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1 Introduction

Some nonlinear partial differential equations have explicit traveling wave solutions. Many

mathematicians found explicit traveling wave solutions to differential equations (see [2, 3, 5,

8, 9, 11–15, 17, 21, 23, 27, 28, 30, 32, 33, 35, 39, 40, 43]). We investigate several classes of

nonlinear partial differential equations in one-dimensional or n-dimensional space and establish

the explicit traveling wave solutions to these equations. We provide a systematic treatment of

these solutions.

For nonlinear dispersive wave equations (e.g., generalized Korteweg-de Vries equations, gen-

eralized n-dimensional Schrödinger equation), nonlinear dissipative dispersive wave equations

(e.g., Korteweg-de Vries-Burgers equations, n-dimensional Ginzburg-Landau equation), non-

linear convection equations (e.g., one-dimensional Burgers equation, n-dimensional Burgers

equation), nonlinear reaction diffusion equations (e.g., n-dimensional generalized Fisher’s equa-

tion, n-dimensional Belousov-Zhabotinskii system of reaction-diffusion equations) and nonlinear

hyperbolic equations (e.g., n-dimensional Klein-Gordon equation, n-dimensional Sine-Gordon

equation), we derive the explicit traveling wave solutions. Many of the ideas and results are

new. These differential equations have strong backgrounds in physics, chemistry, biology and

fluid mechanics. The basic idea to find the explicit traveling wave solutions is to reduce higher

order differential equations to lower order differential equations. The method we develop can

be applied to solving the explicit traveling wave solutions to many other differential equations.

We will not study the stability or instability of these waves.

We introduce some technical lemmas as follows.
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Lemma 1.1 Let a ̸= 0, A > 0, B > 0 and p > 0 be constants. Consider the following

initial value problem:

ϕ′(z) = aϕ(z){A−B[ϕ(z)]p}, ϕ(0) =
( A

2B

) 1
p

.

It has the explicit bounded solution

ϕ(z) =
[A
B

1

1 + exp{−aApz}

] 1
p

.

Proof The given differential equation may be written as{ 1

p[ϕ(z)]p

}′
+

aA

[ϕ(z)]p
= − ϕ′(z)

[ϕ(z)]p+1
+

aA

[ϕ(z)]p
= aB.

Multiplying this first order linear differential equation by its integrating factor exp(aApz), we

get { 1

[ϕ(z)]p
exp(aApz)

}′
=

{B
A

+
B

A
exp(aApz)

}′
.

Integrating it with respect to z, we find that

1

[ϕ(z)]p
exp(aApz) =

B

A
+
B

A
exp(aApz).

The rest of the proof of Lemma 1.1 is simple and is omitted.

Lemma 1.2 Let a ̸= 0, A > 0, B > 0 and p > 0 be constants. Consider the initial value

problem

ϕ′(z) = aϕ(z){A+B[ϕ(z)]p}, ϕ(0) =
(
− A

2B

) 1
p

,

where (−1)
1
p makes sense— it is a real number. It has the explicit bounded solution

ϕ(z) =
[
− A

B

1

1 + exp{−aApz}

] 1
p

.

Proof The proof is very simple and is omitted.

Lemma 1.3 Consider the second order nonlinear differential equation

u′′(z) = u(z){α2 − β2[u(z)]2m},

where m > 0, α > 0 and β > 0 are constants. It has the explicit bounded solution

u(z) =
[ (m+ 1)α2

β2
sech2(αmz)

] 1
2m

.

In particular, if m = 1, then the differential equation is u′′(z) = u(z){α2 − β2[u(z)]2} and the

solutions are

u(z) = ±
√
2
α

β
sech(αz).
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Proof If we multiply the differential equation u′′(z) = u(z){α2 − β2[u(z)]2m} by 2u′(z)

and integrate with respect to z, taking the integration constant to be equal to zero, we have

[u′(z)]2 = α2[u(z)]2 − 1

m+ 1
β2[u(z)]2m+2.

By solving it, we get

u′(z) = ±
√
α2 − 1

m+ 1
β2[u(z)]2m u(z).

If we multiply this equation by 2m[u(z)]2m−1, we find

{[u(z)]2m}′ = ±2m

√
α2 − 1

m+ 1
β2[u(z)]2m [u(z)]2m.

Let

ϕ(z) =

√
α2 − 1

m+ 1
β2[u(z)]2m.

Then

[u(z)]2m =
m+ 1

β2
{α2 − [ϕ(z)]2}.

Now {m+ 1

β2
[α2 − [ϕ(z)]2]

}′
= ±2mϕ(z)

{m+ 1

β2
[α2 − [ϕ(z)]2]

}
.

By simplifying it, we have

ϕ′(z) = ±m{α2 − [ϕ(z)]2}.

Solving it, we get

ϕ(z) = ±α tanh(αmz).

Hence

[u(z)]2m =
m+ 1

β2
{α2 − α2[tanh(αmz)]2} =

(m+ 1)α2

β2
[sech(αmz)]2.

Finally, we obtain the explicit bounded solution.

Lemma 1.4 Let m > 0, α > 0 and β > 0 be constants. Consider the differential equation

u′′(z) = u(z)
{
α2 + β2[u(z)]2m − m+ 2√

m+ 1
αβ[u(z)]m

}
.

It has the explicit bounded solutions

u(z) =
[√

m+ 1
α

β

1

1 + exp{±mαz}

] 1
m

.
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In particular, if m = 1, then the differential equation is

u′′(z) = u(z)
{
α2 + β2[u(z)]2 − 3√

2
αβu(z)

}
and the solutions are

u(z) =
√
2
α

β

1

1 + exp{±αz}
.

Proof Let us reduce the order of the differential equation. Let

u′(z) = ±u(z)
{
α− β√

m+ 1
[u(z)]m

}
.

Then

u′′(z) = u(z)
{
α− β√

m+ 1
[u(z)]m

}
{α−

√
m+ 1β[u(z)]m}

= u(z)
{
α2 − m+ 2√

m+ 1
αβ[u(z)]m + β2[u(z)]2m

}
.

Therefore, we obtain the explicit bounded solutions by using Lemma 1.1.

2 Nonlinear Dispersive Wave Equations

In this section, we are going to establish the explicit traveling wave solutions to n-

dimensional Boussinesq equation, nonlinear Korteweg-de Vries equations, nonlinear system

of Korteweg-de Vries equations, general two-dimensional and three-dimensional Kadomtsev-

Petviashvili equations and n-dimensional cubic nonlinear Schrödinger equation. This section is

primarily motivated by [4–6, 25–27].

Motivation equation I Consider the nonlinear cubic Schrödinger equation

i
∂u

∂t
+ α

∂2u

∂x2
+ β|u|2u = 0,

where α > 0 and β > 0 are constants. Let a, c and ω ∈ R be real constants, such that c2 > a2.

Then the nonlinear cubic Schrödinger equation has the explicit solitary wave solutions

u(x, t) = ±

√
2αc2

β
exp{i(ax+ α(c2 − a2)t+ ω)}sech(c(x− 2αat)).

Motivation equation II Consider the nonlinear Schrödinger equation

i
∂u

∂t
+ α

∂2u

∂x2
+ β|u|2u = γu,

where α > 0, β > 0 and γ > 0 are constants. The nonlinear Schrödinger equation has the

explicit standing wave solutions

u(x) = ±
√

2γ

β
sech

(√γ

α
x
)
.
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Motivated by these results, we investigate the explicit traveling wave solutions to nonlinear

dispersive wave equations.

Theorem 2.1 Consider the generalized n-dimensional Boussinesq equation

∂2u

∂t2
−△u+ β△(r2up+1 − s2u2p+1) + α△2u = 0, (2.1)

where α > 0, β > 0, p > 0 and r > 0 are positive constants, s ≥ 0 is also a constant, x =

(x1, x2, · · · , xn) is a spatial variable and t > 0 is a temporal variable. Let a = (a1, a2, · · · , an)
be any nonzero real constant vector and let c be any real constant, such that |c| < |a|. If s = 0,

then the generalized n-dimensional Boussinesq equation has the explicit traveling wave solution

u(x, t) =
[
(p+ 2)

|a|2 − c2

2|a|2r2β
sech2

(√ |a|2 − c2

|a|4α
p(a · x+ ct)

2

)] 1
p

. (2.2)

If s > 0 and

c = |a|
{
1− (p+ 1)r4β

(p+ 2)2s2

} 1
2

,

then

u(x, t) =
{ (p+1)r2|a|

(p+2)s2

1 + exp
{
± p

√
p+1

p+2
r2

s

√
β
α

(
|a| · |x|+ |a|

(
1− (p+1)r4β

(p+2)2s2

) 1
2

t
)}} 1

p

.

Proof Let u(x, t) = ϕ(a · x + ct) be a traveling wave solution, where c is a real constant

such that c2 < |a|2, and set z = a · x+ ct. Then

c2ϕ′′(z)− |a|2ϕ′′(z) + |a|2β{r2[ϕ(z)]p+1 − s2[ϕ(z)]2p+1}′′ + |a|4αϕ(4)(z) = 0.

Integrating this equation twice with respect to z and letting the integration constants be equal

to zero, we have

c2ϕ(z)− |a|2ϕ(z) + |a|2β{r2[ϕ(z)]p+1 − s2[ϕ(z)]2p+1}+ |a|4αϕ′′(z) = 0.

Therefore, we have

ϕ′′(z) =
{ |a|2 − c2

|a|4α
− r2β

|a|2α
[ϕ(z)]p +

s2β

|a|2α
[ϕ(z)]2p

}
ϕ(z).

Now by using Lemma 1.3 (for s = 0) and Lemma 1.4 (for s > 0), where c is determined by the

equation

p+ 2√
p+ 1

s

|a|

√
β

α

√
|a|2 − c2

|a|4α
=
r2β

|a|α
,

we can finish the proof.

