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1 Introduction

Homoclinic or heteroclinic orbits have tremendous potential for applications in many impor-

tant areas. Therefore, bifurcations of homoclinic or heteroclinic orbits were studied extensively

in the literature (see [1–10] and the references therein). In recent years, many papers focus

on the following three different codimension two bifurcations: resonant leading eigenvalues, an

inclination-flip condition or an orbit-flip condition. The first possibility was worked out in [11],

the second in [12], and the third in [13, 14]. But the corresponding problems with nonhyper-

bolic equilibrium are rarely investigated (see [15]) where the bifurcation of the inclination-flip

homoclinic orbit associated to a saddle-node singularity was studied. It is well-known that non-

hyperbolic equilibrium is unstable and always undergoes saddle-node, transcritical or pitchfork

bifurcation or other bifurcation phenomena. Obviously, the bifurcation problems of orbits join-

ing nonhyperbolic equilibria are much more difficult and challenging. Knobloch [16] considered

bifurcations of the homoclinic orbits to saddle-center. Wagenknecht [17] studied the homoclinic

pitchfork bifurcation in a reversible system. For the other bifurcations involving nonhyperbolic

equilibria, we refer to [18–25] and the references therein.

In this paper, we are interested in orbit flip homoclinic orbit converging to a nonhyperbolic

equilibrium, which undergoes a transcritical bifurcation. We introduce the method originally

established in [26] and then improved in [27–28], that is, choosing fundamental solutions of

variational equations as a new local coordinate system along the homoclinic orbit and then

constructing a Poincaré map to induce bifurcation equations. It is divided into two key steps.
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The first one is to find fundamental solutions to linear variational equations to divide the

tangent space, use the corresponding fundamental solutions as an active coordinate system

along the homoclinic orbit, and define two Poincaré sections spanned by the new coordinate

system. Then using the new coordinates, we establish the map induced by the flow between

two sections outside the small neighborhood of the equilibrium. The second step is to construct

the map between these two sections, which is induced by the flow in the small neighborhood of

the equilibrium. Then the whole Poincaré map is obtained by composing these maps.

The rest of the paper is arranged as follows. In Section 2, we present a qualitative analysis

of the system. Using the invariant manifold theory, we give the local normal form of the system.

In Section 3, we construct the local coordinate system along the homoclinic orbit, and then

establish the corresponding Poincaré map. In Section 4, we give the sufficient condition for the

persistence of the homoclinic orbit and the existence of the periodic orbit bifurcated from the

homoclinic orbit.

2 Hypotheses and Normal Form

Consider the following Cr system:

ẇ = G(w, λ, ε), (2.1)

and its unperturbed system:

ẇ = F (w), (2.2)

where w ∈ Rn, λ ∈ R, ε ∈ R, 0 ≤ |ε| ≪ 1, F,G ∈ Cr, r ≥ 3, G(w, 0, 0) = F (w).

Assume that system (2.2) has a homoclinic orbit Γ: γ(t) connecting the origin with γ(±∞) =

0. The linearization DwF (0) has simple real eigenvalues at the equilibrium O : −ρ1, 0, λ1, λ2
satisfying −ρ1 < 0 < λ1 < λ2. For convenience, we assume ρ1 > λ1 (the case ρ1 < λ1 can

be discussed similarly). Obviously, nonhyperbolic equilibrium O has a 1-dimensional stable

manifold W s, a 2-dimensional unstable manifold Wu and a 1-dimensional center manifold W c,

which are all Cr.

Further, we need the following hypotheses:

(H1) dim(Tγ(t)W
c ∩ Tγ(t)Wu) = dim(Tγ(t)W

cs ∩ Tγ(t)Wu) = 1,

where W cs is the center-stable manifold of O.

(H2) Let e+u = lim
t→−∞

γ̇(t)
|γ̇(t)| , e

−
c = lim

t→+∞
γ̇(t)
|γ̇(t)| , where e

+
u ∈ T0W

uu, e−c ∈ T0W
c are unit

eigenvectors corresponding to λ2, 0, respectively, and W
uu is the strong unstable manifold of

O.

From the above hypotheses, we know that the homoclinic orbit Γ enters the equilibrium

O along the center manifold W c as t → +∞ and enters the equilibrium O along the strong

unstable direction of T0W
u as t→ −∞, which means that Γ is a homoclinic orbit with an orbit

flip (see [12, 14]), so (H2) is a nongeneric hypothesis.

