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Greedy Algorithm Computing Minkowski Reduced
Lattice Bases with Quadratic Bit
Complexity of Input Vectors∗
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Abstract The authors present an algorithm which is a modification of the Nguyen-Stehle
greedy reduction algorithm due to Nguyen and Stehle in 2009. This algorithm can be used
to compute the Minkowski reduced lattice bases for arbitrary rank lattices with quadratic
bit complexity on the size of the input vectors. The total bit complexity of the algorithm is
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)
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)
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2 · log2 A), where n is the rank of the lattice and
A is maximal norm of the input base vectors. This is an O(log2 A) algorithm which can be
used to compute Minkowski reduced bases for the fixed rank lattices. A time complexity
n! · 3n(logA)O(1) algorithm which can be used to compute the successive minima with the
help of the dual Hermite-Korkin-Zolotarev base was given by Blomer in 2000 and improved
to the time complexity n! · (logA)O(1) by Micciancio in 2008. The algorithm in this paper
is more suitable for computing the Minkowski reduced bases of low rank lattices with very
large base vector sizes.
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1 Introduction

Let b1, · · · ,bn be n linearly independent vectors in the Euclid space Rn of dimension n.

The discrete point sets L = {x1b1 + · · · + xnbn : x1, · · · , xn ∈ Z} is rank n lattice in Rn.

Its volume is defined as vol(L) = det
1
2 ((bi · bj))1≤i,j≤n, where ((bi · bj))1≤i,j≤n is the Gram

matrix. The orthogonality defect of the lattice base b1, · · · ,bn is defined as

n∏
i=1

∥bi∥

vol(L) . We recall

the following definitions of successive minima, Voronoi cell and Minkowski reduced bases (see

[3, 7]).

Definition 1.1 D(L) = {x :∈ Rn : ∥x∥ ≤ ∥x − v∥ for any non-zero v ∈ L} is called the

Voronoi cell of the lattice L.

Definition 1.2 λi(L) = min{r : the ball of radius r contains i linearly independent lattice

vectors of L}, for i = 1, · · · , n, are called the successive minima of the lattice L.
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It is well-known that there are n linearly independent vectors in L whose norms attain the

successive minima. However, for lattice with rank bigger than or equal to 5, it is possible that

these lattice vectors are not the base of the lattice (see [3, 7]).

Definition 1.3 Let [b1, · · · ,bn]≤ be an base of the lattice with increasing Euclid norms

(i.e., ∥b1∥ ≤ · · · ≤ ∥bn∥). It is a Minkowski reduced base if inductively for every i, the bi is

the shortest vector b such that [b1, · · · ,bi−1,b]≤ can be extended to a lattice base.

We should note that the sets of the Euclid norms of Minkowski reduced bases are not unique

and are also not the successive minima for n ≥ 5 rank lattices (see [3, 7, 10]). However, the first

4 norms of any Minkowski reduced lattice base are exactly the first 4 numbers in the successive

minima (see [3, 10]). It is also known that the norms of any Minkowski reduced lattice base

are the exponential approximation of the successive minima (see [3, 7]).

Lemma 1.1 (see [3, 7]) The lattice base [b1, · · · ,bn]≤ is a Minkowski reduced base if and

only if for arbitrary index i and arbitrary integers x1, · · · , xn satisfying gcd(xi, · · · , xn) = 1, we

have ∥x1b1 + · · · + xnbn∥ ≥ ∥bi∥. If the above base is not Minkowski reduced, there exist an

index j1, some integers x1, · · · , xj1−1 and non-zero integers xj1 , · · · , xjm where j1 < · · · < jm

satisfying gcd(xj1 , · · · , xjm) = 1, such that ∥x1b1+ · · ·+xj1−1bj1−1+xj1bj1 + · · ·+xjmbjm∥ <

∥bj1∥.