Theorem 2.2 Consider the nonlinear system of Boussinesq equations

∂u

∂t
+
∂w

∂x
+

∂

∂x
(uw) +

∂3w

∂x3
= 0, (2.3)
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∂w

∂t
+
∂u

∂x
+ w

∂w

∂x
= 0. (2.4)

Let c be any real constant. Then the nonlinear system of Boussinesq equations has the explicit

traveling wave solution

u(x, t) =
2c2 exp{c(x+ ct)}

[1 + exp{c(x+ ct)}]2
− 1, (2.5)

w(x, t) = − 2c

1 + exp{c(x+ ct)}
. (2.6)

Proof Let z = x+ ct, v(x, t) = 1 + u(x, t). And let

v(x, t) = ϕ(x+ ct), w(x, t) = ψ(x+ ct).

Then

cϕ′(z) + [ϕ(z)ψ(z)]′ + ψ′′′(z) = 0,

cψ′(z) + ϕ′(z) + ψ(z)ψ′(z) = 0.

Integrating this system of differential equations with respect to z and letting the integration

constant be equal to zero, we have

[c+ ψ(z)]ϕ(z) + ψ′′(z) = 0,

ϕ(z) +
[
c+

1

2
ψ(z)

]
ψ(z) = 0.

By canceling out ϕ, we get

ψ′′(z) = ψ(z)[c+ ψ(z)]
[
c+

1

2
ψ(z)

]
.

Next, we reduce the order of the differential equation. Let

ψ′(z) = −ψ
[
c+

1

2
ψ(z)

]
.

Then

ψ′′(z) = −[c+ ψ(z)]ψ′(z) = ψ(z)[c+ ψ(z)]
[
c+

1

2
ψ(z)

]
.

Therefore, by using Lemma 1.2, we find

ψ(z) = − 2c

1 + exp{cz}
, ϕ(z) =

2c2 exp{cz}
[1 + exp{cz}]2

.

The proof is finished.

Theorem 2.3 Consider the nonlinear Korteweg-de Vries equation

∂u

∂t
+
∂3u

∂x3
+ up

∂u

∂x
= 0, (2.7)

where p > 0 is a constant. The nonlinear Korteweg-de Vries equation has the explicit traveling

wave solution

u(x, t) =
{1

2
(p+ 1)(p+ 2)

[
c sech

(1
2
cpz

)]2} 1
p

, (2.8)
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where z = x − c2t, c is a real constant and c2 is the wave speed. For p = 1, p = 2, p = 3, the

traveling wave solutions are given by, respectively,

ϕ1(z) = 3c2 sech2
(1
2
cz
)
, ϕ2(z) =

√
6c sech(cz), ϕ3(z) =

{
10c2 sech2

(3
2
cz
)} 1

3

.

Proof A traveling wave solution takes the form u(x, t) = ϕ(z) = ϕ(x−c2t), where z = x−c2t
for some number c > 0. Therefore,

−c2ϕ′(z) + ϕ′′′(z) + [ϕ(z)]pϕ′(z) = 0.

Integrating this equation with respect to z and letting the constant of integration be equal to

zero, we have

−c2ϕ(z) + ϕ′′(z) +
1

p+ 1
[ϕ(z)]p+1 = 0.

We get

ϕ′′(z) = ϕ(z)
{
c2 − 1

p+ 1
[ϕ(z)]p

}
.

The proof is finished by using Lemma 1.3.

Theorem 2.4 Consider the generalized nonlinear Korteweg-de Vries equation

∂u

∂t
+
∂3u

∂x3
+

∂

∂x
(r2up+1 − s2u2p+1) = 0, (2.9)

where r > 0, s > 0 and p > 0 are constants. Then the generalized nonlinear Korteweg-de Vries

equation has the explicit traveling wave solutions

u(x, t) =
{ (p+1)r2

(p+2)s2

1 + exp
{
± p

√
p+1r2

(p+2)s

(
x− (p+1)r4

(p+2)2s2 t
)}} 1

p

. (2.10)

Proof Let u(x, t) = ϕ(x− c2t) be a traveling wave solution, where c is a constant, and set

z = x− c2t. Then

−c2ϕ′(z) + ϕ′′′(z) + {r2[ϕ(z)]p+1 − s2[ϕ(z)]2p+1}′ = 0.

Integrating this equation with respect to z and letting the integration constant be equal to zero,

we have

−c2ϕ(z) + ϕ′′(z) + r2[ϕ(z)]p+1 − s2[ϕ(z)]2p+1 = 0.

In other words, we get

ϕ′′(z) = ϕ(z){c2 − r2[ϕ(z)]p + s2[ϕ(z)]2p}.

Let

c =

√
p+ 1 r2

(p+ 2)s
.
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The proof is finished by using Lemma 1.4.

Theorem 2.5 Consider the Korteweg-de Vries equation with strong nonlinear functions

∂u

∂t
+ 3u2

∂u

∂x
+ 3

(∂u
∂x

)2

+ 3u
∂2u

∂x2
+
∂3u

∂x3
= 0. (2.11)

Let c be any real constant. Then the Korteweg-de Vries equation with strong nonlinear functions

has the explicit traveling wave solution

u(x, t) =
c

1 + exp{−cz}
, z = x− c2t. (2.12)

Proof Let u(x, t) = ϕ(x− c2t) be a traveling wave solution, where c is a real constant, and

set z = x− c2t . Then

−c2ϕ′(z) + 3[ϕ(z)]2ϕ′(z) + 3{ϕ′(z)}2 + 3ϕ(z)ϕ′′(z) + ϕ′′′(z) = 0.

Integrating this equation with respect to z and letting the integration constant be equal to zero,

we have

−c2ϕ(z) + [ϕ(z)]3 + 3ϕ(z)ϕ′(z) + ϕ′′(z) = 0.

Let us reduce the order of the differential equation. Let D ̸= 0 be a constant and

ϕ′(z) = Dϕ(z)[c− ϕ(z)].

Then

ϕ′′(z) = D2ϕ(z)[c− ϕ(z)][c− 2ϕ(z)].

Plugging the derivatives back into the differential equation, we find

−c2ϕ(z) + [ϕ(z)]3 + 3D[ϕ(z)]2[c− ϕ(z)] +D2ϕ[c− ϕ(z)][c− 2ϕ(z)] = 0.

By canceling out ϕ, we find

−c2 + [ϕ(z)]2 + 3Dϕ[c− ϕ(z)] +D2[c− ϕ(z)][c− 2ϕ(z)] = 0.

By comparing the coefficients, we have

c2 + c2D2 = 0, 3cD − 3cD2 = 0, 1− 3D + 2D2 = 0.

It is easy to see that D = 1. Therefore, by using Lemma 1.1, Theorem 2.5 is proved.

Theorem 2.6 Consider the Korteweg-de Vries equation with nonlinear dispersion

∂u

∂t
+

∂

∂x
(u2) +

∂3

∂x3
(u2) = 0. (2.13)

Let c be any real constant. Then the Korteweg-de Vries equation with nonlinear dispersion has

the explicit traveling wave solutions

u(x, t) = −2

3
c± 2

3
c sin

(1
2
(x+ ct)

)
. (2.14)
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Proof Let u(x, t) = ϕ(x+ ct) be a traveling wave solution, where c is a real constant, and

set z = x+ ct. Then

cϕ′ + {[ϕ(z)]2}′ + {[ϕ(z)]2}′′′ = 0.

Integrating this equation with respect to z and letting the integration constant be equal to zero,

we have

cϕ(z) + [ϕ(z)]2 + {[ϕ(z)]2}′′ = 0.

Multiplying this equation by 2{[ϕ(z)]2}′, integrating it with respect to z and letting the inte-

gration constant be equal to zero, we have

4

3
c[ϕ(z)]3 + [ϕ(z)]4 + ({[ϕ(z)]2}′)2 = 0.

Thus

{[ϕ(z)]2}′ = ±
√
−4

3
c[ϕ(z)]3 − [ϕ(z)]4.

Equivalently,

ϕ′ = ±1

2

√
−4

3
cϕ(z)− [ϕ(z)]2.

Thus (
ϕ(z) +

2

3
c
)′

= ±1

2

√[2
3
c
]2

−
[
ϕ(z) +

2

3
c
]2
.

Therefore, we have obtained the explicit traveling wave solution.

Theorem 2.7 Consider the nonlinear system of Korteweg-de Vries equations

∂u

∂t
+
∂3u

∂x3
+ 3

∂

∂x
(u2) = 6β2 ∂

∂x
(v2), (2.15)

∂v

∂t
+
∂3v

∂x3
+ 3u

∂v

∂x
= 0, (2.16)

where β > 0 is a constant. Let c > 0 be any real constant. Then the nonlinear system of

Korteweg-de Vries equations has the solitary traveling wave solutions

u(x, t) = c2
{
sech

( c
2
(x− c2t)

)}2

, (2.17)

v(x, t) =
c2

2β

{
sech

( c
2
(x− c2t)

)}2

. (2.18)

Proof Let u(x, t) = ϕ(x − c2t) and v(x, t) = ψ(x − c2t) be traveling wave solutions, and

set z = x− c2t. Then

−c2ϕ′(z) + ϕ′′′(z) + 3{[ϕ(z)]2}′ = 6β2{[ψ(z)]2}′,
−c2ψ′(z) + ψ′′′(z) + 3ϕ(z)ψ′(z) = 0.
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Integrating this system of differential equations with respect to z, letting the integration con-

stant be equal to zero, and assuming that ϕ(z) = dψ(z) with a constant d, we have

−c2ϕ(z) + ϕ′′(z) + 3[ϕ(z)]2 = 6β2[ψ(z)]2,

−c2ψ(z) + ψ′′(z) +
3d

2
[ψ(z)]2 = 0.

By comparing these two equations, we may let 3
2 = 3 − 6β2

d2 , i.e. d = 2β. The differential

equation reduces to

−c2ϕ(z) + ϕ′′(z) +
3

2
[ϕ(z)]2 = 0,

i.e.,

ϕ′′(z) = ϕ(z)
[
c2 − 3

2
ϕ(z)

]
.

The proof is finished by using Lemma 1.3.

