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Abstract Let S be a Riemann surface that contains one puncture x. Let S be the
collection of simple closed geodesics on S, and let F denote the set of mapping classes on
S isotopic to the identity on S ∪ {x}. Denote by tc the positive Dehn twist about a curve
c ∈ S . In this paper, the author studies the products of forms

(
t−m
b ◦ tna

)
◦ fk, where

a, b ∈ S and f ∈ F . It is easy to see that if a = b or a, b are boundary components of an
x-punctured cylinder on S, then one may find an element f ∈ F such that the sequence(
t−m
b ◦ tna

)
◦fk contains infinitely many powers of Dehn twists. The author shows that the

converse statement remains true, that is, if the sequence
(
t−m
b ◦ tna

)
◦ fk contains infinitely

many powers of Dehn twists, then a, b must be the boundary components of an x-punctured
cylinder on S and f is a power of the spin map t−1

b ◦ ta.

Keywords Riemann surfaces, Simple closed geodesics, Dehn twists, Products,
Bers isomorphisms

2000 MR Subject Classification 32G15, 30C60, 30F60

1 Statement of the Results

1.1 Introduction

The investigation of products of Dehn twists on compact Riemann surfaces dates back to

[5]. It was shown by Dehn–Lickorish [5, 8] that some non-trivial products of Dehn twists about

a set of Lickorish generators on a compact Riemann surface S of genus p ≥ 2 are isotopic to

Dehn twists. In [11], Thurston proved that certain products of pseudo-Anosov maps and Dehn

twists may also give rise to Dehn twists. Later, Long-Morton [9] and Fathi [6] proved that some

products of pseudo-Anosov maps may once again lead to Dehn twists.

More concretely, let S be the set of simple closed geodesics on S and let a, b ∈ S be such

that their geometric intersection number i(a, b) = 1. Let ta, tb denote the positive Dehn twists

about the curves a and b. Then the braids relation tells us that ta ◦ [tb, ta] = tb (where [ta, tb]

denotes the commutator of ta and tb), which implies that (ta ◦ tb)6 = tc for some c ∈ S . For

more information on presentations in the mapping class groups, we refer to [4] and the literature

therein.

In this paper, we study a similar problem whether combinations by different kinds of map-

ping classes may lead to simple mapping classes (such as Dehn twists, for example). Throughout

the paper, we let S be an analytically finite Riemann surface of genus p ≥ 2 that contains one
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puncture x. Set S̃ = S ∪ {x}. Then S̃ is compact. Let λ(a, b;m,n) denote the mapping classes

represented by the maps

t−m
b ◦ tna , (1.1)

where a, b ∈ S and m,n are positive integers with m ̸= n. By abuse of languages, we write

λ(a, b;m,n) = t−m
b ◦ tna .

Let F be the set of mapping classes of S projecting to the identity on S̃. In this paper,

we investigate products of elements λ(a, b;m,n) and f ∈ F . Let a0 denote a geodesic in S so

that {a, a0} forms the boundary of an x-punctured cylinder on S, that is, a and a0 are disjoint

and are homotopic to each other on S̃ as x is filled in. Throughout the paper, we call a0 a

geodesic parallel to a (there are infinitely many such geodesics a0 (see [15])). Our goal is to

identify those elements λ(a, b;m,n) and f for which their products are represented by simple

Dehn twists.

1.2 Special cases

(1) b = a. In this case, for any positive large integers m,n with m ̸= n, we have

λ(a, b;m,n) = t−m+n
a and λ(a0, b;m,n) = t−m

a ◦ tna0
.

If we take

f = ta ◦ t−1
a0

, (1.2)

then f ∈ F and one easily checks that for integers k0 = m − n and k1 = m, the products

λ(a, b;m,n) ◦ fk0 and λ(a0, b;m,n) ◦ fk1 are powers of the Dehn twist along a0.

(2) b = a0. In this case, we find that

λ(a, b;m,n) = t−m
a0

◦ tna and λ(a0, b;m,n) = tn−m
a0

.