Let e+, e−s be unit eigenvectors corresponding to λ1, −ρ1, respectively.
(H3) span {Tγ(t)Wu, Tγ(t)W

cs, e+} = R4, t≫ 1.

span {Tγ(t)Wu, Tγ(t)W
cs, e−c } = R4, t≪ −1.
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Hypothesis (H3) is called the strong inclination property, which is equivalent to

lim
t→+∞

Tγ(t)W
u = span{e−c , e+u }, lim

t→−∞
Tγ(t)W

cs = span{e+u , e−s }.

Remark 2.1 From [29], we know (H3) is generic.

(H4) Let y be the coordinate of system in center orientation, θ(y, α, µ) be the vector field

on the center manifold. We may assume

θ(0, λ, µ) = 0,
∂θ

∂y
(0, 0, 0) = 0,

∂2θ

∂y2
(0, 0, 0) < 0,

∂2θ

∂y∂λ
(0, 0, 0) > 0,

∂2θ

∂y∂ε
(0, 0, 0) = 0.

From [30], under the above assumptions, the origin O is a transcritical bifurcation point,

and λ is the control parameter of transcritical bifurcation. Under small perturbation, when

λ > 0, the origin O is perturbed into two hyperbolic equilibria p0, p1. Let w = (x, y, z), where

x = (x1, x2) denotes the unstable space, y denotes the center space, and z denotes the stable

space. Now p0, p1 can be written as

p0 = 0, p1 = p0 + (0, θ0λ, 0) +O(λ2) +O(λε),

where

θ0 =

−∂2θ
∂y∂λ (0, 0, 0)

∂2θ
∂y2

(0, 0, 0),

p0 has a 3-dimensional unstable manifold and a 1-dimensional stable manifold, and p1 has a

2-dimensional unstable manifold and a 2-dimensional stable manifold. To simplify the calcu-

lation, we make a scaling transformation to remove the coefficients ∂2θ
∂y∂λ , −

∂2θ
∂y2 of λy and y2,

respectively.

Based on the invariant manifold theory and the hypotheses (H1)–(H4), there exists a Cr

coordinate change to flatten the stable manifold W s, the unstable manifold Wu, the strong

unstable manifold Wuu, and the center manifold W c (see [28]), so that the flattened local

invariant manifolds can be expressed as follows:

Wu
loc = {(x, y, z) : y = 0, z = 0}, Wuu

loc = {(x, y, z) : x1 = 0, y = 0, z = 0},
W c

loc = {(x, y, z) : x = 0, z = 0}, W s
loc = {(x, y, z) : x = 0, y = 0}.

Now system (2.1) is changed into the following Cr−1 system:

ẋ1 = f11(x, y, z, λ, ε), ẏ = f21(x, y, z, λ, ε),

ẋ2 = f12(x, y, z, λ, ε), ż = f22(x, y, z, λ, ε),
(2.3)

which has the following form in U0:

ẋ1= [λ1(α) + · · · ]x1 + (O(y) +O(z)) ·O(x2),

ẏ = λy − y2 + εh(x, y, z) + h.o.t.,

ẋ2= [λ2(α) + · · · ]x2 + x1[O(x1) +O(y) +O(z)],

ż = [−ρ1(α) + · · · ]z,

(2.4)

where α = (λ, ε), h|x=z=0 = O(y2).
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3 Local Coordinate System and the Poincaré Map

In this section, we will establish the Poincaré map, given as compositions of the local

transition map (using the flow near the origin) and the global transition map. Then we use the

Poincaré map to produce the successor functions.

After the straightening transformations, obviously, we may select the time T large enough

such that γ(±T ) ⊂ U0 and

γ(−T ) = (0, 0, δ, 0), γ(T ) = (0, δ, 0, 0),

where δ > 0 is small enough such that {(x, y, z) : |x|, |y|, |z| < 2δ} ⊂ U0.

Consider the linear variational system

Φ̇ = A(t)Φ (3.1)

and its adjoint system

Ψ̇ = −A∗(t)Ψ, (3.2)

where A(t) = Df(γ(t)), f = (f11, f21, f12, f22).