Theorem 2.8 Consider the generalized two-dimensional nonlinear Korteweg-de Vries e-

quation

∂u

∂t
+

∂

∂x
(r2up+1 − s2u2p+1) + β

∂3u

∂x3
+ α

∂3u

∂x∂y2
= 0, (2.19)

where α ̸= 0 and β ̸= 0 are real constants, p > 0 and r > 0 are positive constants, s ≥ 0 is also

a constant. Let z = ax+ by + ct, where a, b and c are real constants, such that

1

a2β + b2α
> 0,

c

a3β + ab2α
< 0.

If s = 0, then the generalized two-dimensional nonlinear Korteweg-de Vries equation has the

explicit traveling wave solution

u(x, y, t) =
{
− (p+ 2)c

2ar2
sech2

(p
2

√
− c

a3β + ab2α
(ax+ by + ct)

)} 1
p

. (2.20)

If s > 0 and

c = − p+ 1

(p+ 2)2
ar4

s2
,

then

u(x, t) =
{ (p+1) r2

(p+2)s2

1 + exp
{
±
√

1
a2β+b2α

p
√
p+1 r2

(p+2)s

[
ax+ by − p+1

(p+2)2
ar4

s2 t
]}} 1

p

.

Proof Let u(x, y, t) = ϕ(ax+ by + ct) be a traveling wave solution. Then

cϕ′(z) + a{r2[ϕ(z)]p+1 − s2[ϕ(z)]2p+1}′ + a3βϕ′′′(z) + ab2αϕ′′′(z) = 0.

Integrating this equation with respect to z and letting the integration constant be equal to zero,

we have

cϕ(z) + a{r2[ϕ(z)]p+1 − s2[ϕ(z)]2p+1}+ a3βϕ′′(z) + ab2αϕ′′(z) = 0.
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Now we have

ϕ′′(z) =
{
− c

a3β + ab2α
− ar2

a3β + ab2α
[ϕ(z)]p +

as2

a3β + ab2α
[ϕ(z)]2p

}
ϕ(z).

Therefore, by using Lemma 1.3 (for s = 0) and Lemma 1.4 (for s > 0), we find the traveling

wave solutions, where c is determined by the equation

p+ 2√
p+ 1

√
− c

a3β + ab2α

√
as2

a3β + ab2α
=

ar2

a3β + ab2α
.

The proof is finished.

Theorem 2.9 Consider the generalized two-dimensional Kadomtsev-Petviashvili equation

∂

∂x

[∂u
∂t

+ r2(p+ 1)up
∂u

∂x
− s2(2p+ 1)u2p

∂u

∂x
+
∂3u

∂x3

]
+ ε2

∂2u

∂y2
= 0, (2.21)

where p > 0, r > 0 and ε > 0 are positive constants, s ≥ 0 is also a constant. Let ξ = ax+by+ct,

where a, b and c are constants, such that

ac+ b2ε2 < 0.

If s = 0, the generalized two-dimensional Kadomtsev-Petviashvili equation has the explicit trav-

eling wave solution

ϕ(z) =
{
− (ac+ b2ε2)(p+ 2)

2a2r2
sech2

(p
2

√
−ac+ b2ε2

a4
(ax+ by + ct)

)} 1
p

. (2.22)

If s > 0 and

c = −1

a

[
b2ε2 +

p+ 1

(p+ 2)2
a2r4

s2

]
,

then

u(x, t) =
{ (p+1)r2

(p+2)s2

1 + exp
{
± p

√
p+1

p+2
r2

|a|s

[
ax+ by − 1

a

(
b2ε2 + p+1

(p+2)2
a2r4

s2

)
t
]}} 1

p

.

Proof Let

u(x, y, t) = ϕ(ax+ by + ct)

be a traveling wave solution. Then

a{cϕ′(z) + ar2(p+ 1)[ϕ(z)]pϕ′(z)− as2(2p+ 1)[ϕ(z)]2pϕ′(z) + a3ϕ′′′(z)}′ + b2ε2ϕ′′(z) = 0.

Integrating this equation twice with respect to ξ and letting the integration constants be equal

to zero, we have

a{cϕ(z) + ar2[ϕ(z)]p+1 − as2[ϕ(z)]2p+1 + a3ϕ′′(z)}+ b2ε2ϕ(z) = 0.
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Therefore, we have

a4ϕ′′(z) + (ac+ b2ε2)ϕ(z) + a2r2[ϕ(z)]p+1 − a2s2[ϕ(z)]2p+1 = 0.

Thus

ϕ′′(z) = ϕ(z)
{
− ac+ b2ε2

a4
− r2

a2
[ϕ(z)]p +

s2

a2
[ϕ(z)]2p

}
.

Therefore, by using Lemma 1.3 (for s = 0) and Lemma 1.4 (for s > 0), we find the traveling

wave solutions, where c is determined by the equation

p+ 2√
p+ 1

s

|a|

√
−ac+ b2ε2

a4
=
r2

a2
.

The proof is finished.

Corollary 2.1 (I) Consider the two-dimensional Kadomtsev-Petviashvili equation

∂

∂x

(∂u
∂t

+ 6u
∂u

∂x
+
∂3u

∂x3

)
+ ε2

∂2u

∂y2
= 0, (2.23)

where ε > 0 is a positive constant. The two-dimensional Kadomtsev-Petviashvili equation has

a traveling wave solution

u(x, y, t) = −ac+ b2ε2

2a2
sech2

(1
2

√
−ac+ b2ε2

a4
(ax+ by + ct)

)
. (2.24)

(II) Consider the two-dimensional Kadomtsev-Petviashvili equation

∂

∂x

(∂u
∂t

+ 12u2
∂u

∂x
+
∂3u

∂x3

)
+ ε2

∂2u

∂y2
= 0. (2.25)

The two-dimensional Kadomtsev-Petviashvili equation has the explicit traveling wave solution

u(x, y, t) =
{
− ac+ b2ε2

2a2
sech2

(√
−ac+ b2ε2

a4
(ax+ by + ct)

)} 1
2

. (2.26)

Proof By using Theorem 2.9, we may finish the proof immediately.

Theorem 2.10 Consider the generalized three-dimensional Kadomtsev-Petviashvili equa-

tion

∂

∂x

[∂u
∂t

+
∂

∂x
(r2up+1 − s2u2p+1) + α2 ∂

3u

∂x3

]
+ β2 ∂

2u

∂y2
+ γ2

∂2u

∂z2
= 0, (2.27)

where α > 0, β > 0, γ > 0, p > 0 and r > 0 are positive constants, s ≥ 0 is also a constant.

Let

ξ = ax+ by + cz + dt,

where a, b, c and d are real constants, such that

ad+ b2β2 + c2γ2

a4α2
< 0.
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If s = 0, then the generalized three-dimensional Kadomtsev-Petviashvili equation has the explicit

traveling wave solution

u(x, y, z, t) =
{
− p+ 2

2

ad+ b2β2 + c2γ2

a2r2

· sech2
(√

−ad+ b2β2 + c2γ2

a4α2

p(ax+ by + cz + dt)

2

)} 1
p

. (2.28)

If s > 0 and

d = −1

a

[
b2β2 + c2γ2 +

p+ 1

(p+ 2)2
a2r4

s2

]
,

then

u(x, y, z, t)

=
{ (p+1)r2

(p+2)s2

1 + exp
{
± p

√
p+1r2

|a|(p+2)sα

[
ax+ by + cz − 1

a

(
b2β2 + c2γ2 + p+1

(p+2)2
a2r4

s2

)
t
]}} 1

p

. (2.29)

Proof Let

u(x, y, z, t) = ϕ(ax+ by + cz + dt)

be a traveling wave solution. Then

a{dϕ′(ξ) + a{r2[ϕ(ξ)]p+1 − s2[ϕ(ξ)]2p+1}′ + a3α2ϕ′′′(ξ)}′ + b2β2ϕ′′(ξ) + c2γ2ϕ′′(ξ) = 0.

Integrating this equation with respect to ξ and letting the integration constants be equal to

zero, we have

a{dϕ(ξ) + ar2[ϕ(ξ)]p+1 − as2[ϕ(ξ)]2p+1 + a3α2ϕ′′(ξ)}+ b2β2ϕ(ξ) + c2γ2ϕ(ξ) = 0.

Hence

a4α2ϕ′′(ξ) = −[ad+ b2β2 + c2γ2]ϕ(ξ)− a2r2[ϕ(ξ)]p+1 + a2s2[ϕ(ξ)]2p+1.

Therefore, we have

ϕ′′(ξ) =
{
− ad+ b2β2 + c2γ2

a4α2
− r2

a2α2
[ϕ(ξ)]p +

s2

a2α2
[ϕ(ξ)]2p

}
ϕ(ξ).

Finally, we obtain the explicit traveling wave solution by using Lemma 1.3 (for s = 0) and

Lemma 1.4 (for s > 0), where d is determined by the equation

p+ 2√
p+ 1

s

|a|α

√
−ad+ b2β2 + c2γ2

a4α2
=

r2

a2α2
.

The proof is finished.

Theorem 2.11 Consider the n-dimensional nonlinear Schrödinger equation

i
∂u

∂t
+ α△u+ β|u|2u+ γ|u|4u = 0,
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where α > 0 and β > 0 are positive constants, γ ≤ 0 is also a constant. Let A and B be real

parameters and let a = (a1, a2, · · · , an) be a nonzero real constant vector. Then the nonlinear

Schrödinger equation has the explicit solitary wave solutions

u(x, t) = ±
√

2α

β
|a|B exp{iA(a · x− 2A|a|2αt) + i|a|2α(A2 +B2)t}

· sech(B(a · x− 2A|a|2αt)), if γ = 0, (2.30)

u(x, t) = ± exp{iA(a · x− 2A|a|2αt) + i|a|2α(A2 +B2)t}

·
{4|a|2αB2

β

1

1 + exp{±2|B|(a · x− 2A|a|2αt)}

} 1
2

, if γ = − 3β3

16|a|2αB2
. (2.31)

Proof Let a = (a1, a2, · · · , an) be any nonzero real constant vector. Let

u(x, t) = exp{iω(a · x+ ct) + ibt}ϕ(a · x+ ct)

be a solitary wave solution of the nonlinear Schrödinger equation, and set z = a · x+ ct. Then

∂u

∂t
= i[cω′(z) + b] exp{iω(z) + ibt}ϕ(z) + c exp{iω(z) + ibt}ϕ′(z),

∂u

∂xk
= iakω

′(z) exp{iω(z) + ibt}ϕ(z) + ak exp{iω(z) + ibt}ϕ′(z),

∂2u

∂x2k
= ak

2 exp{iω(z) + ibt} · {iω′′(z)ϕ(z)− [ω′(z)]2ϕ(z) + 2iω′(z)ϕ′(z) + ϕ′′(z)},

△u = |a|2 exp{iω(z) + ibt} · {iω′′(z)ϕ(z)− [ω′(z)]2ϕ(z) + 2iω′(z)ϕ′(z) + ϕ′′(z)}.