Minkowski reduced bases for a lattice in the Euclid spaces have very nice properties such

as exponential approximation to the successive minima. It is desirable to have an algorithm

to compute these nice lattice bases quickly. An algorithm to construct Minkowski lattice bases

by using LLL reduced base and Kannan enumeration algorithm was given in [6]. Nguyen and

Stehle [10] proposed some greedy algorithms for computing Minkowski bases in low dimensions

2, 3, 4. As indicated in [10], the greedy reduction with the help of Tammela lists of Minkowski

conditions (see [12, 13]) can output the Minkowski lattice bases for lattices of ranks 5 and 6.

For the fixed dimension, Helfrich’s algorithm in [6] can be used to compute the Minkowski

reduced bases in cubic time O((log(max{∥b1∥, · · · , ∥bn∥}))3) of the bit length of the input

vectors. However, the hidden coefficient grows exponentially fast. The greedy algorithm in [10]

for computing Minkowski reduced base for lattices with rank 2, 3, 4 is very fast for low rank

lattices, and its bit complexity is in the quadratic of the length of max{∥b1∥, · · · , ∥bn∥} = ∥bn∥
which is the maximal norm of the input base [b1, · · · ,bn]≤. On the other hand, Tammela [12,

13] gave lists of these (x1, · · · , x7) in the above lemma for which the corresponding conditions

for a non-Minkowski reduced base has to be satisfied. As indicated in [11], with the help of

Tammela list of Minkowski conditions in [12] the greedy type reduce algorithm can output the

Minkowski reduced base for lattice with rank 5 or 6. However, for lattices with ranks more than

7, no such list is known though it has been known by Minkowski that there are only finitely

many conditions. This is the motivation of the present work.

By using the Hermite-Korkin-Zolotarev (HKZ) base of the dual lattice, Blomer [2] gave an

algorithm to compute the successive minima of a lattice with rank n with time complexity

n! · 3n · (logA)O(1), where logA is the input size. This was improved to an algorithm with



Greedy Algorithm Computing Minkowski Reduced Lattice Bases 859

complexity n! · (logA)O(1) by Micciancio [9]. If the dual HKZ base has been computed, then

the algorithm in [2, 9] needs bit complexity n! · nO(1) · (logA)O(1) for computing the successive

minima. However, we should note in that circumcise, the assumption that HKZ base of the dual

lattice has been found is cost-consuming with bit complexity n
n
2 · (logA)O(1). In practice, the

cost of finding the HKZ base is very high. Secondly, the input size depending cost (logA)O(1)

is not figured out exactly. For the fixed dimension, Eisenbrand and Rote gave quasi-linear

(in logA) algorithms for computing the orthogonality-defect bounded bases and the shortest

lattice vector in [5]. It would be interesting if their method can be extended to compute the

Minkowski-reduced lattice bases.

In this paper, we give a modification of the greedy reduce algorithm in [10]. Our novel

greedy algorithm can compute a Minkowski reduced lattice base for lattice of arbitrary rank

with a bit complexity O(log2 A) where A = max{∥b1∥, · · · , ∥bn∥} is the maximal norm of input

base and the hidden constant is dependent on the lattice rank. It can be thought as an extended

version of the algorithm in [10] with the greedy step executed more rounds for excluding these

vectors without the conditions in Lemma 1.1. We also need to use the quadratic bit complexity

LLL algorithm (called L2 algorithm in [11]) to get an LLL reduced base with only quadratic bit

complexity. The main advantage of our algorithm is that the bit complexity of the algorithm

in the fixed dimension is the quadratic of the maximal of the length of the input vectors.

2 Greedy Algorithm for Minkowski Reduced Bases

L2 Algorithm In [11], an algorithm with O(n5(n+ logA) logA) bit complexity to output

an LLL reduced base from arbitrary given lattice base was presented. It is well-known that

the orthogonality defect of an LLL reduced base is upper bounded by (43 )
n(n−1)

4 . Thus we

can assume without generality that the input lattice base’s orthogonality defect is bounded by

( 43 )
n(n−1)

4 .

We recall the following greedy step in [10].

Greedy Step=CVP For the input (x,L′(B′)) where L′(B′) is a sublattice with the base

B′ and x ∈ Rn not in a sublattice L′(B′), search the closest vector y ∈ L′(B′) by checking

the integral vectors y in L′(B′), such that y− πRL′(B′)(x) is in the Voronoi cell D(L(B′)) and

attains the shortest norm, where πT is the projection to the subspace T ⊂ Rn. The output is

the lattice vector x− y (see [5]).