Lemma 3.1 If hypotheses (H1)–(H4) hold, we can choose a fundamental solution matrix to

(3.1)

Φ(t) = (ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t))

satisfying

ϕ1(t) ∈ (Tγ(t)W
cs)c ∩ (Tγ(t)W

u)c,

ϕ2(t) = − γ̇(t)

|γ̇(T )|
∈ [Tγ(t)W

cs ∩ Tγ(t)Wu],

ϕ3(t) ∈
Tγ(t)W

u

Tγ(t)W cs ∩ Tγ(t)Wu
,

ϕ4(t) ∈
Tγ(t)W

cs

Tγ(t)W c
,

such that

Φ(T ) =


1 0 ϕ31 0

0 1 ϕ32 0

0 0 ϕ33 0

ϕ14 0 ϕ34 1

 , Φ(−T ) =


ϕ11 0 1 ϕ41

ϕ12 0 0 ϕ42

ϕ13 ϕ23 0 ϕ43

0 0 0 ϕ44

 ,

where detϕii ̸= 0, i = 3, 4, ϕ12 ̸= 0 and |ϕijϕ−1
ii | ≪ 1, i = 3, 4, j = 1, 2, 3, 4, i ̸= j.

Proof From the discussion above, the existence of ϕ2(t), ϕ3(t) and ϕ4(t) with the given

expression at t = ±T is clear. Based on (H3), we take ϕ̃1(t) ∈ (Tγ(t)W
cs)c ∩ (Tγ(t)W

u)c

satisfying

ϕ̃1(T ) = (1, 0, 0, 0)∗, ϕ̃1(−T ) = (ϕ̃11, ϕ̃12, ϕ̃13, ϕ̃14)
∗.
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Now let ϕ1(t) = ϕ̃1(t) + ϕ4(t)ϕ14, where ϕ14 = −ϕ−1
44 ϕ̃14. We have ϕ1(t) ∈ (Tγ(t)W

cs)c ∩
(Tγ(t)W

u)c, and

ϕ1(T ) = (1, 0, 0, ϕ14)
∗, ϕ1(−T ) = (ϕ11, ϕ12, ϕ13, 0)

∗,

where ϕ1i = ϕ̃1i−ϕ̃14ϕ−1
44 ϕ4i (i = 1, 2, 3). According to Liouville’s formula, detΦ(T ) ̸= 0 implies

detΦ(−T ) ̸= 0, so we must have ϕ12 ̸= 0. Similar to that of [13, 28], the remaining can be

proved.

Denote Ψ(t) = (ψ∗
1 , · · · , ψ∗

4) = Φ−1∗(t), which means that Ψ(t) is a fundamental solution

matrix to system (3.2), since Ψ∗(t)Φ(t)=Id. By the exponential trichotomy theory and hypothe-

ses (H1)–(H2), it is easy to see that there exists a β > 0 such that e−βtϕ1(t) → 0, eβtψ1(t) → 0

as t→ −∞. While as t→ +∞, we have ϕ1(t) → ∞ and ψ1(t) → 0 exponentially.

Now we choose (ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t)) as the local coordinate system of (2.3) along Γ.

The relation between the original and the new coordinates can be defined as follows:

s(t) = γ(t) + ϕ1(t)n1 + ϕ3(t)n3 + ϕ4(t)n4, (3.3)

where n1, n3, n4 are the coordinates in the new coordinate system.

Let

S0 = {(x, y, z) = s(T ) : |ni| < δ},

S1 = {(x, y, z) = s(−T ) : |ni| < δ}.

It is obvious that S0 and S1 are two Poincaré sections of (2.3) at γ(T ) and γ(−T ), respectively,
where δ is small enough such that S0, S1 ⊂ U0.

3.1 Establishment of the regular map P1

First we use the flow of (2.3) to establish the regular map P1 : S1 → S0 in the tubular

neighborhood of Γ. Make a coordinate change

(x, y, z)∗ = s(t) = γ(t) + ϕ1(t)n1 + ϕ3(t)n3 + ϕ4(t)n4, (3.4)

where t ∈ [−T, T ]. Substituting it into (2.3), we get

γ̇(t) +
∑
i ̸=2

ϕ̇i(t)ni +
∑
i̸=2

ϕi(t)ṅi

= F (γ(t)) +DF (γ(t))
∑
i ̸=2

ϕi(t)ni + λGλ(γ(t), 0, 0) + εGε(γ(t), 0, 0) + h.o.t.

