε < 0, (3.3)

and that {δn : n ≥ 1} and {ψn : n ≥ 1} are both sequences of independent and identically

distributed random variables. For each n ≥ 0, denote Sφn =
n∑
i=1

φi, S
ψ
n =

n∑
i=1

ψi, M
φ =
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sup
n≥0

Sφn , M
ψ = sup

n≥0
Sψn . Since φi + ψi = ξi + (ηi − ξi)δi ≥ ξi a.s., i ≥ 1, we have

M ≤ sup
n≥0

(Sφn + Sψn ) ≤Mφ +Mψ. (3.4)

As stated in [6], Mψ does not depend on random variables {(φi, δi) : i ≥ 1} (it can also be

directly verified), so Mφ is independent. We firstly estimate the tail distribution of Mψ. It

follows from (3.3), Theorem 1.2 and F I ∈ OS ⊂ OL that

P(Mψ > x) ≈
∫ ∞

x

P(ψ1 > y)dy ≈ F I(x). (3.5)

Now we consider P(Mφ > x). As pointed out by Foss et al. [6] that there exists a positive

constant s, depending only on F, α and β, such that {− exp{sSφn} : n ≥ 1} is a martingale.

By the martingale maximal inequality, we have

P
(

max
0≤k≤n

Sφk > x
)
≤ P

(
min

0≤k≤n
(−esS

φ
k ) ≤ −esx

)
≤ e−sx

(
1 +

∫
Ω

esS
φ
n1{

max
0≤k≤n

esS
φ
k ≤esx

}dP). (3.6)

Since Sφn → −∞ a.s., n → ∞, by (3.2), we can use the dominated convergence theorem to

obtain that

lim
n→∞

∫
Ω

esS
φ
n1{

max
k≤n

esS
φ
k ≤esy

}dP = 0,

which, together with (3.6), implies

P(Mφ > x) = lim
n→∞

P
(

max
0≤k≤n

Sφk > x
)
≤ e−sx. (3.7)

From F I ∈ OS ∩ DKc, (3.7) and (1.4), we derive that

P(Mφ > x) = o(F I(x)). (3.8)

It follows from (3.4)–(3.5), (3.8) and Lemma 3.1 that

W (x) ≤ P(Mψ +Mφ > x) = O(F I(x)).

Therefore, there exists a positive constant r0, depending only on F, α and β, such that (1.3)

holds. This completes the proof of Theorem 1.4.
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