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Abstract The authors investigate the completeness of the system of eigen or root vectors
of the 2 × 2 upper triangular infinite-dimensional Hamiltonian operator H0. First, the
geometrical multiplicity and the algebraic index of the eigenvalue of H0 are considered.
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1 Introduction

Using the simulation theory between structural mechanics and optimal control, Zhong pro-

posed the separation of variables based on Hamiltonian systems, which provides a unified and

analytical approach to elasticity and related fields (see [1–4]). This method extends the tra-

ditional separation of variables, and brings some important problems such as the invertibility

and spectral theory of Hamiltonian operators (see [5–13]).

As known, the feasibility of the method completely depends on the completeness of the sys-

tem of eigen or root vectors of the associated Hamiltonian operators. However, the completeness

concerning Hamiltonian operators has not been systematically discussed. On the other hand,

we find that a great number of practical problems can be described as upper triangular Hamil-

tonian forms (for instance, see the examples in Section 3). So, in this paper, we study the

completeness of the system of eigen or root vectors of upper triangular Hamiltonian operators.

Throughout this paper, an operator or operator matrix is always linear (not necessarily

bounded). Note that for the eigenvalue λ of an operator T , the set E(λ;T ) consists of all

associated eigenvectors. Λ is a countable index set. For the positive integer k, the setNk(λ;T ) =
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{x ∈ D(T k) | (λI − T )kx = 0}. In the following, we present some basic notions and auxiliary

lemmas.

Definition 1.1 Let X be a Hilbert space and H : D(H) ⊆ X ×X → X ×X,

H =

(
A B
C −A∗

)
(1.1)

be a densely defined closed operator. If A is a densely defined closed operator, and B, C are

self-adjoint operators, then H is called an infinite-dimensional Hamiltonian operator or simply

Hamiltonian operator. In particular, we say that the Hamiltonian operator H is upper triangular

if C = 0, and is denoted by H0. Note that for an operator T, T ∗ represents its adjoint operator.

Definition 1.2 Let X be a Hilbert space over the complex field C, and the function ( · , ·) be
an inner product on the product space X×X. Then, the function ( · , J · ) is called a symplectic

form generated by the inner product ( · , ·), where

J =

(
0 I
−I 0

)
with I being the identity operator on X.

A linear space equipped with a symplectic form is called a symplectic space. In the present

paper, the symplectic form on the symplectic space X × X is always defined by the function

( · , J · ).

Definition 1.3 The symplectic orthogonal system {uk, vk | k ∈ Λ} is said to be complete

in the symplectic space X ×X, if for each u ∈ X ×X, there exists a unique constant sequence

{ck, dk | k ∈ Λ} such that

u =
∑
k∈Λ

ckuk + dkvk,

which converges in the norm of the space X ×X, where Λ represents a directed countable index

set that consists of some integeral numbers in natural order.

Lemma 1.1 (see [14]) Let λ and µ be the eigenvalues of the Hamiltonian operator H given

by (1.1), and the associated eigenvectors be u0 = (x0 y0)T and v0 = (f0 g0)T, respectively.

Assume that u1 = (x1 y1)T and v1 = (f1 g1)T are the first-order root vectors associated with

the pairs (λ, u0) and (µ, v0), respectively. If λ + µ ̸= 0, then (u0, Jv0) = 0, (u0, Jv1) = 0 and

(u1, Jv1) = 0.

Lemma 1.2 (see [8]) The point spectrum, consisting of all eigenvalues, of the upper trian-

gular infinite-dimensional Hamiltonian operator

H0 =

(
A B
0 −A∗

)
(1.2)

is given by

σp(H0) = σp(A) ∪ σ1
p(−A∗),

where

σ1
p(−A∗) = {λ ∈ C | λ ∈ σp(−A∗), R(Bλ) ∩R(λI −A) ̸= ∅ } ,

Bλ = B|(N (λI+A∗)∩D(B))\{0}.



Completeness of Hamiltonian Operators and Applications 919

Obviously, σ1
p(−A∗) ⊆ σp(−A∗).

2 Main Results

In this section, we give the main results of this paper and their proofs. Note that the upper

triangular infinite-dimensional Hamiltonian operators arisen below are always defined by (1.2),

and for the definition of the algebraic index of an eigenvalue, the reader is referred to [14].

