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Abstract The authors obtain various versions of the Omori-Yau’s maximum principle
on complete properly immersed submanifolds with controlled mean curvature in certain
product manifolds, in complete Riemannian manifolds whose k-Ricci curvature has strong
quadratic decay, and also obtain a maximum principle for mean curvature flow of complete
manifolds with bounded mean curvature. Using the generalized maximum principle, an
estimate on the mean curvature of properly immersed submanifolds with bounded projec-
tion in N1 in the product manifold N1 ×N2 is given. Other applications of the generalized
maximum principle are also given.
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1 Introduction

There is a well-known Calabi-Chern problem (see [4, 7]) on the extrinsic boundedness prop-
erties for minimal submanifolds in n-dimensional Euclidean space.

Many efforts have been made during the past years, and the research on the Calabi-Chern
problem has made some progress (see [5, 8, 10, 12, 14] et al.). For R

3, Nadirashvili [12] gave an
example of complete immersed bounded minimal surface in R

3.

A more ambitious conjecture is: A complete (non-flat) minimal hypersurface in R
n has an

unbounded projection in every (n−2)-dimensional flat subspace. This is not true for immersed
minimal surfaces in R

3 by the Jorge-Xavier’s example in [10].
On the other hand, Colding and Minicozzi [8] showed that the situation is different for

embedded minimal disks in R
3, which is proper, whereas the Nadirashvili’s example and the

Jorge-Xavier’s example are not proper.
Recently, L. J. Alias, G. P. Bessa and M. Dajczer [1] gave an estimate of the mean curvature

of cylindrically bounded properly immersed submanifolds in some N×R
l, and as a consequence

of their result, they showed that a complete minimal immersed hypersurface in R
n (n ≥ 3) with

bounded projection in a two dimensional subspace cannot be proper.
Inspired by Calabi-Chern problem, it is natural to study complete properly immersed sub-

manifolds in a product manifold. We generalized Alias-Bessa-Dajczer’s results as follows.

Theorem 1.1 Let N1, N2 be complete Riemannian manifolds of dimensions n1, n2 respec-
tively, and let the radial sectional curvature of N2 satisfy κrad

N2
≥ −c(1 + ρ2

2 log2(ρ2 + 2)),
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where c is a positive constant, ρ2 is the distance function from a fixed point on N2. Let
ψ : Mk → N1 × N2 be an isometric immersion of a complete Riemannian manifold of di-
mension k > n2 with mean curvature vector

−→
H . Given q ∈ M, p = π1(ψ(q)) ∈ N1. Let BN1(r)

be the geodesic ball of N1 centered at p with radius r. Assume that the radial sectional curvature
κrad

N1
along the radial geodesics issuing from p is bounded above by a constant κrad

N1
≤ b (const.)

in BN1(r). Suppose that

ψ(M) ⊂ BN1(r) ×N2

for r < min
{
injN1

(p), π
2
√

b

}
, where we replace π

2
√

b
by +∞ if b ≤ 0.

(1) If ψ : Mk → N1 ×N2 is proper, then

sup
M

|−→H | ≥ (k − n2)Cb(r).

(2) If

sup
M

|−→H | < (k − n2)Cb(r),

then M is stochastically incomplete, where Cb is defined in the beginning of Section 4.

The analytic tool to prove the above theorem is the Omori-Yau maximum principle. Omori
firstly gave a maximum principle on complete Riemannian manifolds (see [14]). Later, Yau
refined and simplified the argument in [21] under the assumption on Ricci curvature bounded
from below. The curvature assumption could be relaxed to strong quadratic decay of Ricci
curvature in [5]. There is a general analytic version of the Omori-Yau maximum principle
due to Pigola et al. [16]. Based on them, in this paper, we give various versions of the
Omori-Yau maximum principle on complete properly immersed submanifolds in rather general
ambient manifolds and certain product manifolds in Section 3. Furthermore, we can obtain the
maximum principle for mean curvature flow in this setting.

In the last section, we give several geometric applications of the Omori-Yau maximum
principle, including the proof of the above mentioned results.