Now for the elements f defined as (1.2), there are integers k0 = −m and k1 = n−m, such that

λ(a, b;m,n) ◦ fk0 and λ(a0, b;m,n) ◦ fk1 are also represented by the powers of the Dehn twist

along a.

1.3 Statement of the main result

The theorems of this paper essentially show that the above examples (1) and (2) are the only

instantiations for which both sequences λ(a, b;mi, ni) ◦ fki and λ(a0, b;Mi, Ni) ◦ fKi , f ∈ F

and a, b ∈ S , could possibly be represented by powers of the known Dehn twists ta and ta0 .

Theorem 1.1 Let a, b ∈ S and f ∈ F be a non-trivial element. If there is a sequence of

triples {mi, ni, ki} with mi, ni, ki → +∞ as i → +∞, such that each mapping class in the set

L (a) = {λ(a, b;mi, ni) ◦ fki , i = 1, 2, · · · }

is represented by a power of ta (resp. ta0 for a geodesic a0 parallel to a), then b = a0 (resp.

b = a), in which cases, f is represented by an appropriate power of the map ta ◦ t−1
a0

.

Our next result is similar to Theorem 1.1.
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Theorem 1.2 Let a, b, f be as in Theorem 1.1. Let a0 be a geodesic parallel to a. If there

are sequences of triples {mi, ni, ki} and {Mi, Ni,Ki}, where mi, ni, ki,Mi, Ni,Ki → +∞ as

i → +∞, such that each mapping class in the set

L (a, a0) = {λ(a, b;mi, ni) ◦ fki , λ(a0, b;Mi, Ni) ◦ fKi ; i = 1, 2, · · · } = L(a) ∪ L(an)

is represented by a power of ta or ta0 , then either b = a or b = a0, in which cases, f is

represented by an appropriate power of the map ta ◦ t−1
a0

. More precisely, if L(a) only contains

powers of ta (resp. powers of ta0), then so does L(a0), which occurs only when b = a0 (resp.

b = a).

1.4 Remarks

Because of the symmetry of a and b, we can conclude that if there are sequences {mi, ni, ki}
and {Mi, Ni,Ki} such that every mapping class in L (b, b0) = {λ(a, b;mi, ni) ◦ fki , λ(a, b0;Mi,

Ni) ◦ fKi ; i = 1, 2, · · · } is represented by a power of tb or tb0 , then a = b or a = b0.

This paper is organized as follows. In Section 2, we present some background materials

including some lifts of Dehn twists and explore some dynamic properties for those lifts. In

Section 3, we study the compositions λ(a, b;mi, ni) ◦ fki , where a, b ∈ S and f ∈ F , that are

represented by powers of Dehn twists. We show that if L (a) consists of powers of ta, then

i(a, b) = 0 which implies that a = b or a is disjoint from b. Section 5 is devoted to the proof of

the results.

2 Background and Properties of Lifts of Dehn Twists to
the Hyperbolic Plane

2.1 The mapping class group ModS and its projection

Let

H = {z ∈ C : |z| < 1}

be the hyperbolic disk. Denote by S1 the boundary of H. Let

ϱ : H → S̃

be the universal holomorphic covering map with the covering group G. We know from the

hypothesis that G is a Fuchsian group that contains only hyperbolic elements.

Let QC(G) be the group of quasiconformal self-maps f of H such that fGf−1 = G. An

equivalent relation “∼” in QC(G) is defined as follows. Two maps f, f ′ ∈ QC(G) are said to

be equivalent if they share the common boundary values on S1. Denote by [f ] the equivalence

class of an element f ∈ QC(G).