Theorem 2.1 Let the eigenvalues of the operators A and −A∗ be all simple. Assume that

σp(A)∩ σp(−A∗) = ∅, and (x, y) ̸= 0 for x ∈ E(λ;A) and y ∈ E(−λ;−A∗). Then the following

statements hold:

( i ) λ ∈ σp(H0), and the geometrical multiplicity and the algebraic index of the eigenvalue

λ of the Hamiltonian operator H0 are both one.

(ii) If −λ ∈ σ1
p(−A∗), then −λ ∈ σp(H0), and the geometrical multiplicity and the algebraic

index of the eigenvalue −λ of the Hamiltonian operator H0 are both one.

Proof (i) The fact that λ ∈ σp(H0) and u = (x 0)
T ∈ E(λ;H) follows immediately

from σp(A) ⊆ σp(H0) and x ∈ E(λ;A). By σp(A) ∩ σp(−A∗) = ∅ and Lemma 1.2, we have

E(λ;H0)∪{0} = span{u} since every eigenvalue of the operator A is simple, i.e., the geometrical

multiplicity of the eigenvalue λ of the operator H0 is one.

In order to prove the algebraic index of the eigenvalue λ of H0 being one, it suffices to show

that the operator H0 does not have the first-order root vector associated with the pair (λ, u).

Now, suppose that H0 has the first-order root vector u1 = (x1 w1)T associated with the pair

(λ, u), i.e., {
Ax1 +Bw1 = λx1 + x,
−A∗w1 = λw1.

(2.1)

The relation σp(A) ∩ σp(−A∗) = ∅ implies λ /∈ σp(−A∗), so w1 = 0. Thus, by the first equality

in (2.1), we obtain

Ax1 = λx1 + x.

Note that (Ax1, y) = (x1, A∗y) = (x1, λy) = (λx1, y). Therefore, the relation

(Ax1, y) = (λx1, y) + (x, y)

indicates (x, y) = 0, which is a contradiction to the assumption (x, y) ̸= 0. This proves the

assertion (i).

(ii) If −λ ∈ σ1
p(−A∗), then −λ ∈ σp(H0) by Lemma 1.2. Note that y ∈ E(−λ;−A∗) and

−λ is simple. Then, there exists a unique vector z for y such that{
Az +By = −λz,

−A∗y = −λy,

i.e., v = (z y)T ∈ E(−λ;H0). If there exists another vector z̃ (̸= z) such that ṽ = (z̃ y)T ∈
E(−λ;H0), then (A+ λ)(z − z̃) = 0. By z − z̃ ̸= 0, we get −λ ∈ σp(A), which contradicts the

fact σp(A)∩ σp(−A∗) = ∅. Thus, E(−λ;H0)∪ {0} = span{v}, i.e., the geometrical multiplicity

of the eigenvalue −λ is one.
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On the other hand, suppose that v1 = (z1 y1)T is the first-order root vectors ofH0 associated

with the pair (−λ, v), i.e., {
Az1 +By1 = −λz1 + z,

−A∗y1 = −λy1 + y.
(2.2)

Taking the inner product of the second equality by x in (2.2), we deduce (y, x) = 0, a contra-

diction. Therefore, the algebraic index of the eigenvalue −λ of H0 is one.

Theorem 2.2 Let the eigenvalues of the operators A and −A∗ be all simple, and the

operator A possess countable eigenvalues {λk | k ∈ Λ} with xk ∈ E(λk;A). Assume that

σp(A) = σp(A∗), σp(A) ∩ σp(−A∗) = ∅, (xk, yk) ̸= 0 and (Byk, yj) = 0 (k ̸= j) for yk ∈
E(−λk;−A∗) (k, j ∈ Λ). If σ1

p(−A∗) = σp(−A∗), then the system of eigenvectors of the upper

triangular Hamiltonian operator H0 is complete in the symplectic space X × X if and only if

{yk | k ∈ Λ} is a base in the symplectic space X.

Proof By σp(A) = σp(A∗), it follows that σp(−A∗) = −σp(A) = {−λk | k ∈ Λ}. Since

σ1
p(−A∗) = σp(−A∗), σp(H0) = {λk,−λk | k ∈ Λ}. By assumptions and the proof of Theorem

2.1, we see that there exists a unique vector zk, such that vk = (zk yk)
T ∈ E(−λk;H0) for each

k ∈ Λ, and {uk, vk | k ∈ Λ} is a system of eigenvectors of H0, where uk = (xk 0)T ∈ E(λk;H0).