Therefore, we get

i
∂u

∂t
+ α△u+ β|u|2u+ γ|u|4u

= exp{iω(z) + ibt} · {−[cω′(z) + b]ϕ(z) + icϕ′(z) + |a|2α[iω′′(z)ϕ(z)

− (ω′(z))2ϕ(z) + 2iω′(z)ϕ′(z) + ϕ′′(z)] + β[ϕ(z)]3 + γ[ϕ(z)]5}
= exp{iω(z) + ibt} · {−[cω′(z) + b]ϕ(z)− |a|2α(ω′(z))2ϕ(z) + |a|2αϕ′′(z)
+ β[ϕ(z)]3 + γ[ϕ(z)]5 + i[cϕ′(z) + |a|2αω′′(z)ϕ(z) + 2|a|2αω′(z)ϕ′(z)]}

= 0.

The real part and the imaginary part should be equal to zero, that is,

− [cω′(z) + b]ϕ(z)− |a|2α[ω′(z)]2ϕ(z) + |a|2αϕ′′(z) + β[ϕ(z)]3 + γ[ϕ(z)]5 = 0,

cϕ′(z) + |a|2αω′′(z)ϕ(z) + 2|a|2αω′(z)ϕ′(z) = 0.

Let ω(z) = Az for some real parameter A. Then

ω′(z) = A, ω′′(z) = 0.

It is easy to see that

c+ 2A|a|2α = 0.
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Therefore, we get

ϕ′′(z) = ϕ(z)
{
A2 +

Ac+ b

|a|2α
− β

|a|2α
[ϕ(z)]2 − γ

|a|2α
[ϕ(z)]4

}
= ϕ(z)

{( b

|a|2α
−A2

)
− β

|a|2α
[ϕ(z)]2 − γ

|a|2α
[ϕ(z)]4

}
.

Let

b = |a|2α(A2 +B2)

for two real parameters A and B. Then

ϕ′′(z) = ϕ(z)
{
B2 − β

|a|2α
[ϕ(z)]2 − γ

|a|2α
[ϕ(z)]4

}
.

Finally, by Lemma 1.3 and Lemma 1.4, we obtain the explicit traveling wave solutions

ϕ(z) = ±
√

2α

β
|a|B sech(Bz), if γ = 0,

ϕ(z) = ±
{4|a|2αB2

β

1

1 + exp{±2|B|z}

} 1
2

, if γ = − 3β2

16|a|2αB2
.

The proof is finished.

Theorem 2.12 Consider the n-dimensional Landau-Lifschitz system

∂Z

∂t
= Z×△Z, in Rn × R+,

where Z = (Z1, Z2, Z3) and |Z(x, t)| = 1 for all (x, t) ∈ Rn × R+. It has the explicit traveling

wave solutions

Z(x, t) = Z1 cosα+ {Z2 cos(a · x− (|a|2 cosα)t) + Z3 sin(a · x− (|a|2 cosα)t)} sinα,

where Z1,Z2,Z3 ∈ R3 are real constant vectors, such that Z1 × Z2 = Z3, Z3 × Z1 = Z2 and

|Z1| = |Z2| = |Z3| = 1, α and c are real constants.

Proof The proof is simple and is omitted.

3 Nonlinear Dissipative Dispersive Wave Equations

In this section, we are going to establish the explicit traveling wave solutions of general

Korteweg-de Vries-Burgers equation and the n-dimensional Ginzburg-Landau equation. This

section is primarily motivated by [2, 3, 7–9, 11–14, 16, 17, 19, 21, 23, 28, 30, 32, 33, 41–43, 45].

Theorem 3.1 Consider the general Korteweg-de Vries-Burgers equation

∂u

∂t
+
∂3u

∂x3
+

∂

∂x
f(u) = α

∂2u

∂x2
, (3.1)

where f(u) = Au2 − B2u3 is a nonlinear smooth function of u, α > 0, A and B ≥ 0 are real

constants, |A|+ |B| > 0. Then the general Korteweg-de Vries-Burgers equation has the explicit

traveling wave solution

u(x, t) = − 3α2

50A

{
1 + tanh

( α
10

(
x+

6α2

25
t
))}2

, (3.2)
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if f(u) = Au2 for any nonzero real constant A ̸= 0;

u(x, t) =
αB +

√
2A

3
√
2B2

{
1 + tanh

(αB +
√
2A

6B

(
x+

2α2B2 − 2A2 +
√
2ABα

9B2
t
))}

, (3.3)

if f(u) = Au2 −B2u3, where B > 0 and A > −αB√
2
are constants;

u(x, t) =

√
2A− αB

3
√
2B2

{
1 + tanh

(αB −
√
2A

6B

(
x+

2α2B2 − 2A2 −
√
2ABα

9B2
t
))}

, (3.4)

if f(u) = Au2 −B2u3, where B > 0 and A > αB√
2
are constants.

Proof Let u(x, t) = ϕ(x + ct) be a traveling wave solution to the general Korteweg-de

Vries-Burgers equation, where c is a real constant to be determined. Set z = x+ ct. Then

cϕ′(z) + ϕ′′′(z) + [f(ϕ(z))]′ = αϕ′′(z).

Integrating this equation with respect to z and letting the integration constant be equal to zero,

we get

cϕ(z) + ϕ′′(z) + f(ϕ(z)) = αϕ′(z).

First of all, let us consider the case f(u) = −a2u2 for some constant a > 0. Let ϕ(z) = [ψ(z)]2.

Then

c[ψ(z)]2 + 2ψ(z)ψ′′(z) + 2[ψ′(z)]2 − a2[ψ(z)]4 = 2αψ(z)ψ′(z).

Let us reduce the order of the differential equation. Suppose that

ψ′(z) = ψ(z)[p+ qψ(z)]

for two real constants p and q. Then

ψ′′(z) = ψ(z)[p+ qψ(z)][p+ 2qψ(z)].

Substituting the derivatives back into the differential equation

c[ψ(z)]2 + 2ψ(z)ψ′′(z) + 2[ψ′(z)]2 − a2[ψ(z)]4 = 2αψ(z)ψ′(z),

we get

c[ψ(z)]2 + 2[ψ(z)]2[p+ qψ(z)][p+ 2qψ(z)] + 2[ψ(z)]2[p+ qψ(z)]2 − a2[ψ(z)]4

= 2α[ψ(z)]2[p+ qψ(z)].

By canceling out [ψ(z)]2, we find

c+ 2[p+ qψ(z)][p+ 2qψ(z)] + 2[p+ qψ(z)]2 − a2[ψ(z)]2 = 2α[p+ qψ(z)].

We compare the coefficients and find out

c+ 4p2 = 2αp, 6q2 = a2, 10pq = 2αq.
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Solving the system, we obtain

c =
6α2

25
, p =

α

5
, q = −

√
1

6
a.

Therefore, we obtain the solution

ψ(z) =

√
6α

5a

1

1 + exp
{
− α

5

(
x+ 6α2

25 t
)}

=

√
6α

10a

{
1 + tanh

( α
10

(
x+

6α2

25
t
))}

.

Finally, we have the first explicit traveling wave solution

ϕ(z) = [ψ(z)]2 =
3α2

50a2

{
1 + tanh

( α
10

(
x+

6α2

25
t
))}2

.

For the differential equation

∂u

∂t
+
∂3u

∂x3
+ a2

∂

∂x
(u2) = α

∂2u

∂x2
,

letting u(x, t) = −v(x, t), we find that v solves the differential equation

∂v

∂t
+
∂3v

∂x3
− a2

∂

∂x
(v2) = α

∂2v

∂x2
.

Thus

u(x, t) = − 3α2

50a2

{
1 + tanh

( α
10

(
x+

6α2

25
t
))}2

is an explicit traveling wave solution.

Next, let us consider the cubic case f(u) = Au2−B2u3 for some real constants A and B > 0.

Again, let us reduce the order of the differential equation. Let

ϕ′(z) = ϕ(z)[p+ qϕ(z)]

for two constants p and q. Then

ϕ′′(z) = ϕ(z)[p+ qϕ(z)][p+ 2qϕ(z)].

Substituting the derivatives back into the differential equation

cϕ(z) + ϕ′′(z) +A[ϕ(z)]2 −B2[ϕ(z)]3 = αϕ′(z),

we have

cϕ(z) + ϕ(z)[p+ qϕ(z)][p+ 2qϕ(z)] +A[ϕ(z)]2 −B2[ϕ(z)]3 = αϕ(z)[p+ qϕ(z)].

Let us cancel out ϕ(z). We find

c+ [p+ qϕ(z)][p+ 2qϕ(z)] +Aϕ(z)−B2[ϕ(z)]2 = α[p+ qϕ(z)].
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By comparing the coefficients, we get

c+ p2 = αp, A+ 3pq = αq, 2q2 = B2.

Solving the system, we get two sets of solutions

c =
2α2B2 − 2A2 ∓

√
2ABα

9B2
, p =

αB ∓
√
2A

3B
, q = ±

√
1

2
b.