Proposition 2.1 If B′ is a Minkowski reduced base for the sublattice L′(B′), the bit com-

plexity of the above Greedy step is bounded by (4n!( 32 )
n(n−1)

2 )n · log2 A.

Proof From [3, 7], the orthogonality defect of the Minkowski reduced base of L′(B′) is up-

per bounded by (32 )
r(r−1)

2 , where r = rank(L′(B′)). From [4], the coordinates of Voronoi cell in a

base with upper bound orthogonality defect Corthogonality is upper bounded by u!Corthogonality(1+

(1− 1
C2

orthogonality
)

u−1
2 ), where u is the lattice rank. Thus the coordinates of the Voronoi cell of

a rank r lattice with a Minkowski reduced base is upper bounded by r!2( 32 )
r(r−1)

2 . There are at

most (4r!( 32 )
r(r−1)

2 )r points that need to be searched.
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In this paper, we use the search algorithm of CVP for the purpose that the bit complexity

factor on logA is quadratic. For many works on CVP algorithms, we refer to [8, 9] and the

references therein.

We need the following algorithm in [9, p. 129] to find a base from any n linearly independent

lattice vectors.

Finding-Base (v1, · · · ,vn) For the input of n linearly independent lattice vectors ∥v1∥ ≤
· · · ≤ ∥vn∥ in any rank n lattice L, the algorithm outputs a lattice base r1, · · · , rn satisfying

∥rk∥ ≤ max{1,
√
k
2 }∥vk∥. We can always assume span(r1) = span(v1).

By checking the proof in [9, pp. 129–130], we have the following bound on the bit complexity

of the above algorithm immediately.

Proposition 2.2 (see [9, pp. 129–130]) The bit complexity of this algorithm is n3 log2 A.

Proposition 2.3 Suppose that [b1, · · · ,bn]≤ is not a Minkowski reduced base and i is the

smallest index, such that the condition in Lemma 1.1 is not satisfied and x1, · · · , xn are integers

in Lemma 1.1 such that ∥x1b1 + · · · + xnbn∥ < ∥bi∥ holds for some bi. Let j be the largest

index, such that xj is not zero. Then this index j satisfies j > i and |xj | < ∥bi∥
∥b∗

j ∥
<

∥bj∥
∥b∗

j ∥
, where

b∗
1, · · · ,b∗

n is the Gram-Schmidt orthogonalization of the base b1, · · · ,bn.

Proof It is clear that x1b1+· · ·+xjbj = x′
1b

∗
1+x′

2b
∗
2+· · ·+x′

j1
b∗
j1
+xjb

∗
j . Here x′

1, · · · , x′
j1

may not even be integers. The conclusion follows from Lemma 1.1 and ∥x′
1b

∗
1 + x′

2b
∗
2 + · · · +

x′
j1
b∗
j−1 + xjb

∗
j∥ ≥ |xj |∥b∗

j∥.

The following is our modified greedy reduction algorithm for a Minkowski reduced lattice

base.

Greedy Reduction Computing a Minkowski Reduced Base

Input Any base B of a lattice L with rank n;

Output A Minkowski reduced base of L.

Step 1 Doing the reduction in [11] for the base B, an LLL reduced base is found with

bit complexity O(n5(n + logA) logA), where the hidden constant is independent of the di-

mension and the input vector lengths. We order the output base in the increasing norm order

[a1, · · · ,an]≤. The orthogonality defect of this input base in the next steps is at most (43 )
n(n−1)

4 .

Step 2 For the sublattice Ln−1 generated by [a1, · · · ,an−1]≤, do the n−1 dimension Greedy

reduction with bit complexity T (n − 1) to get a Minkowski reduced base [b1, · · · ,bn−1]≤ of

this sublattice.

Step 3 For the input (Ln−1, xan) where x takes over all integers satisfying |x| ≤ ( 43 )
n(n−1)

4 ,

do the Greedy step. The bit complexity is upper bounded by 2 · ( 43 )
n(n−1)

4 · T (n − 1). Let the

shortest output vector be a′n = xnewan +
∑

i≤n−1

xibi, where xnew ̸= 0.