By Theorem 2.1, the algebraic multiplicities of the eigenvalues λk,−λk are all one, so H0 does

not have root vectors.

Sufficiency. From σp(A) ∩ σp(−A∗) = ∅, it follows that

λk + λj ̸= 0, λk + µj

{
= 0, k = j,
̸= 0, k ̸= j,

µk + µj ̸= 0, k, j ∈ Λ,

where µj = −λj . Then, by Lemma 1.1, it can be readily seen that for k, j ∈ Λ,
(uk, Juj) = 0,

(uk, Jvj) =

{
(xk, yk), k = j,
(xk, yj) = 0, k ̸= j,

(vk, Jvj) = (zk, yj)− (yk, zj) = 0.

(2.3)

Noting that vk = (zk yk)
T ∈ E(−λk;H0), we have (Byk, yj) = (λj + λk)(zk, yj). So,

(zk, yj) = 0, k ̸= j. (2.4)

In the following, we prove that the symplectic orthogonal system {uk, vk | k ∈ Λ} is complete

in the symplectic space X ×X, i.e., there exists a unique constant sequence {ck, dk | k ∈ Λ},
such that for each ∆ = (f g)T ∈ X ×X,

∆ =
∑
k∈Λ

ckuk + dkvk. (2.5)

For k ∈ Λ, set 
ck =

(∆, Jvk)

(uk, Jvk)
=

−(g, zk) + (f, yk)

(xk, yk)
,

dk =
(∆, Juk)

(vk, Juk)
=

(g, xk)

(yk, xk)
.

(2.6)
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Then,

∑
k∈Λ

ckuk + dkvk =
∑
k∈Λ


−(g, zk) + (f, yk)

(xk, yk)
xk +

(g, xk)

(yk, xk)
zk

(g, xk)

(yk, xk)
yk

 . (2.7)

Since the system {yk | k ∈ Λ} of vectors is a base in X, there exists a unique constant

sequence {dk(g) | k ∈ Λ} such that

g =
∑
k∈Λ

dk(g)yk

for each g ∈ X. Taking the inner product of the above relation by xk on the right-hand side,

we clearly have dk(g) =
(g,xk)
(yk,xk)

, which shows that the second component of the right-hand side

of (2.7) is exactly the expression of g in terms of the base {yk | k ∈ Λ}, i.e.,

g =
∑
k∈Λ

(g, xk)

(yk, xk)
yk. (2.8)

For j ̸= k, by (2.3) and (2.4), it is clear that(−(g, zk)

(xk, yk)
xk +

(g, xk)

(yk, xk)
zk, yj

)
= 0, j ∈ Λ.

For j = k, by (2.3) and (2.8), we have(−(g, zk)

(xk, yk)
xk +

(g, xk)

(yk, xk)
zk, yj

)
= −(g, zj) +

(g, zk)

(yk, xk)
(yk, zj) = 0, j ∈ Λ.

Thus,
−(g, zk)

(xk, yk)
xk +

(g, xk)

yk, xk)
zk = 0, k ∈ Λ,

since {yj | j ∈ Λ} is a base. Write the first component given by the right-hand side of (2.7) as

Υ. Then

Υ =
∑
k∈Λ

(f, yk)

(xk, yk)
xk.

Note that the relation (2.3) shows that {xk | k ∈ Λ} and {yk | k ∈ Λ} are biorthogonal. So,

{xk | k ∈ Λ} is also a base in X. Thus, Υ = f . Therefore, there exists a constant sequence

{ck, dk | k ∈ Λ}, such that the expansion (2.5) is valid for each ∆ = (f g)T ∈ X ×X.

On the other hand, we assume that there is another constant sequence {ĉk, d̂k | k ∈ Λ} such

that the expansion (2.5) is valid. Then, we have∑
k∈Λ

(ck − ĉk)uk + (dk − d̂k)vk = 0.

Taking the inner product by Jvk and Juk on the right-hand side, respectively, we have ck = ĉk
and dk = d̂k (k ∈ Λ). Therefore, {uk, vk | k ∈ Λ} is complete in the symplectic space X ×X.