Now we obtain the second explicit traveling wave solution

ϕ(z) =
√
2
αB +

√
2A

3B2

1

1 + exp
{
− αB+

√
2A

3B

(
x+ 2α2B2−2A2+

√
2ABα

9B2 t
)}

=
αB +

√
2A

3
√
2B2

{
1 + tanh

(αB +
√
2A

6B

(
x+

2α2B2 − 2A2 +
√
2ABα

9B2
t
))}

,

if we choose

c =
2α2B2 − 2A2 +

√
2ABα

9B2
, p =

αB +
√
2A

3B
, q = −

√
1

2
B,

and let

A > −αB√
2
.

We also get the third explicit traveling wave solution

ϕ(z) =
√
2

√
2A− αB

3B2

1

1 + exp
{
− αB−

√
2A

3B

(
x+ 2α2B2−2A2−

√
2ABα

9B2 t
)}

=

√
2A− αB

3
√
2B2

{
1 + tanh

(αB −
√
2A

6B

(
x+

2α2B2 − 2A2 −
√
2ABα

9B2
t
))}

,

if we choose

c =
2α2B2 − 2A2 −

√
2ABα

9B2
, p =

αB −
√
2A

3B
, q =

√
1

2
B,

and let

A >
αB√
2
.

By coupling the two cases B = 0 and B > 0 together, we finish the proof.

Corollary 3.1 (I) Consider the following nonlinear Korteweg-de Vries-Burgers equation

∂u

∂t
+
∂3u

∂x3
+

∂

∂x
(u2) = α

∂2u

∂x2
, (3.5)

where α > 0 is a positive constant. Then the nonlinear Korteweg-de Vries-Burgers equation has

the explicit traveling wave solution

u(x, t) = −3α2

50

{
1 + tanh

( α
10

(
x+

6α2

25
t
))}2

. (3.6)
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(II) Consider the modified Korteweg-de Vries-Burgers equation

∂u

∂t
+
∂3u

∂x3
− ∂

∂x
(u3) = α

∂2u

∂x2
, (3.7)

where α > 0 is a positive constant. Then the modified Korteweg-de Vries-Burgers equation has

the explicit traveling wave solution

u(x, t) =
α

3
√
2

{
1 + tanh

(α
6

(
x+

2α2

9
t
))}

. (3.8)

(III) Consider the general Korteweg-de Vries-Burgers equation

∂u

∂t
− ∂3u

∂x3
+ β2 ∂

∂x
(u3) = α

∂2u

∂x2
, (3.9)

where α > 0 and β > 0 are positive constants. Then the general Korteweg-de Vries-Burgers

equation has the explicit traveling wave solution

u(x, t) =
α

3
√
2β

{
1 + tanh

(α
6

(
− x+

2α2

9
t
))}

. (3.10)

Proof (I) and (II) are straightforward to prove. In (III), letting A = 0, b = β, y = −x and

v(y, t) = u(x, t), we find that v satisfies the following differential equation:

∂v

∂t
+
∂3v

∂y3
− β2 ∂

∂y
(v3) = α

∂2v

∂y2
.

Therefore,

v(y, t) =
α

3
√
2β

{
1 + tanh

(α
6

(
y +

2α2

9
t
))}

.

The rest of the proof follows right away.

Theorem 3.2 Consider the generalized n-dimensional Ginzburg-Landau equation

∂u

∂t
− (1 + αi)△u+ (1 + βi)|u|2u+ (γ + iδ)|u|4u− εu = 0, (3.11)

where α ̸= 0, β ̸= 0, γ ≥ 0, δ ≥ 0 and ε > 0 are real constants. Let a = (a1, a2, · · · , an) be

any nonzero real constant vector. Suppose that α = β. If γ = δ = 0, then the n-dimensional

Ginzburg-Landau equation has four explicit traveling wave solutions

u1±(x, t) =

√
8ε

8 + 9α2
exp

{
± i

3α
√
ε

|a|
√
8 + 9α2

[
a · x∓ 6|a|

√
αε√

8 + 9α2

(
α+

1

α

)
t
]
+ iαε

10 + 9α2

8 + 9α2
t
}

· 1

1 + exp
{
± 2

√
ε

|a|
√
8+9α2

[
a · x∓ 6|a|

√
αε√

8+9α2

(
α+ 1

α

)
t
]}

and

u2±(x, t) = −
√

8ε

8 + 9α2
exp

{
± i

3α
√
ε

|a|
√
8 + 9α2

[
a · x∓ 6|a|

√
αε√

8 + 9α2

(
α+

1

α

)
t
]
+ iαε

10 + 9α2

8 + 9α2
t
}
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· 1

1 + exp
{
± 2

√
ε

|a|
√
8+9α2

[
a · x∓ 6|a|

√
αε√

8+9α2

(
α+ 1

α

)
t
]} .

Suppose that γ = αδ and 3α2 < 4γε. Then the n-dimensional Ginzburg-Landau equation has

four explicit traveling wave solutions

u1±(x, t) = ± exp[iA1(a · x+ c1t) + ib1t]
(−3α+ 2A1

√
3|a|2γ

8αγ

) 1
2

·
{
1 + tanh

[(1
4

√
3

|a|2γ
− A1

2α

)
(a · x+ c1t)

]} 1
2

,

u2±(x, t) = ± exp[iA2(a · x+ c2t) + ib2t]
(−3α− 2A2

√
3|a|2γ

8αγ

) 1
2

·
{
1 + tanh

[(
− 1

4

√
3

|a|2γ
− A2

2α

)
(a · x+ c2t)

]} 1
2

,

where

A1 =

√
3α2 +

√
3α2 + α2(3 + 4α2)(3 + 16γε)

2(3 + 4α2)
√
|a|2γ

> 0,

b1 = 2A1
2|a|2

(
α+

1

α

)
− αε, c1 = −2A1|a|2

(
α+

1

α

)
< 0,

A2 =
−
√
3α2 −

√
3α2 + α2(3 + 4α2)(3 + 16γε)

2(3 + 4α2)
√
|a|2γ

< 0,

b2 = 2A2
2|a|2

(
α+

1

α

)
− αε, c2 = −2A2|a|2

(
α+

1

α

)
> 0.

Proof Let

u(x, t) = exp{iω(a · x+ ct) + ibt}ϕ(a · x+ ct)

be a traveling wave solution of the n-dimensional Ginzburg-Landau equation, where a =

(a1, a2, · · · , an) is a nonzero real constant vector, b and c are real constants, ϕ and ω are

real functions of z. Let z = a · x+ ct. It is easy to find the following partial derivatives of u:

∂u

∂t
= [icω′(z) + ib] exp{iω(z) + ibt}ϕ(z) + c exp{iω(z) + ibt}ϕ′(z),

∂u

∂xk
= iakω

′(z) exp{iω(z) + ibt}ϕ(z) + ak exp{iω(z) + ibt}ϕ′(z),

∂2u

∂x2k
= iak

2ω′′(z) exp{iω(z) + ibt}ϕ(z)− ak
2[ω′(z)]2 exp{iω(z) + ibt}ϕ(z)

+ 2iak
2ω′(z) exp{iω(z) + ibt}ϕ′(z) + ak

2 exp{iω(z) + ibt}ϕ′′(z),
△u = i|a|2ω′′(z) exp{iω(z) + ibt}ϕ(z)− |a|2[ω′(z)]2 exp{iω(z) + ibt}ϕ(z)

+ 2i|a|2ω′(z) exp{iω(z) + ibt}ϕ′(z) + |a|2 exp{iω(z) + ibt}ϕ′′(z).

Now we find that

∂u

∂t
− (1 + αi)△u+ (1 + βi)|u|2u+ (γ + iδ)|u|4u− εu
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= exp{iω(z) + ibt} · {[icω′(z) + ib]ϕ(z) + cϕ′(z)

− (1 + αi)[i|a|2ω′′(z)ϕ(z)− |a|2[ω′(z)]2ϕ(z)

+ 2i|a|2ω′(z)ϕ′(z) + |a|2ϕ′′(z)] + (1 + βi)[ϕ(z)]3 + (γ + iδ)[ϕ(z)]5 − εϕ(z)}
= {cϕ′(z) + |a|2[ω′(z)]2ϕ(z)− |a|2ϕ′′(z) + |a|2αω′′(z)ϕ(z)

+ 2|a|2αω′(z)ϕ′(z) + [ϕ(z)]3 + γ[ϕ(z)]5 − εϕ(z)} exp{iω(z) + ibt}
+ i{[cω′(z) + b]ϕ(z)− |a|2ω′′(z)ϕ(z)− 2|a|2ω′(z)ϕ′(z)

+ |a|2α[ω′(z)]2ϕ(z)− |a|2αϕ′′(z) + β[ϕ(z)]3 + δ[ϕ(z)]5} exp{iω(z) + ibt} = 0.

Both the real part and the imaginary part are equal to zero, i.e.,

cϕ′(z) + |a|2[ω′(z)]2ϕ(z)− |a|2ϕ′′(z) + |a|2αω′′(z)ϕ(z)

+ 2|a|2αω′(z)ϕ′(z) + [ϕ(z)]3 + γ[ϕ(z)]5 − εϕ(z) = 0

and

[cω′(z) + b]ϕ(z)− |a|2ω′′(z)ϕ(z)− 2|a|2ω′(z)ϕ′(z)

+ |a|2α[ω′(z)]2ϕ(z)− |a|2αϕ′′(z) + β[ϕ(z)]3 + δ[ϕ(z)]5 = 0.

Equivalently, we get

ϕ′′(z)

ϕ(z)
= [ω′(z)]2 + αω′′(z)− ε

|a|2
+
ϕ′(z)

ϕ(z)

[ c

|a|2
+ 2αω′(z)

]
+

1

|a|2
[ϕ(z)]2 +

γ

|a|2
[ϕ(z)]4

and

ϕ′′(z)

ϕ(z)
= [ω′(z)]2 +

cω′(z) + b

|a|2α
− 1

α
ω′′(z)− 2

α

ϕ′(z)

ϕ(z)
ω′(z) +

β

|a|2α
[ϕ(z)]2 +

δ

|a|2α
[ϕ(z)]4.

