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1 Introduction

The q-deformed integrable system (also called the q-analogue or q-deformation of classical
integrable system) is defined by means of q-derivative ∂q (see [1–2]) instead of usual derivative
∂ with respect to x in a classical system. It reduces to a classical integrable system as q → 1.
Recently, the q-deformed Kadomtsev-Petviashvili (q-KP) hierarchy is a subject of intensive
study in the literature from [3] to [14]. Its infinite conservation laws, bi-Hamiltonian structure,
τ function, additional symmetries and its constrained sub-hierarchy have already been reported
in [4–5, 11–12, 14].

The additional symmetries, string equations and Virasoro constraints of the KP hierarchy
are important as they are involved in the matrix models of the string theory (see [15]). For
example, there are several new works [16–20] on this topic. The additional symmetries were
discovered independently at least twice by Sato School [21] and Orlov-Shulman [22], in quite
different environments and philosophy although they are essentially equivalent. It is well-
known that L. A. Dickey [23] presented a very elegant and compact proof of Adler-Shiota-van
Moerbeke (ASvM) formula (see [24–25]) based on the Lax operator L and Orlov-Shulman’s M
operator (see [22]), and gave the string equation and the action of the additional symmetries
on the τ function of the classical KP hierarchy. S. Panda and S. Roy gave the Virasoro and
W -constraints on the τ function of the p-reduced KP hierarchy by expanding the additional
symmetry operator in terms of the Lax operator (see [26–27]). It is quite interesting to study
the analogous properties of q-deformed KP hierarchy by this expanding method. The main
purpose of this article is to give the string equations of the q-KP hierarchy, and then study the
negative Virasoro constraint generators {L−n, n ≥ 1} of 2-reduced q-KP hierarchy.

The organization of this paper is as follows. We recall some basic results and additional
symmetries of the q-KP hierarchy in Section 2. The string equations are given in Section 3.
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The Virasoro constraints on the τ function of the 2-reduced (q-KdV) hierarchy are studied in
Section 4. Section 5 is devoted to the conclusions and discussions.

At the end of the this section, we shall collect some useful facts of q-calculus (see [2]) to
make this paper self-contained. The q-derivative ∂q is defined by

∂q(f(x)) =
f(qx)− f(x)

x(q − 1)
, (1.1)

and the q-shift operator is

θ(f(x)) = f(qx). (1.2)

∂q(f(x)) recovers the ordinary differentiation ∂x(f(x)) as q goes to 1. Let ∂−1
q denote the formal

inverse of ∂q. In general, the following q-deformed Leibniz rule holds:

∂n
q ◦ f =

∑
k≥0

(
n

k

)
q

θn−k(∂k
q f)∂

n−k
q , n ∈ Z, (1.3)

where the q-number and the q-binomial are defined by

(n)q =
qn − 1

q − 1
,(

n

k

)
q

=
(n)q(n− 1)q · · · (n− k + 1)q

(1)q(2)q · · · (k)q
,

(
n

0

)
q

= 1.

For a q-pseudo-differential operator (q-PDO) of the form P =
n∑

i=−∞
pi∂

i
q, we separate P into the

differential part P+ =
∑
i≥0

pi∂
i
q and the integral part P− =

∑
i≤−1

pi∂
i
q. The conjugate operation

“∗” for P is defined by P ∗ =
∑
i

(∂∗
q )

ipi with ∂∗
q = −∂qθ

−1 = −1
q∂ 1

q
, (∂−1

q )∗ = (∂∗
q )

−1 = −θ∂−1
q .

The q-exponent exq is defined as follows:

exq =
∞∑

n=0

xn

(n)q!
, (n)q! = (n)q(n− 1)q(n− 2)q · · · (1)q.

Its equivalent expression is of the form

exq = exp
( ∞∑

k=1

(1− q)k

k(1− qk)
xk

)
, (1.4)

which is crucial to developing the τ function of the q-KP hierarchy (see [11]).

2 q-KP Hierarchy and Its Additional Symmetries

Similar to the general way of describing the classical KP hierarchy (see [21, 28]), we first
give a brief introduction to the q-KP hierarchy and its additional symmetries based on [11–12].