Necessity. Assume that the system {uk, vk | k ∈ Λ} of eigenvectors of the Hamiltonian

operator H0 is complete in the symplectic space X ×X. Then there exists a unique constant

sequence {ck, dk | k ∈ Λ}, such that the equality (2.5) holds. Taking the inner product of the
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relation (2.5) by Jvk and Juk on the right-hand side, respectively, we deduce that ck and dk
(k ∈ Λ) are determined by (2.6). Thus,

g =
∑
k∈Λ

dkyk =
∑
k∈Λ

(g, xk)

(yk, xk)
yk.

Thus, by the arbitrariness of g and the uniqueness of dk, the system {yk | k ∈ Λ} of vectors is

a base in the symplectic space X. Therefore, the proof is completed.

Remark 2.1 It follows from Theorem 2.1 that the algebraic indexes of the eigenval-

ues λk and −λk (k ∈ Λ) of the Hamiltonian operator H0 in Theorem 2.2 are all one. If

σ1
p(−A∗) ̸= σp(−A∗), i.e., there exists a −λk0 ∈ σp(−A∗) but −λk0 /∈ σ1

p(−A∗), then σp(H0) =

{λk0 , λk,−λk | k ∈ Λ \ k0}. Thus, by Lemma 1.1, the coefficient of the eigenvector uk0 asso-

ciated with λk0 in the corresponding eigenvector expansion cannot be computed by using the

symplectic orthogonality.

Theorem 2.3 Let σp(A) = σp(−A∗), and the operators A and −A∗ both possess countable

simple eigenvalues {λk | k ∈ Λ} with xk ∈ E(λk;A) and yk ∈ E(λk;−A∗). Then, σp(H0) =

{λk | k ∈ Λ}, and uk = (xk 0)
T ∈ E(λk;H0). Further, assume that for some k0 ∈ Λ, there

exists a k̃0 ∈ Λ such that (xk0 , yk̃0
) ̸= 0 and (xk̃0

, yk0) ̸= 0. Then, the following statements hold:

( i ) If λk0 ∈ σ1
p(−A∗), then the geometrical multiplicity and the algebraic index of the

eigenvalue λk0 of the Hamiltonian operator H0 are two and one, respectively.

(ii) If λk0 /∈ σ1
p(−A∗), then the geometrical multiplicity of the eigenvalue λk0 of the Hamil-

tonian operator H0 is one. Further, if H0 has the root vector associated with the pair (λk0 , uk0),

then it only has the first-order root vector, i.e., the algebraic index of the eigenvalue λk0 of the

Hamiltonian operator H0 is two.

Proof The assertion that σp(H0) = {λk | k ∈ Λ} and uk = (xk 0)
T ∈ E(λk;H0) follows

from the fact that σp(A) = σp(−A∗) and xk ∈ E(λk;A). From Axk0 = λk0xk0 , we have

(Axk0 , yk̃0
) = (λk0xk0 , yk̃0

), which shows λk0 + λk̃0
= 0 by A∗yk̃0

= −λk̃0
yk̃0

and (xk0 , yk̃0
) ̸= 0.

(i) If λk0 ∈ σ1
p(−A∗), then at least there exists a vector zk0 for yk0 ∈ E(λk0 ;−A∗) such that

vk0 = (zk0 yk0)
T ∈ E(λk0 ;H0). Note that the eigenvalues of A and −A∗ are all simple. Thus,

it is easy to check that the eigenspace associated with the eigenvalue λk0 is E(λk0 ;H0)∪ {0} =

span{uk0 , vk0}, i.e., the geometrical multiplicity of the eigenvalue λk0 of H0 is two.

Suppose that u1
k0

= (x1
k0

w1
k0
)T is the first-order root vector associated with the pair

(λk0 , Uk0), where Uk0 = auk0 + bvk0 ∈ E(λk0 ;H0), and a, b are arbitrary numbers but not

both zero, i.e., {
Ax1

k0
+Bw1

k0
= λk0x

1
k0

+ axk0 + bzk0 ,

−A∗w1
k0

= λk0w
1
k0

+ byk0 .
(2.9)

When b = 0, obviously, a ̸= 0, and by the second equality in (2.9), we see that w1
k0