Subtracting the second equation from the first equation, we find(
α+

1

α

)
ω′′(z) +

ϕ′(z)

ϕ(z)

[ c

|a|2
+ 2αω′(z) +

2

α
ω′(z)

]
+

1

|a|2
(
1− β

α

)
[ϕ(z)]2

− αε+ cω′(z) + b

|a|2α
+
αγ − δ

|a|2α
[ϕ(z)]4 = 0.

Let A be a real constant and set

ω(z) = Az, α = β, δ = αγ,

b = −(Ac+ αε) = 2A2|a|2
(
α+

1

α

)
− αε,

c = −2A|a|2
(
α+

1

α

)
.

Then

ϕ′′(z)

ϕ(z)
= A2 − ε

|a|2
+
ϕ′(z)

ϕ(z)

[ c

|a|2
+ 2Aα

]
+

1

|a|2
[ϕ(z)]2 +

γ

|a|2
[ϕ(z)]4.

Let us reduce the order of the differential equation. Let

ϕ′(z) = ϕ(z)[p+ qϕ(z)].
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Then

ϕ′′(z) = ϕ(z)[p+ qϕ(z)][p+ 2qϕ(z)].

Substituting the derivatives back into the differential equation, we find

[p+ qϕ(z)][p+ 2qϕ(z)] = A2 − ε

|a|2
+ [p+ qϕ(z)]

( c

|a|2
+ 2Aα

)
+

1

|a|2
[ϕ(z)]2 +

γ

|a|2
[ϕ(z)]4.

By comparing the coefficients, we obtain the system of equations

p2 = A2 − ε

|a|2
+ p

( c

|a|2
+ 2Aα

)
,

3pq = q
( c

|a|2
+ 2Aα

)
,

2q2 =
1

|a|2
.

It is easy to find that

A2 + 2p2 =
ε

|a|2
, p = −2A

3α
, q = ± 1√

2|a|
.

By solving the system, we have four sets of solutions

A = ± 3
√
αε

|a|
√
8 + 9α2

, b = αε
10 + 9α2

8 + 9α2
, c = ∓ 6|a|

√
αε√

8 + 9α2

(
α+

1

α

)
,

p = ∓ 2
√
ε

|a|
√
8 + 9α2

, q =
1√
2|a|

and

A = ± 3
√
αε

|a|
√
8 + 9α2

, b = αε
10 + 9α2

8 + 9α2
, c = ∓ 6|a|

√
αε√

8 + 9α2

(
α+

1

α

)
,

p = ∓ 2
√
ε

|a|
√
8 + 9α2

, q = − 1√
2|a|

.

Finally, by using Lemma 1.1 and Lemma 1.2, we obtain four explicit traveling wave solutions

(I)

ϕ(z) =

√
8ε

8 + 9α2

1

1 + exp
{

2
√
ε

|a|
√
8+9α2

z
} ,

if

c = − 6|a|
√
αε√

8 + 9α2

(
α+

1

α

)
, p = − 2

√
ε

|a|
√
8 + 9α2

, q =
1√
2|a|

;

(II)

ϕ(z) = −
√

8ε

8 + 9α2

1

1 + exp
{
− 2

√
ε

|a|
√
8+9α2

z
} ,
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if

c =
6|a|

√
αε√

8 + 9α2

(
α+

1

α

)
, p =

2
√
ε

|a|
√
8 + 9α2

, q =
1√
2|a|

;

(III)

ϕ(z) = −
√

8ε

8 + 9α2

1

1 + exp
{

2
√
ε

|a|
√
8+9α2

z
} ,

if

c = − 6|a|
√
αε√

8 + 9α2

(
α+

1

α

)
, p = − 2

√
ε

|a|
√
8 + 9α2

, q = − 1√
2|a|

;

(IV)

ϕ(z) =

√
8ε

8 + 9α2

1

1 + exp
{
− 2

√
ε

|a|
√
8+9α2

z
} ,

if

c =
6|a|

√
αε√

8 + 9α2

(
α+

1

α

)
, p =

2
√
ε

|a|
√
8 + 9α2

, q = − 1√
2|a|

.

Now let us consider the more complicated case γ > 0. Suppose that

ϕ′(z) = ϕ(z){p+ q[ϕ(z)]2}

for two real constants p and q. Then

ϕ′′(z) = ϕ(z){p+ q[ϕ(z)]2}{p+ 3q[ϕ(z)]2}.

If we plug these derivatives back into the differential equation, we get

{p+ q[ϕ(z)]2}{p+ 3q[ϕ(z)]2} = A2 − ε

|a|2
+ {p+ q[ϕ(z)]2}

[ c

|a|2
+ 2Aα

]
+

1

|a|2
[ϕ(z)]2 +

γ

|a|2
[ϕ(z)]4.

Let us compare the coefficients. We have the system of equations

p2 = A2 − ε

|a|2
+ p

[ c

|a|2
+ 2Aα

]
,

4pq = q
[ c

|a|2
+ 2Aα

]
+

1

|a|2
,

3q2 =
γ

|a|2
.

It is not difficult to find that

3 + 4α2

4α2
A2 − 3q

4αγ
A− 3 + 16γε

16|a|2γ
= 0.
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Now we have

A =
{ 3q

4αγ
±

√
1

16|a|2α2γ

[
3 + (3 + 4α2)(3 + 16γε)

]} 1{
3+4α2

2α2

} ,
p = − A

2α
+

3q

4γ
, q = ±

√
γ

3|a|2
.

Then, we obtain two sets of solutions

A1 =

√
3α2 +

√
3α2 + α2(3 + 4α2)(3 + 16γε)

2(3 + 4α2)
√
|a|2γ

> 0,

p1 =
1

4

√
3

|a|2γ
− A1

2α
< 0, q1 =

√
γ

3|a|2
> 0,

b1 = 2A1
2|a|2

(
α+

1

α

)
− αε, c1 = −2A1|a|2

(
α+

1

α

)
< 0,

and

A2 =
−
√
3α2 −

√
3α2 + α2(3 + 4α2)(3 + 16γε)

2(3 + 4α2)
√

|a|2γ
< 0,

p2 = −1

4

√
3

|a|2γ
− A2

2α
> 0, q2 = −

√
γ

3|a|2
< 0,

b2 = 2A2
2|a|2

(
α+

1

α

)
− αε, c2 = −2A2|a|2

(
α+

1

α

)
> 0.

Finally, we obtain the bounded explicit solutions

ϕ1(z) = ±
(−3α+ 2A1

√
3|a|2γ

8αγ

) 1
2
{
1 + tanh

[(1
4

√
3

|a|2γ
− A1

2α

)
z
]} 1

2

,

and

ϕ2(z) = ±
(−3α− 2A2

√
3|a|2γ

8αγ

) 1
2
{
1 + tanh

[(
− 1

4

√
3

|a|2γ
− A2

2α

)
z
]} 1

2

.

The proof is finished.

4 Nonlinear Convection Equations

In this section, we are going to establish the explicit traveling wave solutions to the one-

dimensional Burgers equation and n-dimensional Burgers equation. This section is primarily

motivated by [1] and [34].

Theorem 4.1 Consider the one-dimensional Burgers equation

∂u

∂t
− α

∂2u

∂x2
+ β

∂

∂x
(up) = 0,

where α > 0, β > 0 and p > 1 are positive constants. Then the Burgers equation has the exact

traveling wave solutions

u(x, t) =
{
− cα

β + β exp{−c(p− 1)(x+ cαt)}

} 1
p−1

,
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where z = x+ cαt, c < 0 is any real constant.

Proof Let u(x, t) = ϕ(x+ cαt) be a traveling wave solution, and set z = x+ cαt. Then

cαϕ′(z)− αϕ′′(z) + β{[ϕ(z)]p}′ = 0.

Integrating this equation with respect to z, and letting the integration constant be equal to

zero, we have

cαϕ(z)− αϕ′(z) + β[ϕ(z)]p = 0.

By dividing this equation by α, we find

ϕ′(z) = ϕ(z)
{
c+

β

α
[ϕ(z)]p−1

}
.

By Lemma 1.1, we have

ϕ(z) =
{
− cα

β + β exp{−c(p− 1)z}

} 1
p−1

.

The proof is finished.

Theorem 4.2 Consider the n-dimensional Burgers equation

∂u

∂t
= △u+ 2(u · ∇)u, in Rn × R+. (4.1)

Let a = (a1, a2, · · · , an) ∈ Rn be any nonzero real constant vector. Then the n-dimensional

Burgers equation has the explicit traveling wave solution

u(x, t) = a+ a tanh(a · x+ 2|a|2t). (4.2)

Proof Let x = (x1, x2, · · · , xn) ∈ Rn, a = (a1, a2, · · · , an) ∈ Rn be a fixed constant vector

and c be a real constant. Suppose that u(x, t) = aϕ(a ·x+ ct) is a traveling wave solution, and

set z = a · x+ ct. Then

∂u

∂t
= caϕ′(z),

∂u

∂xi
= aiaϕ

′(z),
∂2u

∂x2i
= ai

2aϕ′′(z),

(u · ∇)u =
n∑

j=1

uj
∂u

∂xj
=

n∑
j=1

[ajϕ(z)][ajaϕ
′(z)] = |a|2aϕ(z)ϕ′(z)

and

n∑
i=1

∂2u

∂x2i
= |a|2aϕ′′(z).

If we plug these partial derivatives back into the differential equation, we get

caϕ′(z) = |a|2aϕ′′(z) + 2|a|2aϕ(z)ϕ′(z).

If a ̸= 0, then

cϕ′(z) = |a|2ϕ′′(z) + 2|a|2ϕ(z)ϕ′(z).
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Integrating this equation with respect to z and letting the integration constant be equal to zero,

we find

cϕ(z) = |a|2ϕ′(z) + |a|2[ϕ(z)]2.

In other words, we have

ϕ′(z) = ϕ(z)
[ c

|a|2
− ϕ(z)

]
.

Solving it by using Lemma 1.1, we obtain

ϕ(z) =
c

|a|2
[
1 + exp

{
− cz

|a|2
}] .

Let

c = 2|a|2.

Therefore, the n-dimensional Burgers equation has the explicit traveling wave solution

u(x, t) =
2a

1 + exp{−2(a · x+ ct)}
= a+ a tanh(a · x+ 2|a|2t).