Step 4 If ∥a′n∥ ≥ ∥bn−1∥, the algorithm terminates. Otherwise, substituting the new a′n

in the ordering base {b1, · · · ,bn−1,an} in the increasing norm order, we can get n linearly

independent lattice vectors [a′′1 , · · · ,a′′n]≤ of the lattice L. Suppose that b1, · · · ,bk−1 is before

a′n. Then gcd(xnew, xn−1, · · · , xk) = 1 from the definition of the Minkowski condition (see

Lemma 1.1).
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Step 5 For the n − k linearly independent lattice vectors [a′n,bk+1, · · · ,bn−1]≤, do the

finding-base (a′n,bk+1, · · · ,bn−1). Then we get a new base [bnew
1 , · · · ,bnew

n ]≤ of the lattice L

with the orthogonality defect at most ( n!
2n )

1
2 · ( 43 )

n(n−1)
4 . Here it should be noted that a′n = bnew

k

is not changed.

i-th round Execute Steps 1–5 to the lattice base [bnew
1 , · · · ,bnew

n ]≤.

Theorem 2.1 The above Steps 1–5 will execute at most n rounds and a Minkowski reduced

base will be found.

Proof The point here is that a′ni at the i-th round is not shorter than a′n(i−1) of the (i−1)-

th round, that is, ∥a′ni∥ ≤ ∥a′n(i−1)∥. Thus after the i-th round, a′ni is always after a′n(i−1) in

the norm-ordering base of the lattice. After at most n rounds the algorithm will terminate.

The output lattice base is certainly a Minkowski reduced base, since the algorithm will exclude

all integer combinations not satisfying the condition of Lemma 1.1.

Theorem 2.2 The bit complexity of the above algorithm will be at most O(n2 · (4n!)n ·
( n!
2n )

n
2 · ( 43 )

n(n−1)
4 · ( 32 )

n2(n−1)
2 · log2 A).

Proof It is observed that the orthogonality defect is decreasing in Steps 2–4 and is increased

by a factor at most ( n!
2n )

1
2 in the Step 5. Since the algorithm execute at most n rounds, the

orthogonality defect is upper bounded by ( n!
2n )

n
2 · ( 43 )

n(n−1)
4 . Thus we have T (n) ≤ 2n · ( n!

2n )
n
2 ·

( 43 )
n(n−1)

4 · (4n!( 32 )
n(n−1)

2 )n · log2 A+ T (n− 1), the worst-case bit complexity is upper bounded

by 2n2 · (4n!)n · ( n!
2n )

n
2 · ( 43 )

n(n−1)
4 · ( 32 )

n2(n−1)
2 · log2 A.

From Theorem 2.2 it can be seen that the factor of n is very bad and the factor of logA is

quadratic. Our greedy algorithm is more suitable for low rank lattices with very large lattice

base vectors.

If Steps 2–5 are only used in at most d rounds for the rank d lattices, we call such an

algorithm Minkowski(d). We have the following result.

Theorem 2.3 If L is a rank n lattice with the base B. Suppose that the orthogonality

defect of B is upper bounded by C. Then by using the fact that at most 2n( n!
2n )

n
2 C calls to the

Greedy step and n calls to the algorithm Minkowski(n − 1), a Minkowski reduced lattice base

of the rank n lattice L can be found.

Actually for the fixed dimension, Eisenbrand and Rote [5] gave an algorithm for computing

the orthogonality-defect bounded lattice bases with bit complexity O(M(logA)(log logA)O(1)),

where M(logA) is the bit complexity of logA-bit integer multiplication. If we use Eisenbrand-

Rote algorithm in [5, Section 6] in Step 1, we have the following result.

Theorem 2.4 Let L ⊂ Zn be a rank n lattice with a base B with bit length logA. Then the

Minkowski reduced lattice base of L can be found with bit complexity O(M(logA)(log logA)O(1)),

where the hidden constant only depends on the rank n.
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