By [2], there is an isomorphism φ∗ of the quotient group QC(G)/ ∼ onto the mapping

class group ModS that consists of isotopy classes of self-maps of S. Since S contains only one

puncture, each mapping class fixes the puncture x. Under the Bers isomorphism, φ∗(G) is a

subgroup of ModS consisting of elements that project to a trivial mapping class of S̃. By abuse

of language, in what follows we use the symbol [f ]∗ to denote the mapping class φ∗([f ]) as well

as a representative of φ∗([f ]) for an element f ∈ QC(G). In particular, for an element h ∈ G,

we use the symbol h∗ to denote the mapping class φ∗(h) as well as a representative of φ∗(h).
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Note that every element f in QC(G) descends to a homeomorphism f̃ of S̃ under the

universal covering map ϱ. Denote by

i : ModS → ModS̃

the natural projection defined by sending a mapping class [f ]∗ on S to the mapping class of f̃ .

2.2 Dehn twists and their lifts to H

Let ĉ ⊂ H be a geodesic so that ϱ(ĉ) = c̃ is a simple closed geodesic. Let tc̃ be the positive

Dehn twist along c̃. Let ∆ be a component of H\{ĉ}. The positive Dehn twist tc̃ can be lifted

to a map τĉ : H → H with respect to ∆ that determines a collection Uĉ of half-planes in a

partial order defined by inclusion. All maximal elements of Uĉ are disjoint and each maximal

element is an invariant region under the action of τĉ. Moreover, τĉ restricts to the identity on

the complement Ωĉ of all maximal elements of Uĉ. See [13–15] for more details.

For every maximal element ∆ ∈ Uĉ, there are infinitely many maximal elements ∆′ ∈ Uĉ

such that ∆′ ⊂ H\∆. More precisely, for any hyperbolic element g ∈ G whose repelling fixed

point is covered by ∆ and whose attracting fixed point is outside of ∆, g(H\∆) is contained in

a maximal element ∆′ of Uĉ that is disjoint from ∆. Further, g(H\∆) is also maximal if the

axis cg of g satisfies the property that ϱ(cg) intersects c̃ only once.

Let c ⊂ S be a simple closed geodesic isotopic to c̃ on S̃. From [13, Lemma 3.2], there is a

lift τĉ constructed above, such that [τĉ]
∗ = tc. Note that if τĉ is a lift of tc̃ with respect to ∆,

then g−1τ is also a lift of tc̃ (but is with respect to ∆∗ = H\∆). By [13, Lemma 3.2] again,

[g−1τĉ]
∗ is represented by the Dehn twist tc0 along another simple closed geodesic c0 parallel

to c. Since every maximal element ∆ ∈ Uĉ determines the same τĉ, we conclude that the set of

maximal elements of Uĉ is one-to-one correspondent with the set of x-punctured cylinders on

S all of which share the common boundary component c (see also [15]).

Let f : S → S be a homeomorphism. Assume that f is isotopic to tc. Then, of course, f

fixes the puncture x. As such, there is an element [ω] ∈ QC(G)/∼, such that [ω]∗ is represented

by f .

Lemma 2.1 With the above conditions, for every maximal element ∆ ∈ Uĉ, ω leaves the

interval ∆ ∩ S1 invariant, i.e., w(∆ ∩ S1) = ∆ ∩ S1.

Proof By hypothesis, f and tc represent the same isotopy class of maps in ModS . Under the

Bers isomorphism of mod S̃ onto ModS , we see that [ω] = [τĉ], which says that ω|S1 = τĉ|S1 .

By construction, τĉ keeps each maximal element ∆ of Uĉ invariant. This implies that τĉ|S1

leaves invariant each interval ∆ ∩ S1. So ω leaves invariant each interval ∆ ∩ S1 as well.

2.3 Iterates of half-planes under τĉ

Let h be a loxodromic Möbius transformation acting on Ĉ, and letX, Y denote its attracting

and repelling fixed points, respectively. Beardon [1, Theorem 4.3.10] stated that for any small

neighborhoods UX , UY of X,Y , respectively, there is an integer k, which depends only on UY

and UX and is independent of the choice of z ∈ Ĉ\UY , such that hk(z) ∈ UX .