Let L be one q-PDO given by

L = ∂q + u0 + u−1∂
−1
q + u−2∂

−2
q + · · · , (2.1)
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which is called the Lax operator of q-KP hierarchy. There exist infinite numbers of q-partial
differential equations related to dynamical variables {ui(x, t1, t2, t3, · · · ), i = 0,−1,−2,−3, · · · }
and can be deduced from the generalized Lax equation

∂L

∂tn
= [Bn, L], n = 1, 2, 3, · · · , (2.2)

which are called the q-KP hierarchy. Here Bn = (Ln)+ =
n∑

i=0

bi∂
i
q and Ln

− = Ln − Ln
+. L in

(2.1) can be generated by dressing operator S = 1 +
∞∑
k=1

sk∂
−k
q in the following way:

L = S ◦ ∂q ◦ S−1. (2.3)

Dressing operator S satisfies Sato equation

∂S

∂tn
= −(Ln)−S, n = 1, 2, 3, · · · . (2.4)

The q-wave function wq(x, t; z) and the q-adjoint function w∗
q (x, t; z) are given by

wq = Sexzq exp
( ∞∑
i=1

tiz
i
)
,

w∗
q (x, t; z) = (S∗)−1| x

q
e−xz

1
q

exp
(
−

∞∑
i=1

tiz
i
)
,

which satisfy the following linear q-differential equations:

Lwq = zwq, L∗| x
q
w∗

q = zw∗
q .

Here the notation P | x
t
=

∑
i

Pi(
x
t )t

i∂i
q is used for P =

∑
i

pi(x)∂
i
q.

Furthermore, wq(x, t; z) and w∗
q (x, t; z) can be expressed by the sole function τq(x; t) (see

[11]) as

wq =
τq(x; t− [z−1])

τq(x; t)
exzq exp

( ∞∑
i=1

tiz
i
)
=

exzq eξ(t,z)e
−

∞∑
i=1

z−i

i ∂i

τq

τq
,

w∗
q =

τq(x; t+ [z−1])

τq(x; t)
e−xz

1
q

exp
(
−

∞∑
i=1

tiz
i
)
=

e−xz
1
q

e−ξ(t,z)e
+

∞∑
i=1

z−i

i ∂i

τq

τq
,

(2.5)

where

[z] =
(
z,

z2

2
,
z3

3
, · · ·

)
.

The following lemma shows that there exists an essential correspondence between the q-KP
hierarchy and the KP hierarchy.

Lemma 2.1 (see [11]) Let L1 = ∂ + u−1∂
−1 + u−2∂

−2 + · · · , where ∂ = ∂
∂x , be a solution

to the classical KP hierarchy and τ be its τ function. Then

τq(x, t) = τ(t+ [x]q)

is a τ function of the q-KP hierarchy associated with Lax operator L in (2.1), where

[x]q =
(
x,

(1− q)2

2(1− q2)
x2,

(1− q)3

3(1− q3)
x3, · · · , (1− q)i

i(1− qi)
xi, · · ·

)
.
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Define Γq and Orlov-Shulman’s M operator

Γq =
∞∑
i=1

(
iti +

(1− q)i

(1− qi)
xi
)
∂i−1
q , (2.6)

M = SΓqS
−1. (2.7)

Dressing [∂k − ∂k
q ,Γq] = 0 gives

∂kM = [Bk,M ]. (2.8)

(2.2) together with (2.8) implies that

∂k(M
mLn) = [Bk,M

mLn]. (2.9)

Define the additional flows for each pair m,n as follows:

∂S

∂t∗m,n

= −(MmLn)−S, (2.10)

or equivalently

∂L

∂t∗m,n

= −[(MmLn)−, L], (2.11)

∂M

∂t∗m,n

= −[(MmLn)−,M ]. (2.12)

The additional flows ∂∗
mn = ∂

∂t∗m,n
commute with the hierarchy, i.e., [∂∗

mn, ∂k] = 0 but do not

commute with each other. So they are additional symmetries (see [12]). (MmLn)− serves as
the generator of the additional symmetries along the trajectory parametrized by t∗m,n.

3 String Equations of the q-KP Hierarchy

In this section, we shall get string equations for the q-KP hierarchy from special additional
symmetry flows. For this, we need a lemma.

Lemma 3.1 The following equation

[M,L] = −1 (3.1)

holds.