2 Preliminaries

Let ψ : M → N be an m-submanifold in Riemannian manifold N of dimension n with the
second fundamental form B defined by

B(X,Y ) = (∇XY )⊥

for X,Y ∈ Γ(TM), where ( · )⊥ denotes the orthogonal projections into the normal bundle
NM. The second fundamental form B can be viewed as a cross-section of the vector bundle
Hom(	2TM,NM) over M, where TM and NM denote the tangent bundle and the normal
bundle along M , respectively. Taking the trace of B gives the mean curvature vector

−→
H of M

in N , a cross-section of the normal bundle, and

−→
H � trace(B) =

m∑
i=1

B(ei, ei),

where {ei} is a local orthonormal frame field of M .
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The ambient manifold N in the present paper is rather general. We may impose some
curvature assumptions on N . H. Wu [18] introduced an interesting notion of partial positivity
(negativity) on Riemannian manifold N. For any x ∈ N and any (k + 1) orthonormal vectors
{e0, e1, · · · , ek} ∈ TxN , denote

Ric−,k(x) � min
{ k∑

i=1

κ(e0 ∧ ei)
}

and

Ric+,k(x) � max
{ k∑

i=1

κ(e0 ∧ ei)
}
,

where κ(e0 ∧ ei) denotes the sectional curvature of the plane spanned by e0 and ei.
If Ric−,k > 0 (Ric+,k < 0), then N is called k-positive (k-negative). k-Ricci curvature

condition is an intermediate one. The cases k = 1 and k = n − 1 are reduced to sectional
curvature and Ricci curvature respectively.

Some results under the conditions on sectional curvature can be generalized to those under
k-Ricci curvature condition (see [11, 17]).

Now, we consider certain proper submanifolds in an ambient manifold with strong quadratic
decay of k-Ricci curvature, and in certain product manifolds.

A Riemannian manifold M is said to be stochastically complete if for some (and therefore,
for any) (x, t) ∈M×(0,+∞) it holds that

∫
M p(x, y, t)dy = 1, where p(x, y, t) is the heat kernel

of the Laplacian operator. Otherwise, the manifold M is said to be stochastically incomplete.
There is an interesting characterization of stochastic completeness: M is stochastically complete
if and only if for any C2-function u with u+ � supu < ∞, there exists a sequence {xj} such
that u(xj) > u+ − 1

j and Δu(xj) < 1
j (see [15]).

3 Various Versions of the Generalized Maximum Principle on
Submanifolds

Let us generalize Omori-Yau’s maximum principle on complete properly immersed submani-
fold of Euclidean space to complete proper submanifold with controlled mean curvature of some
complete Riemannian manifolds. First we give the following lemma (see [5, 19]).

Lemma 3.1 Let N be a complete Riemannian manifold of dimension n, and let the radial
sectional curvature satisfy κrad ≥ −cF (ρ), where c > 0 is a constant, ρ is the distance function
from a fixed point x0 on N , F : R → R is a nondecreasing function and F ≥ 1. Let M
be a k-dimensional complete submanifold of N with mean curvature vector

−→
H , and sup

M
|−→H | ≤√

1 + c(k − 1)kF (ρ). Let x0, x ∈M , and if x is not on the cut locus of the point x0 in N , then
for ρ(x) ≥ ρ0 (ρ0 is a constant),

ΔMρ(x) ≤ 2
√

1 + c(k − 1)kF (ρ). (3.1)

Proof The restriction of ρ on M is a function on M . Then we have for X,Y ∈ TM ⊂ TN ,

Hess(ρ)(X,Y ) = XY (ρ) − (∇XY − (∇XY )⊥)ρ

= Hess(ρ)(X,Y ) + 〈B(X,Y ),∇ρ〉. (3.2)
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Taking trace in (3.2), we get

Δρ(x) =
k∑

i=1

Hess(ρ)(x)(ei, ei) + 〈−→H,∇ρ〉, (3.3)

where {e1, · · · , ek} is an orthonormal basis on TxM .
Let γ : [0, ρ] → N be a minimal geodesic from x0 to x with γ(0) = x0, γ(ρ) = x. Choose

an orthonormal basis
{
e1 = (γ̇)T

|(γ̇)T| , · · · , ek, ek+1, · · · , en−1, en = (γ̇)⊥

|(γ̇)⊥|
} ∈ TxN , such that

{e1, · · · , ek} are orthonormal vectors tangent to M . Let E1 be the unit vector orthogonal
to ∂

∂ρ = γ̇ on the plane spanned by e1 and en. Let

e1 = cos θE1 + sin θ
∂

∂ρ
,

where θ is the angle between e1 and E1. Then we have

Hess(ρ)(x)(e1, e1) = cos2 θHess(ρ)(x)(E1, E1) ≤ max
{
Hess(ρ)(x)(E1, E1), 0

}
.