In our application, h = g ∈ G is a hyperbolic element keeping ∆ invariant. In this situation,

X,Y are attracting and repelling fixed points of g lying in S1. For any half-plane ∆1 ⊂ ∆ with
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∂∆1, the geodesic boundary of ∆1 in H, projecting to a simple closed geodesic ϱ(∂∆1), the

half-planes gk(∆1) are all disjoint and shrink to X as k → +∞, which means that gm(∆1) ⊂ UX

for large m and the Euclidean area of gm(∆1) is smaller than that of ∆1.

Now we proceed to examine the iteration of ∆1 under the action of τkĉ . As mentioned before,

we further assume that either ϱ(∂∆1) = c̃ or ϱ(∂∆1) is disjoint from c̃. First, we observe from

the construction that for any integer k ̸= 0, τkĉ (∂∆1) ∩ ∂∆1 = ∅. Second, based upon the

result mentioned above and by the construction of τĉ, the regions τkĉ (∆1) are all half-planes

and the sequence {τkĉ (∆1)} uniformly shrinks to the attracting fixed point X of g as k → +∞,

as long as ∆1 stays away from a small neighborhood of the repelling fixed point of g. Thus the

Euclidean area of τkĉ (∆1) shrinks to zero as k → +∞.

In the sequel, we call the attracting (resp. repelling) fixed point of g the attracting (resp.

repelling) endpoint of ∆ with respect to τĉ.

3 Mapping Classes Represented by Dehn Twists

In this section, we study the composite mapping classes λ(a, b;m,n) ◦ fk, where f ∈ F and

λ(a, b;m,n) are defined as in (1.1), that are also represented by Dehn twists. For any curve

c ∈ S , we let c̃ denote the geodesic on S̃ homotopic to c if c is viewed as a curve on S̃. We

begin with some general cases.

Lemma 3.1 Suppose that λ(a, b;m,n) ◦ fk = tpc for some Dehn twist tc along a simple

closed geodesic c on S. Then ã = b̃ = c̃.

Proof By assumption, λ(a, b;m,n) ◦ fk = tpc . Thus they project to tpc̃ . But since i(f) = id,

a calculation shows that

i
(
λ(a, b;m,n) ◦ fk

)
= i (λ(a, b;m,n)) = t−m

b̃
◦ tnã .

It follows that

t−m

b̃
◦ tnã = tpc̃ . (3.1)

Since S̃ is compact, ã and b̃ are both non-trivial. Thus c̃ is also non-trivial. If ã ̸= b̃. There

are two cases: (1) ã is disjoint from b̃; (2) ã intersects b̃. In the former case, the left-hand side

of (3.1) is a multi-twist, while the right-hand side of (3.1) is a single Dehn twist. This is a

contradiction. In the later case, ã and b̃ span a minimal surface on which t−m

b̃
◦ tnã represents a

hyperbolic mapping class. So by the classification of mapping classes (see [3]), on S̃, t−m

b̃
◦ tnã

is pseudo-hyperbolic. In particular, it cannot be a parabolic mapping class, whereas tc̃, as a

mapping class of S̃, is parabolic. This contradicts (3.1). It follows that ã = b̃. Now from (3.1),

we get that p = n−m and ã = c̃. Thus Lemma 3.1 is proved.

Let τâ, τb̂ : H → H denote the lifts of tã and tb̃, such that [τâ]
∗ = ta and [τb̂]

∗ = tb (see

Section 2.2). Let Uâ and Ub̂ be the corresponding collections of half-planes determined by τâ
and τb̂, respectively. Let i(a, b) denote the geometric intersection numbers between a and b.

Then i(a, b) ≥ 0 and i(a, b) = 0 if and only if a = b or a is disjoint from b.
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Lemma 3.2 Let λ(a, b;m,n) ◦ fk be represented by tpc for some curve c ∈ S . If i(a, b) > 0,

then there are maximal elements ∆1 ∈ Uâ and ∆2 ∈ Ub̂ such that

∆1 ∩∆2 ̸= ∅, ∂∆1 ∩ ∂∆2 = ∅ and ∆1 ∪∆2 = H. (3.2)

Proof By Lemma 3.1, we have p = n−m ̸= 0 and c̃ = ã = b̃. By assumption, i(a, b) > 0.