The proof is finished.

5 Nonlinear Reaction Diffusion Equations

Motivation equation Consider the reaction-diffusion equation

∂u

∂t
=
∂2u

∂x2
+ u(1− u)(u− a), 0 < a <

1

2
.

Let u(x, t) = ϕ(x+ ct) be a traveling wave solution, where c ̸= 0 is a constant, representing the

wave speed, and set z = x+ ct. Then

cϕ′(z) = ϕ′′(z) + ϕ(z)[1− ϕ(z)][ϕ(z)− a].

Let

ϕ′(z) = Dϕ(z)[1− ϕ(z)]

for some constant D ̸= 0. Then

ϕ′′(z) = D2ϕ(z)[1− ϕ(z)][1− 2ϕ(z)].

Plugging these derivatives back into the differential equation, we get

cDϕ(z)[1− ϕ(z)] = D2ϕ(z)[1− ϕ(z)][1− 2ϕ(z)] + ϕ(z)[1− ϕ(z)][ϕ(z)− a].

By canceling out ϕ(z)[1− ϕ(z)], we get

cD = D2[1− 2ϕ(z)] + ϕ(z)− a.
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By comparing the coefficients, we see

cD = D2 − a, 2D2 = 1.

Solving it, we have

D = ± 1√
2
, c = ±1− 2a√

2
.

It has two explicit traveling wave fronts

ϕ(z) =
exp{Dz}

1 + exp{Dz}
=

exp
{
± z√

2

}
1 + exp

{
± z√

2

} ,
z = x+ ct, c = ±1− 2a√

2
.

Motivated by the explicit traveling wave solutions to this simple equation, we investigate

explicit traveling wave solutions to some reaction diffusion equations. In this section, we are

going to establish the explicit traveling wave solutions to the n-dimensional Fisher’s equation,

the n-dimensional generalized Fisher’s equation, the n-dimensional Belousov-Zhabotinskii sys-

tem of reaction-diffusion equations and the n-dimensional McKean-Nagumo reaction diffusion

equation. This section is primarily motivated by [15, 31, 36, 37, 39].

Theorem 5.1 Consider the n-dimensional Fisher’s equation

∂u

∂t
= α2△u+ β2u(1− u), (5.1)

where α > 0 and β > 0 are positive constants. Let a = (a1, a2, · · · , an) be a nonzero real constant

vector. Then the n-dimensional Fisher’s equation has two explicit traveling wave solutions

u(x, t) =
{ exp

{
± β√

6|a|α

(
a · x± 5|a|αβ√

6
t
)}

1 + exp
{
± β√

6|a|α

(
a · x± 5|a|αβ√

6
t
)}}2

. (5.2)

Proof Let a = (a1, a2, · · · , an) be a nonzero real constant vector and let c be a real constant.

Let z = a ·x+ ct. A traveling wave solution u(x, t) = ϕ(a ·x+ ct) to the n-dimensional Fisher’s

equation satisfies the equation

cϕ′(z) = |a|2α2ϕ′′(z) + β2ϕ(z)[1− ϕ(z)].

Suppose that ϕ(z) = [ψ(z)]2. Then

2cψ(z)ψ′(z) = 2|a|2α2ψ(z)ψ′′(z) + 2|a|2α2[ψ′(z)]2 + β2[ψ(z)]2{1− [ψ(z)]2}.

Let us reduce the order of the differential equation. Let ψ′(z) = Dψ(z)[1 − ψ(z)] for some

constant D ̸= 0. Then

ψ′′(z) = D2ψ(z)[1− ψ(z)][1− 2ψ(z)].
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Plugging the derivatives back into the differential equation, we get

2cD[ψ(z)]2[1− ψ(z)] = 2|a|2D2α2[ψ(z)]2[1− ψ(z)][1− 2ψ(z)]

+ 2|a|2D2α2[ψ(z)]2[1− ψ(z)]2 + β2[ψ(z)]2{1− [ψ(z)]2}.

By canceling out [ψ(z)]2[1− ψ(z)], we have

2cD = 2|a|2D2α2[1− 2ψ(z)] + 2|a|2D2α2[1− ψ(z)] + β2[1 + ψ(z)].

Comparing the coefficients, we find that

2cD = 4|a|2D2α2 + β2, 6|a|2D2α2 = β2.

Finally, we find two sets of solutions c = ± 5|a|αβ√
6

, D = ± β√
6|a|α . Now, by using Lemma 1.1, we

obtain

ψ(z) =
exp

{
± β√

6|a|α

(
a · x± 5|a|αβ√

6
t
)}

1 + exp
{
± β√

6|a|α

(
a · x± 5|a|αβ√

6
t
)} .

Now we can obtain the explicit traveling wave solutions to the n-dimensional Fisher’s equation.

Theorem 5.2 Consider the n-dimensional generalized Fisher’s equation

∂u

∂t
= α2△u+ β2u(1− up)(up − a), (5.3)

where p > 0, α > 0 and β > 0 are positive constants and a is a real number. Let a =

(a1, a2, · · · , an) ∈ Rn be any nonzero real constant vector. Then the generalized Fisher’s equa-

tion has two explicit traveling wave solutions

u(x, t) =
{ exp

{
± pβ

|a|α
√
p+1

(
a · x± 1−(p+1)a√

p+1
|a|αβt

)}
1 + exp

{
± pβ

|a|α
√
p+1

(
a · x± 1−(p+1)a√

p+1
|a|αβt

)}} 1
p

. (5.4)

Proof Let z = a · x + ct and u(x, t) = ϕ(a · x + ct) be a traveling wave solution to the

generalized Fisher’s equation. Then

cϕ′(z) = |a|2α2ϕ′′(z) + β2ϕ(z){1− [ϕ(z)]p}{[ϕ(z)]p − a}.

Let us reduce the order of the differential equation. Let D ̸= 0 be a constant and

ϕ′(z) = Dϕ(z){1− [ϕ(z)]p}.

Then

ϕ′′(z) = D2ϕ(z){1− [ϕ(z)]p}{1− (p+ 1)[ϕ(z)]p}.

Plugging the derivatives back into the differential equation, we get

cDϕ(z){1− [ϕ(z)]p} = |a|2D2α2ϕ(z){1− [ϕ(z)]p}{1− (p+ 1)[ϕ(z)]p}
+ β2ϕ(z){1− [ϕ(z)]p}{[ϕ(z)]p − a}.
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By canceling out ϕ(z){1− [ϕ(z)]p}, we get

cD = |a|2D2α2{1− (p+ 1)[ϕ(z)]p}+ β2{[ϕ(z)]p − a}.

Then, by comparing the coefficients, we find

cD = |a|2D2α2 − aβ2, (p+ 1)|a|2D2α2 = β2.

Solving it, we have

D = ± β

|a|α
√
p+ 1

, c = ±1− (p+ 1)a√
p+ 1

|a|αβ.

Therefore, by using Lemma 1.1, we find the explicit traveling wave solutions to the generalized

Fisher’s equation.

Theorem 5.3 Consider the generalized n-dimensional Belousov-Zhabotinskii system of

reaction-diffusion equations

∂u

∂t
= D1△u+ αu(1− u) + βuv, (5.5)

∂v

∂t
= D2△v + γv(1− v) + δuv, (5.6)

where D1 > 0 and D2 > 0 are positive constants, α, β, γ and δ are real constants, such that

α+ γ > 0. Let a = (a1, a2, · · · , an) ∈ Rn be any nonzero real constant vector. If

β =
D2 − 5D1

D1 +D2
α− 6D1

D1 +D2
γ,

δ = − 6D2

D1 +D2
α− 5D2 −D1

D1 +D2
γ,

then the generalized Belousov-Zhabotinskii system of reaction-diffusion equations has two ex-

plicit traveling wave solutions

u(x, t) =
{ exp

{
±
√

α+γ
|a|2(D1+D2)

(
a · x± |a|(D2α−D1γ)√

(D1+D2)(α+γ)
t
)}

1 + exp
{
±
√

α+γ
|a|2(D1+D2)

(
a · x± |a|(D2α−D1γ)√

(D1+D2)(α+γ)
t
)}}2

, (5.7)

v(x, t) =
1{

1 + exp
{
±
√

α+γ
|a|2(D1+D2)

(
a · x± |a|(D2α−D1γ)√

(D1+D2)(α+γ)
t
)}}2 . (5.8)

Proof Let z = a · x+ ct,

u(x, t) = [ϕ(z)]2 and v(x, t) = [1− ϕ(z)]2.

Then

c{[ϕ(z)]2}′ = |a|2D1{[ϕ(z)]2}′′ + α[ϕ(z)]2{1− [ϕ(z)]2}+ β[ϕ(z)]2[1− ϕ(z)]2,

c{[1− ϕ(z)]2}′ = |a|2D2{[1− ϕ(z)]2}′′ + γ[1− ϕ(z)]2{1− [1− ϕ(z)]2}+ δ[ϕ(z)]2[1− ϕ(z)]2.
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Equivalently, we have

2cϕ(z)ϕ′(z) = 2|a|2D1ϕ(z)ϕ
′′(z) + 2|a|2D1[ϕ

′(z)]2

+ α[ϕ(z)]2{1− [ϕ(z)]2}+ β[ϕ(z)]2[1− ϕ(z)]2,

2c[1− ϕ(z)][1− ϕ(z)]′ = 2|a|2D2[1− ϕ(z)][1− ϕ(z)]′′ + 2|a|2D2[−ϕ′(z)]2

+ γ[1− ϕ(z)]2{1− [1− ϕ(z)]2}+ δ[ϕ(z)]2[1− ϕ(z)]2.

Let us reduce the order of the differential equation. Suppose that p ̸= 0 is a constant and

ϕ′(z) = pϕ(z)[1− ϕ(z)].

Then

ϕ′′(z) = p2ϕ(z)[1− ϕ(z)][1− 2ϕ(z)].