Proof Direct calculations show that

[Γq, ∂q] =
[ ∞∑

i=1

(
iti +

(1− q)i

1− qi
xi
)
∂i−1
q , ∂q

]
=

∞∑
i=1

[ (1− q)i

1− qi
xi∂i−1

q , ∂q

]
=

∞∑
i=1

(1− q)i

1− qi
(xi∂i

q − (∂q ◦ xi)∂i−1
q )

=
∞∑
i=1

(1− q)i

1− qi
(xi∂i

q − ((∂qx
i) + qixi∂q)∂

i−1
q )
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=

∞∑
i=1

(1− q)i

1− qi

(
(1− qi)xi∂i

q −
1− qi

1− q
xi−1∂i−1

q

)
=

∞∑
i=1

((1− q)ixi∂i
q − (1− q)i−1xi−1∂i−1

q )

= −1,

where we have used [ti, ∂q] = 0 in the second step and ∂q ◦ xi = (∂qx
i) + qixi∂q in the fourth

step. Then
[M,L] = [SΓqS

−1, S∂qS
−1] = S[Γq, ∂q]S

−1 = −1.

By virtue of Lemma 3.1, we have the following corollary.

Corollary 3.1 [M,L] = −1 implies [M,Ln] = −nLn−1. Therefore,

[ML−n+1, Ln] = −n. (3.2)

The action of additional flows ∂∗
1,−n+1 on Ln is ∂∗

1,−n+1L
n = −[(ML−n+1)−, L

n], which can
be written as

∂∗
1,−n+1L

n = [(ML−n+1)+, L
n] + n. (3.3)

The following theorem holds by virtue of (3.3).

Theorem 3.1 If an operator L does not depend on the parameters tn and the additional
variables t∗1,−n+1, then Ln is a purely differential operator, and the string equations of the q-KP
hierarchy are given by [

Ln,
1

n
(ML−n+1)+

]
= 1, n = 2, 3, 4, · · · . (3.4)

In view of the additional symmetries and string equations, we can get the following corollary,
which plays a crucial role in the study of the constraints on the τ function of the p-reduced
q-KP hierarchy.

Corollary 3.2 If Ln is a differential operator and ∂∗
1,−n+1S = 0, then

(ML−n+1)− =
n− 1

2
L−n, n = 2, 3, 4, · · · . (3.5)

Proof Since [M,L] = −1, it is not difficult to obtain

[M,L−n+1] = (n− 1)L−n.

Hence

(ML−n+1)− − (L−n+1M)− = (n− 1)L−n. (3.6)

Noticing [(n− 1)L−n, Ln] = 0, we have

[(ML−n+1)− − (L−n+1M)−, L
n] = 0, i.e., [(ML−n+1)−, L

n] = [(L−n+1M)−, L
n].

Thus

∂∗
1,−n+1L

n = −[(L−n+1M)−, L
n] = −1

2
[(ML−n+1)− + (L−n+1M)−, L

n],
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or equivalently

∂∗
1,−n+1S = −1

2
(ML−n+1 + L−n+1M)−S.

Therefore, it follows from the equation ∂∗
1,−n+1S = 0 that

(ML−n+1 + L−n+1M)− = 0.

Combining this with (3.6) finishes the proof.

4 Constraints on the τ Function of the q-KdV Hierarchy

In this section, we mainly study the associated constraints on τ function of the 2-reduced
q-KP (q-KdV) hierarchy from string equations (3.4). To this end, we first define residue resL =
u−1 of L given by (2.1) and state two very useful lemmas.

Lemma 4.1 For n = 1, 2, 3, · · · ,

resLn =
∂2 log τq
∂t1∂tn

, (4.1)

where τq is the τ function of the q-KP hierarchy.

Proof Taking the residue of ∂S
∂tn

= −(Ln)−S, we get

∂s1
∂tn

= −res((Ln)−(1 + s1∂
−1
q + s2∂

−2
q + · · · )) = −res(Ln)− = −resLn.

Noting that u0 = s1 − θ(s1) = −x(q − 1)∂qs1 = x(q − 1)∂q∂t1 log τq, s1 = −∂ log τq
∂t1

(see [14]),
we have

resLn = −∂s1
∂tn

=
∂2 log τq
∂t1∂tn

.

Lemma 4.2 Orlov-Shulman’s M operator has the expansion of the form

M =
∞∑
i=1

(
iti +

(1− q)i

1− qi
xi
)
Li−1 +

∞∑
i=1

Vi+1L
−i−1, (4.2)

where

Vi+1 = −i
∑

a1+2a2+3a3+···=i

(−1)a1+a2+··· (∂t1)
a1

a1!

( 12∂t2)
a2

a2!

( 13∂t3)
a3

a3!
· · · log τq.