We claim that Ωâ ∩ Ωb̂ = ∅. Suppose on the contrary that

Ωâ ∩ Ωb̂ ̸= ∅. (3.3)

Let {ϱ−1(ã)} denote the collection of (disjoint) geodesics ĉ in H with ϱ(ĉ) = c̃. Since ã = b̃,

we conclude that {ϱ−1(̃b)} = {ϱ−1(ã)}. It follows from (3.3) and the constructions of τâ and

τb̂ that τâ commutes with τb̂. Therefore, ta commutes with tb, which means that a = b or a is

disjoint from b, contradicting that i(a, b) > 0.

We must have Ωâ ∩ Ωb̂ = ∅. But then there exist maximal elements ∆1 ∈ Uâ, ∆2 ∈ Ub̂,

such that (3.2) holds. This proves the lemma.

As a special situation, if λ(a, b;m,n) ◦ fk = tpa for some integer p, then the conclusion of

Lemma 3.2 remains valid.

Figure 1 depicts the relative position of ∆1 and ∆2 obtained from Lemma 3.2. Let g1 ∈ G

be a primitive simple hyperbolic element such that g1(∆1) = ∆1 and the orientation of g1 is the

same as tã. By [7, Theorem 2] and [8, Theorem 2], g∗1 is represented by ta ◦ t−1
a0

for an a0 ∈ S

parallel to a.

Lemma 3.3 Let τâ0
be the lift of tã such that [τâ0

]∗ = ta0 . Then H\∆1 is a maximal

element of Uâ0
.

Proof Since τâ is the list of tã with [τâ]
∗ = ta, ∆1 is a maximal element of Uâ, that is,

τâ keeps ∆1 invariant and has no fixed point on ∆1 ∩ S1. Observe that g−1
1 τâ is also a lift of

tã that satisfies the properties: (i) g−1
1 τâ keeps H\∆1 invariant; and (ii) the identity region of

g−1
1 τâ is contained in ∆1. It follows that H\∆1 is a maximal element determined by g−1

1 τâ.

On the other hand, one calculates[
g−1
1 τâ

]∗
= (g∗1)

−1
[τâ]

∗
= ta0 ◦ t−1

a ◦ ta = ta0 .

So τâ0
= g−1

1 τâ, which shows that Uâ0
is the collection of half-planes determined by g−1

1 τâ, and

so H\∆1 is a maximal element of Uâ0
.

4 Mapping Classes Interpreted as Automorphisms of H

Let ∆1 and ∆2 be as in Lemma 3.2, and cg be the axis of g. There are various possibilities

concerning the relative positions among cg, ∆1 and ∆2. The aim of this section is to classify

all the possible cases.

Assume first that cg ̸= ∂∆1 and cg ̸= ∂∆2. Let {A,B} denote the fixed points of g, that

is, cg ∩ S1 = {A,B}. Clearly, the endpoints {A,B} cannot be in {U, V,X, Y }. Otherwise, the

group G would not be discrete. In each of the following figures, we denote by

∆∗
1 = H\∆1 and ∆∗

2 = H\∆2.
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Let U and X be the endpoints of ∆1 that are attracting and repelling endpoints with respect

to τâ (that is, τkâ (z) → U and τ−k
â (z) → X for z ∈ ∆1 ∩ S1 as k → +∞). Likewise, we denote

by V and Y the endpoints of ∆2 that are attracting and repelling with respect to τ−1

b̂
.

} } }

= = =

U U UX X X

Y Y YV V V

Figure 1 ∆1 and ∆2 satisfy

the condition (3.2).

Figure 2 The axis cg crosses

both ∂∆1 and ∂∆2.

τâ τâ τâ

τ−1

b̂
τ−1

b̂
τ−1

b̂

∆1 ∆1 ∆1

∆2 ∆2 ∆2

∆∗
1 ∆∗

1 ∆∗
1

∆∗
2 ∆∗

2 ∆∗
2

Figure 3 The axis

cg ⊂ ∆∗
1 ⊂ ∆2.