Plugging these derivatives back into the differential equations, we have

2cp[ϕ(z)]2[1− ϕ(z)] = 2|a|2D1p
2[ϕ(z)]2[1− ϕ(z)][1− 2ϕ(z)] + 2|a|2D1p

2[ϕ(z)]2[1− ϕ(z)]2

+ α[ϕ(z)]2{1− [ϕ(z)]2}+ β[ϕ(z)]2[1− ϕ(z)]2,

−2cp[1− ϕ(z)]2ϕ(z) = −2|a|2D2p
2ϕ(z)[1− ϕ(z)]2[1− 2ϕ(z)] + 2|a|2D2p

2[ϕ(z)]2[1− ϕ(z)]2

+ γ[1− ϕ(z)]2{1− [1− ϕ(z)]2}+ δ[ϕ(z)]2[1− ϕ(z)]2.

Let us cancel out [ϕ(z)]2[1 − ϕ(z)] in the first equation and cancel out ϕ(z)[1 − ϕ(z)]2 in the

second equation. We have a simpler system of equations

2cp = 2|a|2D1p
2[1− 2ϕ(z)] + 2|a|2D1p

2[1− ϕ(z)] + α[1 + ϕ(z)] + β[1− ϕ(z)],

2cp = 2|a|2D2p
2[1− 2ϕ(z)]− 2|a|2D2p

2ϕ(z) + γ[ϕ(z)− 2] + δϕ(z).

By comparing the coefficients, we have

2cp = 2|a|2D1p
2 + 2|a|2D1p

2 + α+ β,

0 = −4|a|2D1p
2 − 2|a|2D1p

2 + α− β,

2cp = 2|a|2D2p
2 − 2γ,

0 = −4|a|2D2p
2 − 2|a|2D2p

2 + γ − δ.

Simplifying the system, we get

β = cp− 5|a|2D1p
2,

δ = 6|a|2D2p
2 − γ,

cp =
D2α−D1γ

D1 +D2
,

p2 =
α+ γ

|a|2(D1 +D2)
.

Solving this system, we find two sets of solutions

β =
D2 − 5D1

D1 +D2
α− 6D1

D1 +D2
γ,
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δ = − 6D2

D1 +D2
α− 5D2 −D1

D1 +D2
γ,

c = ± |a|(D2α−D1γ)√
(D1 +D2)(α+ γ)

,

p = ±
√

α+ γ

|a|2(D1 +D2)
.

Therefore, by using Lemma 1.1, we obtain the solutions

ϕ(z) =
exp

{
±
√

α+γ
|a|2(D1+D2)

(
a · x± |a|(D2α−D1γ)√

(D1+D2)(α+γ)
t
)}

1 + exp
{
±
√

α+γ
|a|2(D1+D2)

(
a · x± |a|(D2α−D1γ)√

(D1+D2)(α+γ)
t
)} .

The proof is finished.

Theorem 5.4 (I) Consider the n-dimensional McKean-Nagumo reaction diffusion equation

∂u

∂t
= △u+ α[H(u− θ)− u], 0 < θ <

1

2
, (5.9)

where α > 0 and θ > 0 are constants, H stands for the Heaviside step function: H(u− θ) = 0

for all u < θ, H(0) = 1
2 and H(u− θ) = 1 for all u > θ. Let a = (a1, a2, · · · , an) be a nonzero

real constant vector. Then this equation has a traveling wave front

u(x, t) = Ufront(z)

=

θ exp
{

c+
√
c2+4α
2 (a · x+ ct)

}
for z = a · x+ ct < 0,

1 + (θ − 1) exp
{

c−
√
c2+4α
2 (a · x+ ct)

}
for z = a · x+ ct > 0,

(5.10)

where the wave speed

c =

√
|a|2α(1− 2θ)2

θ(1− θ)
,

and z = a · x+ ct is the moving coordinate.

(II) Consider the n-dimensional reaction diffusion equation

∂u

∂t
+ α(1− 2θ) = △u+ α[H(u− θ)− u]. (5.11)

This equation has a traveling wave back

u(x, t) ≡ 2θ − Ufront(z) (5.12)

with the same speed as the traveling wave front.

Proof Let z = a · x+ ct and let u(x, t) = ϕ(a · x+ ct) be a traveling wave solution of the

n-dimensional McKean-Nagumo reaction diffusion equation. Then

cϕ′(z) = |a|2ϕ′′(z) + α[H(ϕ(z)− θ)− ϕ(z)].

Suppose that the traveling wave front satisfies the conditions ϕ < θ on (−∞, 0), ϕ(0) = θ and

ϕ > θ on (0,∞). Then

ϕ′′(z)− c

|a|2
ϕ′(z)− α

|a|2
ϕ(z) = 0, on (−∞, 0),
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ϕ′′(z)− c

|a|2
ϕ′(z) +

α

|a|2
[1− ϕ(z)] = 0, on (0,∞),

lim
z→−∞

ϕ(z) = 0, lim
z→∞

ϕ(z) = 1, ϕ(0) = θ.

The characteristic equation for these differential equations is

λ2 − c

|a|2
λ− α

|a|2
= 0.

The eigenvalues are

λ =
c±

√
c2 + 4|a|2α
2|a|2

.

Therefore, the traveling wave solution is given by

u(x, t) = θ exp
{c+√

c2 + 4|a|2α
2|a|2

(a · x+ ct)
}
, on (−∞, 0)

and

u(x, t) = 1 + (θ − 1) exp
{c−√

c2 + 4|a|2α
2|a|2

(a · x+ ct)
}
, on (0,∞).

The wave speed is determined by the condition

ϕ(0−) = ϕ(0+).

That is

θ
c+

√
c2 + 4|a|2α
2|a|2

= (θ − 1)
c−

√
c2 + 4|a|2α
2|a|2

.

Finally, we find the wave speed

c =

√
|a|2α(1− 2θ)2

θ(1− θ)
.

The proof is finished.

6 Nonlinear Hyperbolic Equations

In this section, we are going to establish the explicit traveling wave solutions to the n-

dimensional Klein-Gordon equation and the n-dimensional Sine-Gordon equation. This section

is primarily motivated by [10, 18, 20, 22, 24, 29, 35, 38, 44].

Theorem 6.1 Consider the generalized n-dimensional Klein-Gordon equation

∂2u

∂t2
− α2△u− β2u2p+1 + γ2up+1 − δ2u = 0, (6.1)

where α > 0, β > 0, γ > 0, δ > 0 and p > 0 are positive constants. Let a = (a1, a2, · · · , an) ∈
Rn be any nonzero real constant vector. If β = 0, then the generalized Klein-Gordon equation

has the explicit traveling wave solution

u(x, t) =
{p+ 2

2

δ2

γ2
sech2

(p
2

δ√
c2 − |a|2α2

(a · x+ ct)
)} 1

p

, (6.2)
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where c is a constant such that |c| > |a|α. Set z = a · x+ ct. If β > 0 and

(p+ 2)2

p+ 1
β2δ2 = γ4,

then

u(x, t) =
{√

p+ 1
δ

β

1

1 + exp
{
± p

√
δ2

c2−|a|2α2 (a · x+ ct)
}} 1

p

.

Proof Let u(x, t) = ϕ(a·x+ct) be a traveling wave solution to the generalized n-dimensional

Klein-Gordon equation, and let z = a ·x+ ct, where c is a real constant, such that c2 > |a|2α2.

Then

c2ϕ′′(z)− |a|2α2ϕ′′(z)− β2[ϕ(z)]2p+1 + γ2[ϕ(z)]p+1 − δ2ϕ(z) = 0.

This equation may be rewritten as

ϕ′′(z) = ϕ(z)
{ δ2

c2 − |a|2α2
− γ2

c2 − |a|2α2
[ϕ(z)]p +

β2

c2 − |a|2α2
[ϕ(z)]2p

}
.

By using Lemma 1.3 (for β = 0) and Lemma 1.4 (for β > 0), we find the traveling wave

solutions, where

p+ 2√
p+ 1

√
δ2

c2 − |a|2α2

√
β2

c2 − |a|2α2
=

γ2

c2 − |a|2α2
.

Now we finish the proof.

Theorem 6.2 Consider the generalized n-dimensional Sine-Gordon equation

∂2u

∂t2
− α2△u+ 2β2γ sin(2γu) = 0, (6.3)

where α > 0, β > 0 and γ > 0 are positive constants. Let a = (a1, a2, · · · , an) ∈ Rn be

any nonzero real constant vector. Then the generalized Sine-Gordon equation has the explicit

traveling wave solution

u(x, t) =
1

γ
arccos

(
tanh

(2βγ(a · x+ ct)√
|a|2α2 − c2

))
, (6.4)

where c is a constant, such that |c| < |a|α.

Proof Let u(x, t) = ϕ(a · x + ct) be a traveling wave solution, where c is a real constant,

and let z = a · x+ ct. Then

c2ϕ′′(z)− |a|2α2ϕ′′(z) + 2β2γ sin(2γϕ(z)) = 0.

It is not difficult to find

ϕ′′(z) =
2β2γ

|a|2α2 − c2
sin(2γϕ(z)).
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Multiplying this equation by 2ϕ′, integrating the result with respect to z, and letting the

integration constant be equal to zero, we have

[ϕ′(z)]2 =
2β2

|a|2α2 − c2
[1− cos(2γϕ(z))] =

4β2

|a|2α2 − c2
sin2(γϕ(z)).

Now

ϕ′(z) = ± 2β√
|a|2α2 − c2

sin(γϕ(z)).

By separating the variables, we get

− 1

sin(γϕ)
dϕ = ± 2β√

|a|2α2 − c2
dz.

Equivalently, we have

− γ sin(γϕ(z))

1− cos2(γϕ(z))
dϕ = ± 2βγ√

|a|2α2 − c2
dz.

Finally, we obtain

tanh−1(cos(γϕ)) = ± 2βγz√
|a|2α2 − c2

.

The proof is finished.

Corollary 6.1 Consider the n-dimensional Sine-Gordon equation

∂2u

∂t2
−△u+ sinu = 0.

It has the explicit traveling wave solution

u(x, t) = 2 arccos
(
tanh

( a · x+ ct√
|a|2 − c2

))
.

Proof It follows from Theorem 6.2.
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