Multiplying both sides of the above equation by ψ∗
1 , ψ

∗
3 and ψ∗

4 , respectively, and using

Ψ∗(t)Φ(t) = I, we obtain

ṅi = ψ∗
i [λGλ(γ(t), 0, 0) + εGε(γ(t), 0, 0)] +O(2), (3.5)

where i = 1, 3, 4. Now integrating (3.5) from −T to T , we get the regular map

P1 : S1 → S0, (n1(−T ), n3(−T ), n4(−T )) 7→ (n1(T ), n3(T ), n4(T )),
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which can be expressed as

ni(T ) = ni(−T ) + λMiλ + εMiε + h.o.t., (3.6)

where Miλ =
∫ T

−T
ψ∗
iGλ(γ(t), 0, 0)dt, Miε =

∫ T

−T
ψ∗
iGε(γ(t), 0, 0)dt, i = 1, 3, 4.

Due to

γ(t) = (0, 0, x2(t), 0)
∗, t ≤ −T,

γ(t) = (0, y(t), 0, 0)∗, t ≥ T

and the special form of (2.3) at the neighborhood of origin, it is easy to see that

M1λ =

∫ T

−T

ψ∗
1Gλ(γ(t), 0, 0)dt =

∫ +∞

−∞
ψ∗
1Gλ(γ(t), 0, 0)dt+ h.o.t.,

M1ε =

∫ T

−T

ψ∗
1Gε(γ(t), 0, 0)dt =

∫ +∞

−∞
ψ∗
1Gε(γ(t), 0, 0)dt+ h.o.t.

The details of the deduction may refer to [13, 28].

3.2 Establishment of the singular map P2

In this section, we set up the singular map P2 from S0 to S1 induced by the flow of (2.4) in

U0. Consider the map

P2 : S0 → S1, q0(x10, y10, x20, z0) 7→ q1(x11, y11, x21, z1).

Let τ = τ(q0) be the flying time from q0 ∈ S0 to q1 ∈ S1. In order to guarantee the differentia-

bility of the map at the origin, we set s = exp{−λ1(α)τ}, which is called Silnikov time (see [4,

26]). Using the method of variation of constants, we can get the following expression in U0:

x10 = sx11 + h.o.t., y11 = h−1(s)y10 + h.o.t.,

x20 = s
λ2(α)

λ1(α)x21 + h.o.t., z1 = s
ρ1(α)

λ1(α) z0 + h.o.t.,
(3.7)

where

h(s) =

s
λ
λ1 + λ−1y10(1− s

λ
λ1 ), λ ̸= 0,

1− λ−1
1 y10 ln s, λ = 0.

(3.8)

Notice that, in (3.7), y11 = h−1(s)y10 + h.o.t. holds only for y11 ≥ λ. When y11 ∈ (−ρ, λ)
(ρ ≪ 1), P2 is meaningful only for s = 0. So we extend the definition of map P2 defined by

(3.7) as follows:

y10 = δ, s = 0, when y11 ∈ (−ρ, λ). (3.9)

In order to compose Poincaré maps P1 and P2, we need to change the coordinates of q0 and

q1 as follows:

q0 = (x10, y10, x20, z0)
∗ = γ(T ) + Φ(T )(n10, 0, n30, n40)

∗,

q1 = (x11, y11, x21, z1)
∗ = γ(−T ) + Φ(−T )(n1(−T ), 0, n3(−T ), n4(−T ))∗.
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Using γ(−T ) = (0, 0, δ, 0)∗, γ(T ) = (0, δ, 0, 0)∗ and the expressions of Φ(T ), Φ(−T ), we get

n10 = x10 − ϕ31ϕ
−1
33 x20,

n30 = ϕ−1
33 x20,

n40 = z0 − ϕ14x10 + (ϕ14ϕ31 − ϕ34)ϕ
−1
33 x20,

n1(−T ) = ϕ−1
12 y11 − ϕ−1

12 ϕ42ϕ
−1
44 z1,

n3(−T ) = x11 − ϕ11ϕ
−1
12 y11 + (ϕ11ϕ

−1
12 ϕ42ϕ

−1
44 − ϕ41ϕ

−1
44 )z1,

n4(−T ) = ϕ−1
44 z1,

y10 ≈ δ, x21 ≈ δ.