∈
E(λk0

;−A∗) ∪ {0}. If w1
k0

= 0, then by the first equality in (2.9), we obtain

(Ax1
k0
, yk̃0

) = (λk0x
1
k0
, yk̃0

) + a(xk0 , yk̃0
), (2.10)

which implies that (xk0 , yk̃0
) = 0, since (Ax1

k0
, yk̃0

) = (x1
k0
, A∗yk̃0

) = (x1
k0
,−λk̃0

yk̃0
) and λk̃0

+

λk0 = 0. A contradiction occurs. If w1
k0

̸= 0, without loss of generality, we set w1
k0

= yk0 ∈
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E(λk0 ;−A∗). Taking the inner product of the first relation by yk̃0
in (2.9), we have

(Ax1
k0
, yk̃0

) + (Byk0 , yk̃0
) = (λk0x

1
k0
, yk̃0

) + a(xk0 , yk̃0
). (2.11)

According to vk0 = (zk0 yk0)
T ∈ E(λk0 ;H0), we deduce (Byk0 , yk̃0

) = 0. So (2.11) becomes

(2.10), the same contradiction occurs. Similarly, when b ̸= 0, we can obtain (yk0 , xk̃0
) = 0,

a contradiction. Thus, the operator H0 does not have the first-order root vector associated

with the pair (λk0 , Uk0). Since Uk0 is arbitrary eigenvector of λk0 , the algebraic index of the

eigenvalue λk0 of the Hamiltonian operator H0 is one.

(ii) Note that the eigenvalues of A are all simple. By Lemma 1.2, if λk0 /∈ σ1
p(−A∗), then

the geometrical multiplicity of the eigenvalue λk0 of the operator H0 is one.

IfH0 has the root vector associated with the pair (λk0 , uk0), thenN1(λk0 ;H0) N2(λk0 ;H0).

It is easy to know dimN2(λk0 ;H0) = 2 by dimN(λk0 ;H0) = 1. Assume that u1
k0

= (x1
k0

w1
k0
)T

is any first-order root vector associated with the pair (λk0 , uk0). Then w1
k0

̸= 0 from the proof of

(i). Thus w1
k0

∈ E(λk0
;−A∗), and we take w1

k0
= yk0

, i.e., u1
k0

= (x1
k0

yk0
)T. So, N2(λk0

;H0) =

span{uk0 , u
1
k0
}. Suppose that the algebraic index of the eigenvalue λk0 of the operator H0 is

not two. Then N2(λk0 ;H0)  N3(λk0 ;H0). Let u2
k0

∈ N3(λk0 ;H0) and u2
k0

/∈ N2(λk0 ;H0).

Obviously, we have 0 ̸= (H0 − λk0)u
2
k0

∈ N2(λk0 ;H0). Thus, (H0 − λk0)u
2
k0

= auk0 + bu1
k0
,

where a, b are arbitrary numbers, and b ̸= 0. Then{
Ax2

k0
+Bw2

k0
= λk0x

2
k0

+ axk0 + bx1
k0
,

−A∗w1
k0

= λk0w
1
k0

+ byk0 .
(2.12)

In a way similar to the proof of (i), we can obtain the contradiction (yk0 , xk̃0
) = 0. Therefore,

N1(λk0 ;H0)  N2(λk0 ;H0) = N3(λk0 ;H0) = N4(λk0 ;H0) = · · · , i.e., the algebraic index of

the eigenvalue λk0 of the Hamiltonian operator H0 is two.

Theorem 2.4 Let σp(A) = σp(−A∗), and the operators A and −A∗ both possess countable

simple eigenvalues {λk | k ∈ Λ} with xk ∈ E(λk;A) and yk ∈ E(λk;−A∗). Assume that for

each index k ∈ Λ, there exists a unique index k̃ ∈ Λ such that (xk, yk̃) ̸= 0. Then, the following

statements hold:

( i ) If σ1
p(−A∗) = σp(−A∗), and the series

∑
k∈Λ

(−(g, zk̃)−
(g,x

k̃
)

(yk,xk̃
) ((zk, yk̃)− (yk, zk̃))

(xk, yk̃)
xk +

(g, xk̃)

(yk, xk̃)
zk

)
is convergent, then the system of eigenvectors of the Hamiltonian operator H0 is complete in

the symplectic space X × X if and only if {yk | k ∈ Λ} is a base in the symplectic space X,

where vk = (zk yk)
T ∈ E(λk;H0).