A

B

A B

We observe that the arc (UV ) (here and below (UV ) denotes the arc on S1 connecting U

and V without passing through X or Y ) is a stable region for the iteration of τ−m

b̂
τnâ (in the

sense that τ−m

b̂
τnâ (z) ∈ (UV ) whenever z ∈ (UV )), whereas (XY ) is stable for the iteration of

the inverse of τ−m

b̂
τnâ . More precisely, we notice that ã = b̃ is a simple closed geodesic. As a

consequence, we obtain

τâ(∆
∗
1) = ∆∗

1, τb̂(∆
∗
1) ∩∆∗

1 = ∅ and τb̂(∆
∗
1) ⊂ ∆1 ∩∆2. (4.1)

Similarly, we have

τb̂(∆
∗
2) = ∆∗

2, τâ(∆
∗
2) ∩∆∗

2 = ∅ and τâ(∆
∗
2) ⊂ ∆2 ∩∆1. (4.2)

It follows from (4.1) and (4.2) that

τ−m

b̂
τnâ (∆

∗
1) ∩ S1 ⊂ (UV ) and τ−m

b̂
τnâ (∆

∗
2) ∩ S1 ⊂ (UV ).

Case 1 The axis cg is not contained in ∆1. In this case, either cg crosses both ∂∆1 and

∂∆2 (see Figure 2), or cg lies in ∆2 (see Figures 3 and 4).

Case 2 The axis cg is contained in ∆1. In this case, either cg ⊂ ∆1 ∩∆2 (see Figure 5 and

Figure 7), or cg crosses ∂∆2 (see Figure 6), or cg ⊂ ∆∗
2 (see Figure 8).

} } }

= = =

U U UX X X

Y Y YV V V

τâ τâ τâ

τ−1

b̂
τ−1

b̂
τ−1

b̂

∆1 ∆1 ∆1

∆2 ∆2 ∆2

∆∗
1 ∆∗

1 ∆∗
1

∆∗
2 ∆∗

2 ∆∗
2

Figure 4 The axis cg ⊂ ∆2

crosses ∂∆1.

Figure 5 The axis cg ⊂ ∆1 ∩∆2

does not separate ∂∆1 and ∂∆2.

Figure 6 The axis cg ⊂ ∆1

crosses ∂∆2.

A

B

A

B

A

B

By considering the inverse of the map τ−m

b̂
τnâ g

k, we see that Figure 8 can be reduced to

Figure 3, and Figure 6 can be reduced to Figure 4. As such, it is adequate to discuss the cases

depicted in Figures 2–5 and 7.
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} }

= =

U UX X

Y YV V

τâ τâ

τ−1

b̂
τ−1

b̂

∆1 ∆1

∆2 ∆2

∆∗
1 ∆∗

1

∆∗
2 ∆∗

2

Figure 7 The axis cg ⊂ ∆1 ∩∆2

separates ∂∆1 and ∂∆2.
Figure 8 The axis
cg ⊂ ∆∗

2 ⊂ ∆1.

Figure 9 The axis

cg = ∂∆1 = ∂∆2.

A B

A B

∆1

∆2�
�

τâ

τ−1
â0

U X

Now we are ready to prove the following result.

Theorem 4.1 Under the same conditions as in Theorem 1.1, we have i(a, b) = 0.

Proof Assume that i(a, b) > 0. Write f = g∗ ∈ F . By Lemma 3.2, there are elements

∆1 ∈ Uâ and ∆2 ∈ Ub̂, such that (3.2) holds. We also assume that L (a) in Theorem 1.1

consists of the powers of ta.