(3.10)

Now we can set up the Poincaré map P = P1 · P2 : S0 → S0 by (3.5)–(3.10), which is given by

n1(T ) = ϕ−1
12 y11 − ϕ−1

12 ϕ42ϕ
−1
44 s

ρ1
λ1 z0 + λM1λ + εM1ε + h.o.t.,

n3(T ) = x11 − ϕ11ϕ
−1
12 y11 + (ϕ11ϕ

−1
12 ϕ42ϕ

−1
44 − ϕ41ϕ

−1
44 )s

ρ1
λ1 z0

+ λM3λ + εM3ε + h.o.t.,

n4(T ) = ϕ−1
44 s

ρ1
λ1 z0 + λM4λ + εM4ε + h.o.t.,

(3.11)

and its associated successor function

H(s, x11, z0) = (H1,H3,H4) = (P − I)(n10, n30, n40)

is given by

H1 = −sx11 + ϕ31ϕ
−1
33 s

λ2(α)

λ1(α)x21 + ϕ−1
12 y11 − ϕ−1

12 ϕ42ϕ
−1
44 s

ρ1(α)

λ1(α) z0

+ λM1λ + εM1ε + h.o.t.,

H3 = −ϕ−1
33 s

λ2(α)

λ1(α)x21 + x11 − ϕ11ϕ
−1
12 y11 + as

ρ1(α)

λ1(α) z0 + λM3λ + εM3ε + h.o.t.,

H4 = (ϕ−1
44 s

ρ1(α)

λ1(α) − 1)z0 + ϕ14sx11 − (ϕ14ϕ31 − ϕ34)ϕ
−1
33 s

λ2(α)

λ1(α)x21

+ λM4λ + εM4ε + h.o.t.,

(3.12)

where y11 is given by (3.7)–(3.9), a = ϕ11ϕ
−1
12 ϕ42ϕ

−1
44 − ϕ41ϕ

−1
44 ≪ 1.

4 Bifurcation Analysis

In this section, we use the above successor function to discuss the homoclinic bifurcation

problem accompanied with transcritical bifurcation. Now we use (3.12) to study the existence

and the uniqueness of 1-homoclinic (1-heteroclinic) and 1-periodic orbits.

It is easy to see that system (2.1) has a homoclinic or heteroclinic orbit (resp. periodic

orbit) near Γ if and only if H = 0 has solutions satisfying s = 0 (resp. s > 0).

Consider the solutions of equation H(s, x11, z0) = 0. It is easy to see that H3 = 0, H4 = 0

have unique solutions x11 = x(s, y11), z0 = z(s, y11) as λ, ε sufficiently small and 0 < s ≪ 1.

Substituting it into H1 = 0, we have

− ϕ−1
12 ϕ11sy11 + δϕ31ϕ

−1
33 s

λ2(α)

λ1(α) + ϕ−1
12 y11 + λM1λ + εM1ε

+ sλM3λ + sεM3ε + h.o.t. = 0. (4.1)
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We call (4.1) the bifurcation equation of the nongeneric homoclinic bifurcation accompanied

with the transcritical bifurcation. It is obvious that H = 0 has solutions satisfying s = 0 or

s > 0 if and only if

H1(s, x(s, y11), z(s, y11)) = 0

has solutions satisfying s = 0 or s > 0. So we only need to study the solutions to (4.1).

First we consider the homoclinic bifurcation as λ = 0 and ε is small enough. Now the

transcritical bifurcation does not happen. From (3.7)–(3.8), we know that (4.1) can be written

as

− ϕ−1
12 ϕ11s

δ

1− λ−1
1 δ ln s

+ δϕ31ϕ
−1
33 s

λ2(α)

λ1(α) + ϕ−1
12

δ

1− λ−1
1 δ ln s

+ sεM3ε + εM1ε + h.o.t. = 0. (4.2)

Since s
λ2(α)

λ1(α) = o( 1
1−λ−1

1 δ ln s
), lim

s→0
s(1− λ−1

1 δ ln s) = 0, now (4.2) can be changed into

δ

1− λ−1
1 δ ln s

+ ϕ12sεM3ε + ϕ12εM1ε + h.o.t. = 0. (4.3)

Let
L(s, ε) = −ϕ12sεM3ε − ϕ12εM1ε + h.o.t.,

N(s, ε) = δ
1−λ−1

1 δ ln s
+ h.o.t.

Then we have

N(0, ε) = 0, L(0, ε) = −ϕ12εM1ε + o(ε2) ̸= 0, 0 < |ε| ≪ 1 (4.4)

and

N ′(s, ε) =
δ2

λ1s(1− λ−1
1 δ ln s)2

+ h.o.t., L′(s, ε) = −ϕ12εM3ε + h.o.t.