Proof First, we assert Mwq =
∂wq

∂z . Indeed, from the identity ∂i−1
q exzq = zi−1exzq , we have

Mwq = SΓqS
−1Sexzq eξ(t,z) = S

( ∞∑
i=1

(
iti +

(1− q)i

1− qi
xi
)
zi−1

)
exzq eξ(t,z),

where ξ(t, z) =
∞∑
i=1

tiz
i. On the other hand,

∂wq

∂z
=

∂(Sexzq eξ(t,z))

∂z
= S

(∂exzq
∂z

eξ(t,z) + exzq
∂eξ(t,z)

∂z

)
= S

( ∞∑
i=1

(
iti +

(1− q)i

1− qi
xi
)
zi−1

)
exzq eξ(t,z).
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Thus the assertion is verified. Next, by a direct calculation from (1.4) and (2.5), we have

logwq =
∞∑
k=1

(1− q)k

k(1− qk)
(xz)k +

∞∑
n=1

tnz
n +

∞∑
N=0

1

N !

(
−

∞∑
i=1

z−i

i
∂i

)N

log τq − log τq. (4.3)

Let M =
∞∑

n=1
anL

n−1 +
∞∑

n=1
bnL

−n. Then in light of Lwq = zwq and the assertion mentioned

above, we obtain

∂wq

∂z
= Mwq =

( ∞∑
n=1

anL
n−1 +

∞∑
n=1

bnL
−n

)
wq,

and hence

∂ logwq

∂z
=

1

wq

∂wq

∂z
=

∞∑
n=1

anz
n−1 +

∞∑
n=1

bnz
−n. (4.4)

Thus by comparing the coefficients of z in
∂ logwq

∂z given by (4.3) and (4.4), ai and bi are
determined such that M is obtained as (4.2).

To be an intuitive glance, the first few Vi+1 are given as follows:

V2 =
∂ log τq
∂t1

,

V3 =
∂ log τq
∂t2

− ∂2 log τq
∂t21

,

V4 =
(1
2

∂3

∂t31
− 3

2

∂2

∂t1∂t2
+

∂

∂t3

)
log τq,

V5 =
(
− 1

3!

∂4

∂t41
− 1

2

∂2

∂t22
− 4

3

∂2

∂t1∂t3
+

∂

∂t4

)
log τq,

V6 =
( 1

4!

∂5

∂t51
− 5

12

∂4

∂t31∂t3
+

5

6

∂3

∂t21∂t3
− 5

4

∂2

∂t1∂t4
− 5

6

∂2

∂t2∂t3
+

∂

∂t5

)
log τq.

Now we consider the 2-reduced q-KP hierarchy (q-KdV hierarchy), by setting L2
− = 0 or

setting

L2 = ∂2
q + (q − 1)xu∂q + u. (4.5)

To make the following theorem be a compact form, we introduce

L−n =
1

2

∞∑
i=2n+1

i ̸=0 (mod 2)

it̃i
∂

∂t̃i−2n

+
1

4

∑
k+l=n+1

(2k − 1)(2l − 1)t̃2k−1t̃2k−1 (4.6)

and

t̃i = ti +
(1− q)i

i(1− qi)
xi, i = 1, 2, 3, · · · . (4.7)

Theorem 4.1 If L2 satisfies (3.4), the Virasoro constraints imposed on the τ function of
the q-KdV hierarchy are

L−nτq = 0, n = 1, 2, 3, · · · , (4.8)
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and the Virasoro commutation relations

[L−n, L−m] = (−n+m)L−(n+m), m, n = 1, 2, 3, · · · (4.9)

hold.

Proof For n = 1, 2, 3, · · · , we have

res(ML−2n+1) = res(ML−2n+1)− = res
(
− 2n+ 1

2
L−2n

)
−
= 0 (4.10)

with the help of (3.5). Substituting the expansion of M in (4.2) into (4.10), we have

∞∑
i=1

(
iti +

(1− q)i

1− qi
xi
)
resLi−2n +

∞∑
i=1

res(Vi+1L
−i−2n) = 0,

which implies

∞∑
i=2n+1

i ̸=0 (mod 2)

(
iti +

(1− q)i

1− qi
xi
)
resLi−2n + (2n− 1)t2n−1 +

(1− q)2n−1

1− q2n−1
x2n−1 = 0. (4.11)

Substituting resLi−2n =
∂2 log τq
∂t1∂ti−2n

into (4.11), then performing an integration with respect to

t1 and multiplying by
τq
2 , it becomes

L̃−nτq = 0, n = 1, 2, 3, · · · ,

where

L̃−n =
1

2

∞∑
i=2n+1

i ̸=0 (mod 2)