(ii) If σ1
p(−A∗) ̸= σp(−A∗), H0 has the root vector u1

k = (z1k, yk)
T associated with the pair

(λk, uk) for k ∈ Λ2, and the series

∑
k∈Λ

(−(g, zk̃)−
(g,x

k̃
)

(yk,xk̃
) ((zk, yk̃)− (yk, zk̃))

(xk, yk̃)
xk +

(g, xk̃)

(yk, xk̃)
zk

)
is convergent, where zk = z1k for k ∈ Λ2, then the system of root vectors of the Hamiltonian

operator H0 is complete in the symplectic space X ×X if and only if {yk | k ∈ Λ} is a base in
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the symplectic space X, where Λ = Λ1 ∪Λ2, Λ1 = {k ∈ Λ | λk ∈ σ1
p(−A∗)}, Λ2 = {k ∈ Λ | λk /∈

σ1
p(−A∗)}, uk = (xk 0)T ∈ E(λk;H0), and vk = (zk yk)

T ∈ E(λk;H0) (k ∈ Λ1).

Proof Theorem 2.3 shows that σp(H0) = {λk | k ∈ Λ}, and uk = (xk 0)
T ∈ E(λk;H0).

Since there exists a unique index k̃ ∈ Λ such that (xk, yk̃) ̸= 0 for each k ∈ Λ, there exists a

unique index k̃ ∈ Λ such that λk +λk̃ = 0 for each k ∈ Λ from the proof of Theorem 2.3, which

also shows (xk̃, yk) ̸= 0. Hence, if k runs over the index set Λ, then k̃ also runs over the index

set Λ.

(i) By the assumptions and the proof of Theorem 2.3(i), the geometrical multiplicity and

the algebraic multiplicity of the eigenvalue λk0 of the Hamiltonian operator H0 are both two.

So, there exists a vector zk for yk ∈ E(λk;−A∗) such that vk = (zk yk)
T ∈ E(λk;H0). Thus,

{uk, vk | k ∈ Λ} is a system of eigenvectors of H0. Moreover, H0 does not have a system of

root vectors by Theorem 2.3(i).

Sufficiency. From λk + λk̃ = 0 (k, k̃ ∈ Λ), it follows that for k, j ∈ Λ,

λk + λj

{
= 0, j = k̃,

̸= 0, j ̸= k̃.

Then, by Lemma 1.1, it can be readily seen that

(uk, Juj) = 0,

(uk, Jvj) =

{
(xk, yk̃), j = k̃,

(xk, yj) = 0, j ̸= k̃,

(vk, Jvj) =

{
(zk, yk̃)− (yk, zk̃), j = k̃,

(zk, yj)− (yk, zj) = 0, j ̸= k̃.

(2.13)

Now, we prove that the system {uk, vk | k ∈ Λ} of eigenvectors is complete in the corre-

sponding symplectic space. For each ∆ = (f g)T ∈ X ×X, set
ck =

(∆, Jvk̃)

(uk, Jvk̃)
− dk

(vk, Jvk̃)

(uk, Jvk̃)
,

dk =
(∆, Juk̃)

(vk, Juk̃)
, k ∈ Λ.

(2.14)

Then, ∑
k∈Λ

ckuk + dkvk

=
∑
k∈Λ


−(g, zk̃) + (f, yk̃)−

(g,x
k̃
)

(yk,xk̃
)

(
(zk, yk̃)− (yk, zk̃)

)
(xk, yk̃)

xk +
(g, xk̃)

(yk, xk̃)
zk

(g, xk̃)

(yk, xk̃)
yk

 . (2.15)

Since the system {yk | k ∈ Λ} of vectors is a base in X, by (2.13), we have

g =
∑
k∈Λ

(g, xk̃)

(yk, xk̃)
yk, (2.16)
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which shows that the second component of the right-hand side of (2.15) is exactly g. In addition,

the relation (2.13) implies that {xk | k ∈ Λ} is also a base in X, so f =
∑
k∈Λ

(f,y
k̃
)

(xk,yk̃
)xk. Thus, by

assumption, the first component given in (2.15) is convergent, and is written as Υ. By (2.13)

and (2.16),

(Υ− f, yj̃) = −(g, zj̃)−
(g, xj̃)

(yj , xj̃)
((zj , yj̃)− (yj , zj̃)) +

∑
k∈Λ

(g, xk̃)

(yk, xk̃)
(zk, yj̃)

= −(g, zj̃) +
(g, xj̃)

(yj , xj̃)
(yj , zj̃) +

∑
k∈Λ
k ̸=j

(g, xk̃)

(yk, xk̃)
(zk, yj̃)