Now we have the following results.

Theorem 4.1 Suppose that (H1)–(H4) are valid, λ = 0, 0 < |ε| ≪ 1, M1ε ̸= 0, M3ε ̸= 0.

We have

( i ) if ϕ12εM1ε < 0, ϕ12εM3ε > 0, then system (2.1) has a unique 1-period orbit near Γ.

(ii) if ϕ12εM1ε < 0, ϕ12εM3ε < 0, there exist three parameter curves Σ0(ε), Σ1(ε) and

Σ2(ε), such that

system (2.1) does not have any 1-period orbit or 1-homoclinic orbit as ε ∈ Σ0(ε);

system (2.1) has a unique two-fold 1-period orbit near Γ as ε ∈ Σ1(ε);

system (2.1) has exactly two 1-period orbits near Γ as ε ∈ Σ2(ε).

(iii) if ϕ12εM1ε > 0, ϕ12εM3ε > 0, then there is no 1-period orbit near Γ.

(iv) if ϕ12εM1ε > 0, ϕ12εM3ε < 0, then there is an s = −M1ε

M3ε
+ h.o.t. for 0 < s < s,

0 < |ε| ≪ 1, and system (2.1) has no 1-period orbit near Γ.

Proof Case (i) In this case, it is easy to see that

N ′(s, ε) > 0, N ′′(s, ε) = −δ
2[(1− λ−1

1 δ ln s)− 2λ−1
1 δ]

λ1s2(1− λ−1
1 δ ln s)3

+ h.o.t. < 0 for 0 < s≪ 1, |ε| ≪ 1,
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while L(0, ε) > 0, L′(s, ε) < 0, which means that L(s, ε) = N(s, ε) has a unique solution. Case

(i) follows immediately.

Case (ii) Notice that L(s, ε) is tangent to N(s, ε) at some point s, if and only if the following

hold

L(s, ε) = N(s, ε), L′(s, ε) = N ′(s, ε),

that is
−ϕ12sεM3ε − ϕ12εM1ε =

δ
1−λ−1

1 δ ln s
+ h.o.t.,

−ϕ12εM3ε =
δ2

λ1s(1−λ−1
1 δ ln s)2

+ h.o.t.,

namely

(ϕ12sεM3ε + ϕ12εM1ε)
2 + h.o.t. = −λ1sϕ12εM3ε + h.o.t.

Based on the implict function theorem, there exists a function curve s = s0(ε) such that

L(s0, ε) = N(s0, ε), L′(s0, ε) = N ′(s0, ε).

Let

h(s, ε) = L(s, ε)−N(s, ε).

Take h(s0(ε), ε) , ∆(ε). Then, if ε ∈ Σ0(ε) = {ε | ∆(ε) = 0}, the straight line L(s, ε)

intersects the curve N(s, ε) at a unique point s = s0(ε), which implies that system (1.1) has a

unique two-fold 1-periodic orbit near Γ, where ∆(ε) = 0 is the saddle-node bifurcation curve.

If ε ∈ Σ1(ε) = {ε | ∆(ε) > 0}, then the straight line L(s, ε) does not intersect the curve

N(s, ε). Now system (1.1) has not any 1-periodic orbit near Γ. If ε ∈ Σ2(ε) = {ε | ∆(ε) < 0},
then the straight line L(s, ε) intersects the curve N(s, ε) at two exact points s = s1, s2, and

0 < s1 < s0 < s2, which means that system (1.1) has exactly two 1-periodic orbits near Γ.

Case (iii) Based on the hypotheses and (4.4), we have

L(0, ε) < 0, L′(s, ε) < 0, N(0, ε) = 0, N ′(s, ε) > 0.

It is easy to see that the straight line L(s, ε) does not intersect the curve N(s, ε). Hence there

is no 1-periodic orbit near Γ.

Case (iv) Let L(s, ε) = 0. Then we can solve that s = −M1ε

M3ε
+ h.o.t. It is clear that there

is no 1-periodic orbit near Γ for 0 < s < s and 0 < |ε| ≪ 1. The proof is completed.