By parallel translation along γ, we have an orthonormal frame field {E1(t), e2(t), · · ·, ek(t)}
along γ. Since free of conjugate points in γ, there is a unique Jacobi field Ji along γ, such that
J1(0) = 0, J1(ρ) = E1, Ji(0) = 0, Ji(ρ) = ei, i = 2, · · ·, k. Hence

Hess(ρ)(x)(ei, ei) =
∫ ρ

0

(|J̇i|2 − 〈R(γ̇, Ji)γ̇, Ji〉)dt.

Similarly,

Hess(ρ)(x)(E1 , E1) =
∫ ρ

0

(|J̇1|2 − 〈R(γ̇, J1)γ̇, J1〉)dt.

Let f(t) be any piecewise smooth function defined on [0, ρ] with f(0) = 0 and f(ρ) = 1.
Then {f(t)E1(t), f(t)e2(t), · · ·, f(t)ek(t)} are piecewise smooth vector fields along γ satisfying
f(0)E1(0) = 0, f(ρ)E1(ρ) = J1(ρ), f(0)ei(0) = 0, f(ρ)ei(ρ) = Ji(ρ). Using the minimization of
Jacobi field, we have

k∑
i=1

Hess(ρ)(x)(ei, ei) ≤
k∑

i=2

∫ ρ

0

(|f ′ei|2 − 〈R(γ̇, fei)γ̇, fei〉)dt

+ max
{∫ ρ

0

(|f ′E1|2 − 〈R(γ̇, fE1)γ̇, fE1〉)dt, 0
}

≤
∫ ρ

0

(k(f ′)2 − (k − 1)f2κrad)dt

≤
∫ ρ

0

(k(f ′)2 + c(k − 1)F (t)f2)dt.

Following the proof of Lemma 2.1 in [5], we obtain

k∑
i=1

Hess(ρ)(x)(ei, ei) ≤
√

1 + c(k − 1)kF (ρ) . (3.4)

(3.3) and (3.4) give

Δρ(x) ≤
√

1 + c(k − 1)kF (ρ) + |−→H | · |∇ρ| ≤ 2
√

1 + c(k − 1)kF (ρ).

Similarly, we have the lemma below.
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Lemma 3.2 Let N be a complete Riemannian manifold of dimension n with Ric−,k ≥
−cF (ρ) and Ric−,k−1 ≥ −cF (ρ), where c > 0 is a constant, ρ is the distance function from
a fixed point x0 on N , F : R → R is a nondecreasing function and F ≥ 1. Let M be
a k-dimensional complete submanifold of N with mean curvature vector

−→
H , and sup

M
|−→H | ≤√

1 + ckF (ρ). Let x0, x ∈ M , and if x is not on the cut locus of the point x0 in N , then for
ρ(x) ≥ ρ0 (ρ0 is a constant),

ΔMρ(x) ≤ 2
√

1 + ckF (ρ(x)) .

Proof In a way similar to the proof of the above lemma, we have that if Hess(ρ)(x)(E1, E1)
> 0, then

k∑
i=1

Hess(ρ)(x)(ei, ei) ≤
∫ ρ

0

(k(f ′)2 − f2Ric−,k)dt;

if Hess(ρ)(x)(E1, E1) ≤ 0, then

k∑
i=1

Hess(ρ)(x)(ei, ei) ≤
∫ ρ

0

((k − 1)(f ′)2 − f2Ric−,k−1)dt.

Hence,

k∑
i=1

Hess(ρ)(x)(ei, ei) ≤
∫ ρ

0

(k(f ′)2 + cF (t)f2)dt.

It follows that

ΔMρ(x) ≤ 2
√

1 + ckF (ρ(x)).

Then the gradient estimate, as was done by Yau [21] (see also [5]), gives us the following
result.

Theorem 3.1 Let N1, N2 be complete Riemannian manifolds of dimensions n1, n2 respec-
tively, and let the radial sectional curvature of N2 satisfy κrad

N2
≥ −c(1 + ρ2

2 log2(ρ2 + 2)),
where c is a positive constant, ρ2 is the distance function from a fixed point on N2. Let
ψ : Mk → N1 × N2 be a proper isometric immersion of a complete Riemannian manifold

of dimension k with mean curvature vector
−→
H and sup

M
|−→H | ≤

√
1 + c(1 + ρ2

2 log2(ρ2 + 2)). Sup-

pose that

ψ(M) ⊂ BN1(r) ×N2.