According to the above discussion, we only need to consider Figures 2–5, 7, and the cases

cg = ∂∆2 or ∂∆1. Since G contains only hyperbolic elements, g is hyperbolic. Denote by

Fi = τ−mi

b̂
τni

â gki . (4.3)

We know by the assumption that [Fi]
∗ is represented by powers of ta. So from Lemma 2.1, we

have Fi(∆1) = ∆1. Note that ∆∗
1 = H\∆1 and Fi are homeomorphisms of H onto itself. We

see that Fi(∆1) = ∆1 if and only if Fi(∆
∗
1) = ∆∗

1.

By examining Figures 5 and 7 (where cg is disjoint from ∆∗
1), we find that for large ki,

gki(∆∗
1) accumulates at the attracting fixed point of g that is away from the repelling endpoint

X (with respect to τâ) of ∆1 and stays in ∆1. So for large integer ni, τ
ni

â gki(∆∗
1) accumulates

at the point U that is away from the repelling endpoint Y (with respect to τ−1

b̂
) of ∆2. It

follows that Fi(∆
∗
1) accumulates at V for large integer mi. In particular, Fi(∆

∗
1) ̸= ∆∗

1. Hence

also Fi(∆1) ̸= ∆1.

If Figure 2 or Figure 4 occurs and the point A is the attracting fixed point of g, then

gki(∆∗
1) ⊂ ∆∗

1. From (4.1) and (4.2), we easily see that Fi(∆
∗
1) ̸= ∆∗

1. Hence also Fi(∆1) ̸= ∆1.

If the point A is the repelling fixed point of g, by considering the inverse of Fi, we assert

that F−1
i (∆∗

1) ̸= ∆∗
1 and thus F−1

i (∆1) ̸= ∆1. If Figure 3 occurs, then one easily checks that

Fi(∆1) ⊂ ∆2 and is near to the point V . This particularly implies that Fi(∆1) ̸= ∆1.

Now we proceed to consider the case cg = ∂∆2. If the attracting fixed point A of g coincides

with the point V , then Fi(∆
∗
1) is disjoint from ∆∗

1. So Fi(∆
∗
1) ̸= ∆∗

1 and Fi(∆1) ̸= ∆1. If the

point A coincides with the point Y , then gki(∆∗
1) ⊂ ∆2 shrinks to the point Y , which stays away

from the repelling endpoint X (with respect to τâ) and then τni

â gki(∆∗
1) = τni

â (gki(∆∗
1)) ⊂ ∆1

shrinks to the point U , which stays away from the repelling endpoint Y with respect to τ−1

b̂
. It

turns out that Fi(∆
∗
1) ⊂ ∆2 shrinks to the point V . This particularly implies that Fi(∆

∗
1) ̸= ∆∗

1.

Hence also Fi(∆1) ̸= ∆1.

Finally, if cg = ∂∆1, then gki(∆∗
1) = ∆∗

1. So τni

â gki(∆∗
1) = ∆∗

1. We conclude that

τ−mi

b̂
τni

â gki(∆∗
1) = τ−mi

b̂
(∆∗

1) is disjoint from ∆∗
1. It follows that Fi(∆1) ̸= ∆1.
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5 Proof of the Theorems

Proof of Theorem 1.1 From Theorem 4.1, we assert that i(a, b) = 0. If b̃ ̸= ã, we claim

that the mapping classes λ(a, b;mi, ni) ◦ fki would not be powers of Dehn twists. Otherwise,

λ(a, b;mi, ni) ◦ fki also projects to a Dehn twist. But the projection of λ(a, b;mi, ni) ◦ fki is

just tmi

ã ◦ tni

b̃
that cannot be a Dehn twist (since b̃ ̸= ã). This leads to a contradiction. We

conclude that b̃ = ã, which says that b = a or b = a0 for some a0 parallel to a. If b = a, then

λ(a, b;m,n) = tn−m
a . In this case, one can show (see [12], for example) that λ(a, b;m,n) ◦ fki ,

where f ∈ F , are never powers of ta unless f is trivial.