(
iti +

(1− q)i

1− qi
xi
) ∂

∂ti−2n
+

(1− q)2n−1

1− q2n−1
· 1
2
t1x

2n−1

+
1

2
(2n− 1)t1t2n−1 + C(t2, t3, · · · ;x). (4.12)

The integration constant C(t2, t3, · · · ;x) with respect to t1 could be the arbitrary function with

the parameters (t2, t3, · · · ;x). What we shall do is to determine C(t2, t3, · · · ;x) such that L̃−n

satisfy Virasoro commutation relations.
Let

t̃i = ti +
(1− q)i

i(1− qi)
xi, i = 1, 2, 3, · · · ,

and choose C(t2, t3, · · · ;x) as

C(t2, t3, · · · ;x) = −1

4

2n−3∑
k=3

(2k − 1)(2n− 2k + 1)
(
t2k−1 +

(1− q)2k−1

(2k − 1)(1− q2k−1)
x2k−1

)
·
(
t2n−2k+1 +

(1− q)2n−2k+1

(2n− 2k + 1)(1− q2n−2k+1)
x2n−2k+1

)
− 1

2
(2n− 1)x

(
t2n−1 +

(1− q)2n−1

(2n− 1)(1− q2n−1)
x2n−1

)
.

Then

L̃−n =
1

2

∞∑
i=2n+1

i̸=0 (mod 2)

it̃i
∂

∂t̃i−2n

+
1

4

∑
k+l=n+1

(2k − 1)(2l − 1)t̃2k−1t̃2k−1 ≡ L−n
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and
L−nτq = 0, n = 1, 2, 3, · · ·

as we expected. By a straightforward and tedious calculation, the Virasoro commutation rela-
tions

[L−n, L−m] = (−n+m)L−(n+m), m, n = 1, 2, 3, · · ·

can be verified.

Remark 4.1 As we know, the q-deformed KP hierarchy reduces to the classical KP
hierarchy when q → 1 and u0 = 0. The parameters (t̃1, t̃2, · · · , t̃i, · · · ) in (4.6) tend to
(t1 + x, t2, · · · , ti, · · · ) as q → 1. One can further identify t1 + x with x in the classical KP
hierarchy, i.e., t1 + x → x, and therefore the Virasoro generators L−n in (4.6) of the 2-reduced
q-KP hierarchy tend to

L̂−n =
1

2

∞∑
i=2n+1

i ̸=0 (mod 2)

iti
∂

∂ti−2n
+

1

4

∑
k+l=n+1

(2k − 1)(2l − 1)t2k−1t2k−1, n = 2, 3, · · · (4.13)

and

L̂−1 =
1

2

∞∑
i=3

i ̸=0 (mod 2)

iti
∂

∂ti−2
+

1

4
x2, (4.14)

which are identical with the results of the classical KP hierarchy given by L. A. Dickey [29] and
S. Panda, S. Roy [26].

5 Conclusions and Discussions

To summarize, we have derived the string equations in (3.4) and the negative Virasoro
constraint generators on the τ function of 2-reduced q-KP hierarchy in (4.8) in Theorem 4.1.
The results of this paper show obviously that the Virasoro generators {L−n, n ≥ 1} of the q-KP

hierarchy are different from the {L̂−n, n ≥ 1} of the KP hierarchy, although they satisfy the
common Virasoro commutation relations. Furthermore, one can find the following interesting
relation between the q-KP hierarchy and the KP hierarchy

L−n = L̂−n|ti→t̃i=ti+
(1−q)i

i(1−qi)
xi
,

and it seems to demonstrate that q-deformation is a non-uniform transformation for coordinates
ti → t̃i, which is consistent with the results on τ function (see [11]) and the q-soliton (see [14])
of the q-KP hierarchy.

For the p-reduced (p ≥ 3) q-KP hierarchy, which is the q-KP hierarchy satisfying the re-
duction condition (Lp)− = 0, we can obtain (MLpn+1)− = 0. Using the similar technique in
q-KdV hierarchy, we can deduce the Virasoro constraints on the τ function of the p-reduced
q-KP hierarchy for p ≥ 3. Moreover, for {Ln, n ≥ 0} we find a subtle point at the calculation
of res (Vi+1L

−i+2n), and shall try to study it in the future.
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