Let f be a C2-function bounded from above on M. Then for any ε > 0, there exists points {xj} ⊂
M, such that

lim
j→∞

f(xj) = supf, (3.5)

|∇f |(xj) < ε, (3.6)

Δf(xj) < ε. (3.7)
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Proof Define ρ̃2 : N1 ×N2 → [0,+∞) by

ρ̃2(x1, x2) � ρ2 · π2(x1, x2) = ρ2(x2),

where we denote π2 for the projection to the second factor, and so is for π1 in the sequel. Since
ψ is proper and ψ(M) ⊂ BN1(r) ×N2, the function φ = ρ̃2 · ψ satisfies φ(x) → +∞ as x→ ∞.

Identifying X with dψ(X), we have at x ∈M and for every X ∈ TxM that

〈gradφ,X〉 = dφ(X) = dρ̃2(X) = 〈gradN1×N2 ρ̃2, X〉.
So

gradN1×N2 ρ̃2 = gradφ+ (gradN1×N2 ρ̃2)⊥,

where (gradN1×N2 ρ̃2)⊥ is perpendicular to TxM .
Let ∇ and ∇ be the Levi-Civita connection on M and N1 ×N2 respectively. Then

HessM (φ)(X,Y ) = XY φ− (∇XY )φ = XY ρ̃2 − (∇XY )ρ̃2

= XY ρ̃2 − (∇XY −B(X,Y ))ρ̃2

= HessN1×N2(ρ̃2)(X,Y ) + 〈B(X,Y ), gradN1×N2 ρ̃2〉. (3.8)

Taking trace in (3.8), we then have

Δφ(x) =
k∑

i=1

HessN1×N2(ρ̃2(ψ(x)))(ei, ei) + 〈−→H (x), gradN1×N2 ρ̃2(ψ(x))〉, (3.9)

where {e1, · · · , ek} is an orthonormal frame on M .
Letting { ∂

∂ρ1
, E2, · · · , En1} be an orthonormal basis for Tπ1(x)N1 and { ∂

∂ρ2
, F2, · · · , Fn2} be

an orthonormal basis for Tπ2(x)N2, we choose

ei = ai
∂

∂ρ1
+

n1∑
j=2

bijEj + ci
∂

∂ρ2
+

n2∑
l=2

dilFl.

Since

1 = |ei|2 = a2
i +

n1∑
j=2

b2ij + c2i +
n2∑
l=2

d2
il,

we observe that
k∑

i=1

n2∑
l=2

d2
il ≤ k. (3.10)

Then by Lemma 3.1 and using (3.10), we have

k∑
i=1

HessN1×N2(ρ̃2(ψ(x)))(ei, ei) =
k∑

i=1

HessN2(ρ2)(π2∗ei, π2∗ei)

=
k∑

i=1

n2∑
l=2

d2
ilHessN2(ρ2)(Fl, Fl)

≤ k

√
1 + c(1 + ρ2

2 log2(ρ2 + 2)). (3.11)
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Using (3.9) and (3.11), we obtain

Δφ(x) =
k∑

i=1

HessN1×N2(ρ̃2(ψ(x)))(ei, ei) + 〈−→H (x), gradN1×N2 ρ̃2〉

≤ (k + 1)
√

1 + c(1 + φ2 log2(φ + 2)). (3.12)

We define an auxiliary function on M

g(x) =
f(x) − f(x0) + 1

[log(φ2(x) + 2)]
1
j

(3.13)

for any j > 0. Then g(x0) = 1

(log 2)
1
j
> 0. Since sup f < +∞ and M is proper, we have

φ(x) → +∞ as x→ ∞, so lim sup
x→∞

g(x) = 0. Thus g attains a positive supremum at xj ∈M .

Let us first prove (3.5). Indeed, if this is not true, then there would exist δ > 0 and x̂ ∈M ,
such that

f(x̂) > f(xj) + δ

for each j ≥ j0 sufficiently large.
If φ(xj) → +∞ as j → +∞ for each j such that φ(xj) > φ(x̂), we have

g(x) =
f(x̂) − f(x0) + 1

[log(φ2(x̂) + 2)]
1
j

>
f(xj) − f(x0) + 1 + δ

[log(φ2(xj) + 2)]
1
j

> g(xj).