We conclude that b = a0. Now, Figure 1 should be replaced with Figure 9. In the figure,

∆2 = ∆∗
1, ∆1 = ∆∗

2 and ∂∆1 = ∂∆2. We notice that the relative position of cg, ∂∆1 = ∂∆2 falls

into these cases: (i) cg crosses ∂∆1 = ∂∆2; (ii) cg ⊂ ∆1; (iii) cg ⊂ ∆2; or (iv) cg = ∂∆1 = ∂∆2.

In cases (i)–(iii), one easily checks that for Fi = τ−mi

â0
τni

â gki , Fi does not keep ∆1 and ∆2

invariant. This tells us that [Fi]
∗ can never be powers of ta. This contradicts the hypothesis.

We see that only (iv) can occur. In this case, f = g∗ = tqa0
◦ t−q

a for an appropriate integer q.

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2 The conditions guarantee that both L (a) and L (a0) consist of

powers of ta and ta0 . If i(a, b) > 0, by Lemma 3.2, there exist maximal elements ∆1 ∈ Uâ and

∆2 ∈ Ub̂, such that (3.2) holds. Let g1 ∈ G be a primitive hyperbolic element with g1(∆1) = ∆1.

By [7, Theorem 2] and [10, Theorem 2], g∗1 = ta ◦ t−1
a1

, where a1 ∈ S is a curve parallel to

a. If a1 = a0, then by Lemma 3.3, ∆∗
1 = H\∆1 is a maximal element of Uâ0

. Thus for the

element g ∈ G with g∗ = f , by the similar argument of Theorem 4.1, τ−mi

b̂
τni

â0
gki(∆∗

1) ̸= ∆∗
1

and τ−mi

b̂
τni

â gki(∆1) ̸= ∆1. Hence also τ−mi

b̂
τni

â0
gki(∆1) ̸= ∆1 and τ−mi

b̂
τni

â gki(∆∗
1) ̸= ∆∗

1. This

says that L (a) contains some elements that are not represented by powers of ta or ta0 , and so

does L (a0). This leads to a contradiction.

If a1 ̸= a0, then there is a maximal element ∆0 ∈ Uâ with ∆0 ⊂ ∆∗
1 such that g∗0 = ta ◦ t−1

a0

for the hyperbolic element g0 ∈ G keeping ∆0 invariant. Then by Lemma 3.3 again, ∆∗
0 = H\∆0

is a maximal element of Uâ0
. By the same argument of Theorem 4.1, one easily verifies that

for the element g ∈ G with g∗ = f , we have

τ−mi

b̂
τni

â0
gki(∆0) ̸= ∆0 and also τ−mi

b̂
τni

â0
gki(∆1) ̸= ∆1.

Since τ−mi

b̂
τni

â0
gki are homeomorphisms of H onto itself, we obtain

τ−mi

b̂
τni

â0
gki(∆∗

0) ̸= ∆∗
0 and also τ−mi

b̂
τni

â0
gki(∆∗

1) ̸= ∆∗
1. (5.1)

It follows from (5.1) and Lemma 2.1 that τ−mi

b̂
τni

â0
gki can never be powers of the Dehn twists

ta or ta0
. This again contradicts the hypothesis, proving that i(a, b) = 0.

Similarly, we can show that i(a0, b) > 0 cannot occur. So we also have i(a0, b) = 0.

To prove b = a or b = a0, we use Lemma 3.1 to deduce b̃ = ã = ã0. This says that b is

homotopic to a as x is filled in. If b ̸= a, then since i(a, b) = 0, b must be disjoint from a, that

is, {a, b} forms the boundary of an x-punctured cylinder P . We claim that b cannot be disjoint

from a0; otherwise, P would be disjoint from the x-punctured cylinder bounded by {a, a0}, and
this is impossible.
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We conclude that b cannot be disjoint from a0. This means that either b intersects a0 or

b = a0. If the later occurs, we are done. If the former occurs, then i(a0, b) > 0. This once again

leads to a contradiction.

The second statement of the theorem is the same as in the proof of Theorem 1.1. The

remaining part of Theorem 1.2 also follows from Theorem 1.1. This completes the proof of

Theorem 1.2.
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