Now, we turn to discuss the bifurcations of the homoclinic orbit when the origin undergoes

the transcritical bifurcation, namely, λ > 0. In this case, (4.1) becomes

− ϕ−1
12 ϕ11s

y10

s
λ
λ1 + λ−1y10(1− s

λ
λ1 )

+ ϕ−1
12

y10

s
λ
λ1 + λ−1y10(1− s

λ
λ1 )

+ λ(M1λ + sM3λ) + ε(M1ε + sM3ε) + h.o.t. = 0. (4.5)

Let r = s
λ
λ1 . It follows from (4.5) that

(−ϕ−1
12 ϕ11r

λ1
λ + ϕ−1

12 )(λ+ λδ−1(δ − λ)r) + λ(M1λ + r
λ1
λ M3λ)

+ ε(M1ε + r
λ1
λ M3ε) + h.o.t. = 0. (4.6)
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Assume r = 0 in (4.6). Then

ϕ−1
12 λ+ λM1λ + εM1ε + h.o.t. = 0.

If M1ε ̸= 0, the above equation determines a curve

Lλ
1 = {ε(λ) : εM1ε + ϕ−1

12 λ+ λM1λ + h.o.t. = 0},

such that (4.6) has a solution r = s = 0 as ε ∈ Lλ
1 and 0 < |ε| ≪ 1, i.e., system (2.1) has a

homoclinic orbit near Γ.

When r ̸= 0, system (4.6) has a solution

ε(r, λ) =
−λ[ϕ−1

12 + δ−1(δ − λ)ϕ−1
12 r +M1λ + (M3λ − ϕ−1

12 ϕ11)r
λ1
λ ] + h.o.t.

r
λ1
λ M3ε +M1ε

.

Then differentiating ε(r, λ) with respect to r, and after some simple calculation, we have

∂ε

∂r
=

−1

[r
λ1
λ M3ε +M1ε]2

[λδ−1(δ − λ)ϕ−1
12 M1ε + h.o.t.].

It is obvious that ε(r, λ) is monotonous with respect to r when M1ε ̸= 0. Moreover, we see

ε(r, λ) → ε(0, λ) =
−ϕ−1

12 λ− λM1λ

M1ε
+ h.o.t., r → 0.

Notice that s = r
λ1
λ increases monotonously with respect to r as 0 < λ ≪ 1, and then we can

get the following conclusions.

Theorem 4.2 Suppose that hypotheses (H1)–(H4) hold, and 0 < λ ≪ 1, M1ε ̸= 0. Then

for ε1 > 0 small enough, we have

( i ) when ϕ12M1ε < 0, ε(0, λ) < ε < ε1, or ϕ12M1ε > 0, −ε1 < ε < ε(0, λ), system (2.1)

has a unique 1-periodic orbit near Γ;

(ii) when ε = ε(0, λ), namely ε ∈ Lλ
1 , system (2.1) has a unique 1-homoclinic orbit Γε

connecting p1 near Γ. Also in addition to the homoclinic orbit Γε, the system has no periodic

orbit as ε ∈ Lλ
1 .

Next we consider the case of heteroclinic bifurcation for λ > 0. From (3.9), we know that

when y11 < λ, based on (4.1), the bifurcation equation is changed into

ϕ−1
12 y11 + λM1λ + εM1ε + h.o.t. = 0.

If we notice that when λ > 0, after the creation of p0 and p1, there always exists a straight

segment orbit heteroclinic to p0 and p1, with length λ, then we have the following conclusions.

Theorem 4.3 Suppose that hypotheses (H1)–(H4) are valid, 0 < λ ≪ 1, M1ε ̸= 0. Then

we have for ϕ12M1ε < 0, −λM1λ

M1ε
< ε < −λ

M1ε
(ϕ−1

12 +M1λ), or ϕ12M1ε > 0, −λ
M1ε

(ϕ−1
12 +M1λ) <

ε < −λM1λ

M1ε
, there exist two heteroclinic orbits connecting p0 with p1.
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Remark 4.1 Let ϕ12 = △|ϕ12|. When △ = 1, we call Γ nontwisted, and when △ = −1, we

call Γ twisted. In general, when we study the problem for homoclinic or heteroclinic bifurcation

connecting hyperbolic equilibrium, the bifurcation is more complicated as Γ is twisted. But

when we study the bifurcation of homoclinic orbits accompanied with transcritical bifurcation,

from Theorems 4.1–4.3, we know that the influence of the jump component on the center

manifold is stronger than that of ϕ12 which reflects twisting or not of Γ. So twisting or not will

not affect the bifurcation results.
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