= −(g, zj̃) +
(g, xj̃)

(yj , xj̃)
(yj , zj̃) +

∑
k∈Λ
k ̸=j

(g, xk̃)

(yk, xk̃)
(yk, zj̃)

= −(g, zj̃) +
(g, xj̃)

(yj , xj̃)
(yj , zj̃) +

(
(g, zj̃)−

(g, xj̃)

(yj , xj̃)
(yj , zj̃)

)
= 0, j̃ ∈ Λ,

which deduces that f = Υ since {yj | j ∈ Λ} is a base. Therefore, there exists a constant

sequence {ck, dk | k ∈ Λ}, such that for each ∆ = (f g)T ∈ X ×X,

∆ =
∑
k∈Λ

ckuk + dkvk. (2.17)

On the other hand, the uniqueness of constant sequence {ck, dk | k ∈ Λ} can be proved in the

similar way as that of Theorem 2.2. By Definition 1.3, the proof of sufficiency is completed.

Necessity. The proof is similar to that of Theorem 2.2, and we omit it here.

(ii) For k ∈ Λ1, by Theorem 2.3(i) and its proof, the geometrical multiplicity and the

algebraic multiplicity of the eigenvalue λk of the Hamiltonian operator H0 are both two, and

the independent eigenvectors of λk are

uk = (xk 0)
T
, vk = (zk yk)

T
. (2.18)

For k ∈ Λ2, by assumptions and Theorem 2.3(ii), the geometrical multiplicity and the

algebraic multiplicity of the eigenvalue λk of the Hamiltonian operator H0 are one and two,

respectively, and the eigenvector and root vector of λk are

uk = (xk 0)
T
, u1

k = (z1k yk)
T, (2.19)

respectively.

Write vk = u1
k for k ∈ Λ2. By Lemma 1.1, we have for k, j ∈ Λ,

(uk, Juj) = 0, k, j ∈ Λ,

(uk, Jvj) =

{
(xk, yk̃), j = k̃,

(xk, yj) = 0, j ̸= k̃,

(vk, Jvj) =

{
(zk, yk̃)− (yk, zk̃), j = k̃,

(zk, yj)− (yk, zj) = 0, j ̸= k̃,
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where zk = z1k for k ∈ Λ2,

To prove the completeness of the system {uk, vk | k ∈ Λ} of root vectors of the Hamiltonian

operator H0 in the symplectic space X ×X, for each ∆ = (f g)T ∈ X ×X, set
ck =

(∆, Jvk̃)

(uk, Jvk̃)
− dk

(vk, Jvk̃)

(uk, Jvk̃)
,

dk =
(∆, Juk̃)

(vk, Juk̃)
, k ∈ Λ.

(2.20)

The rest of the proof is analogous to that of (i).

3 Applications

In this section, we present some examples illustrating results of the previous section. We

always assume that X = L2[0, 1].

Example 3.1 Consider the boundary value problem
∂4u

∂x4
− ∂2u

∂y2
= 0, 0 < x < 1, 0 < y < h,

u(0, y) = u(1, y) = 0, u′′
x(0, y) = u′′

x(1, y) = 0, 0 ≤ y ≤ h,
u(x, 0) = φ1(x), u(x, h) = φ2(x), 0 ≤ x ≤ 1.

Set p = ∂2u
∂x2 , q = 1

2 (
∂2u
∂x2 − ∂u

∂y ). Then the above equation can be written as the following upper

triangular infinite-dimensional Hamiltonian system:

∂

∂y

(
p
q

)
=

(
∂2

∂x2 −2 ∂2

∂x2

0 − ∂2

∂x2

)(
p
q

)
.

The corresponding upper triangular Hamiltonian operator is

H0 =

(
d2

dx2 −2 d2

dx2

0 − d2

dx2

)
,

where

D(A)=D(B)=D(A∗)={u ∈ X | u, u′ are absolutely continuous, u(0) = u(1) = 0, u′, u′′ ∈ X}.

It can be readily seen that

σp(A) = {−(kπ)2 | k ∈ Λ}, σp(−A∗) = {(kπ)2 | k ∈ Λ}, Λ = {1, 2, · · · }

and (xk, yk) = 1
2 , where xk = sin (kπx) and yk = sin (kπx). Obviously, σp(A) = σp(A∗),

σp(A) ∩ σp(−A∗) = ∅, and (Byk, yj) = 0 (k ̸= j). Furthermore, for each yk, there exists a

vector zk = sin (kπx) such that Azk +Byk = (kπ)2zk, i.e., (kπ)
2 ∈ σ1

p(−A∗), which shows that

σ1
p(−A∗) = σp(−A∗). Then, the assumptions of Theorem 2.2 are satisfied. Also, {yk | k ∈ Λ} is

an orthogonal base in X. Therefore, the system of eigenfunctions of the Hamiltonian operator

H0 is complete in the symplectic space X ×X.
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Example 3.2 Consider the boundary value problem
∂2u

∂x2
+

∂2u

∂y2
− 2i

∂u

∂y
− u = 0, 0 < x < 1, 0 < y < h,

u(0, y) = u(1, y), u′
x(0, y) = u′

x(1, y), 0 ≤ y ≤ h,
u(x, 0) = φ1(x), u(x, h) = φ2(x), 0 ≤ x ≤ 1.

(3.1)

The upper triangular infinite-dimensional Hamiltonian system from (3.1) is

∂

∂y

(
p
q

)
=

(
i ∂
∂x + i −2i ∂

∂x

0 −i ∂
∂x + i

)(
p
q

)
,

where p = ∂u
∂x , q = 1

2 (i
∂u
∂y + ∂u

∂x + u), and

H0 =

(
i d
dx + i −2i d

dx

0 −i d
dx + i

)

with

D(A) = D(B) = D(A∗) = {u ∈ X | u is absolutely continuous, u(0) = u(1), u′ ∈ X} . (3.2)

Direct calculations show that

σp(A) = σp(−A∗) = {i− 2kπ | k ∈ Λ}, Λ = {0,±1,±2, · · · }

and (xk, y−k) = 1 (i.e., k̃ = −k), where xk = e2kπix and yk = e−2kπix. In addition, σ1
p(−A∗) =

σp(−A∗). Therefore, by Theorem 2.4(i), the system of eigenfunctions of the Hamiltonian opera-

tor H0 is complete in the symplectic space X×X, since {yk = e−2kπix | k ∈ Λ} is an orthogonal

base in X. Note that the system of eigenfunctions of H0 is {(e2kπix 0)T, (e−2kπix e−2kπix)T |
k ∈ Λ}.

Example 3.3 Consider the mixed problem of the parabolic differential equation
∂2u

∂x2
− 2

∂2u

∂x∂y
+

∂2u

∂y2
= 0, 0 < x < 1, 0 < y < h,

u(0, y) = u(1, y), u′
x(0, y) = u′

x(1, y), 0 ≤ y ≤ h,
u(x, 0) = φ1(x), u(x, h) = φ2(x), 0 ≤ x ≤ 1.

(3.3)

Set p = ∂u
∂x , q = i(∂u∂x − ∂u

∂y ). Then, we obtain

∂

∂y

(
p
q

)
=

(
∂
∂x i ∂

∂x

0 ∂
∂x

)(
p
q

)
,

which is an infinite-dimensional Hamiltonian system derived from (3.3). The corresponding

upper triangular Hamiltonian operator is given by

H0 =

(
d
dx i d

dx

0 d
dx

)
,

where domain of A,B,A∗ is given by (3.2).
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Direct calculations show that

σp(A) = σp(−A∗) = {2kπi | k ∈ Λ}, Λ = {0,±1,±2, · · · }

and (xk, yk) = 1 (k ∈ Λ), where x0 = y0 = 1, xk = −2kπe2kπix and yk = e2kπix (k =

±1,±2, · · · ). It can be verified that σ1
p(−A∗) ̸= σp(−A∗) and Λ1 = {0}, Λ2 = {2kπi | k =

±1,±2, · · · }. Clearly, σp(H) = {λk = 2kπi | k ∈ Λ}, uk = (xk 0)T ∈ E(λk;H0) (k ∈ Λ)

and v0 = (0 1)T ∈ E(λ0;H0). Moreover, u1
k = (e2kπix e2kπix)T is the first-order root vector

associated with the pair (λk, uk) for each k ∈ Λ2. Thus, the assumptions of Theorem 2.4(ii) are

satisfied. Since {yk = e2kπix | k ∈ Λ} is an orthogonal base in X, the system of root vectors of

the Hamiltonian operator H0 is complete in the symplectic space X ×X.
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