This contradicts the definition of xj .
If {xj} lies in a compact set, then for some subsequence of j, {xj} converges to a point x,

so that f(x̂) ≥ f(x) + δ. On the other hand, since g(xj) ≥ g(x̂) for each j, we deduce that

f(x) − f(x0) + 1 = lim
j→+∞

g(xj) ≥ lim
j→+∞

g(x̂) = f(x̂) − f(x0) + 1,

that is f(x) ≥ f(x̂). This is also a contradiction. Thus we prove (3.5).
Again, if {xj} remains in a compact set, then xj → x ∈M as j → +∞. At x, we have

f(x) = sup f(x), |∇f |(x) = 0, Δf(x) ≤ 0.

In this case, the sequence xj = x (∀j) obviously satisfies all the requirements.
We now only need to consider the case when xj → ∞, then because M is proper, φ(xj) →

+∞. Without loss of generality, we can assume that xj is not on the cut locus of x0 in N2

(otherwise, we can use Calabi’s trick to remedy it). Then, we can differentiate φ at xj . Since
g attains a positive supremum at xj , we have

(∇ log g)(xj) = 0, Δ(log g)(xj) ≤ 0.

By direct computation, we get

∇f(xj) =
2(f(xj) − f(x0) + 1)φ(xj)∇φ(xj)
j(φ2(xj) + 2) log(φ2(xj) + 2)

, (3.14)

Δf(xj) ≤ 2(f(xj) − f(x0) + 1)
j

{ φΔφ + |∇φ|2
(φ2 + 2) log(φ2 + 2)

+
2φ2|∇φ|2

j(φ2 + 2)2(log(φ2 + 2))2
− 2φ2|∇φ|2(1 + log(φ2 + 2))

(φ2 + 2)2(log(φ2 + 2))2
}

≤ 2(f(xj) − f(x0) + 1)(φΔφ + 1)
j(φ2 + 2) log(φ2 + 2)

. (3.15)
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Hence, (3.14) gives that

|∇f |(xj) ≤ 2(f(xj) − f(x0) + 1)φ(xj)
j(φ2(xj) + 2) log(φ2(xj) + 2)

→ 0,

as j → +∞. This proves (3.6).
Using (3.12) and (3.15), we obtain

Δf(xj) ≤ 2(f(xj) − f(x0) + 1)
j(ρ2 + 2) log(ρ2 + 2)

{
2ρ

√
1 + ck(1 + ρ2 log2(ρ+ 2)) + 1

}
.

Letting j → ∞, we prove (3.7).
Using Lemma 3.2, we also have the next theorem.

Theorem 3.2 Let N be a complete Riemannian manifold of dimension n with Ric−,k ≥
−c(1 + ρ2 log2(ρ + 2)) and Ric−,k−1 ≥ −c(1 + ρ2 log2(ρ + 2)), where c > 0 is a constant,
and ρ is the distance function from a fixed point on N . Let M be a k-dimensional com-
plete properly immersed submanifold of N with mean curvature vector

−→
H , and sup

M
|−→H | ≤√

1 + ck
(
1 + ρ2 log2(ρ+ 2)

)
. Let f be a C2-function bounded from above on M . Then for

any ε > 0, there exists points {xj} ⊂M , such that

lim
j→∞

f(xj) = supf, |∇f |(xj) < ε, Δf(xj) < ε.

Let N be a complete Riemannian manifold of dimensional n, and let the radial sectional cur-
vature satisfy κrad ≥ −c(1+ρ2 log2(ρ+2)), where c is a positive constant, ρ is the distance func-
tion from a fixed point on N . Let M be a k dimensional complete properly immersed subman-

ifold of N with mean curvature vector
−→
H , and sup

M
|−→H | ≤

√
1 + c(k − 1)k(1 + ρ2 log2(ρ+ 2)).

The second named author established a maximum principle for the complete space-like mean
curvature flow in pseudo-Euclidean space in [20]. Similarly, we obtain a parabolic maximum
principle in our setting. This is similar to the one in [9] under different conditions and by a
different method.

We now consider the deformation of a submanifold under the mean curvature flow (to
MCF), namely, consider a one-parameter family Ft = F ( · , t) of immersions Ft : M → N with
the corresponding images Mt = Ft(M) such that

d
dt
F (x, t) =

−→
H (x, t), x ∈M,

F (x, 0) = F (x)
(3.16)

are satisfied, where
−→
H (x, t) is the mean curvature vector of Mt at F (x, t). If sup

M0

|−→H | < c1

(const.), sup
Mt(t>0)

|−→H | ≤
√

1 + c(k − 1)k(1 + ρ2
t log2(ρt + 2)), where ρt is the distance from a

fixed point Ft(x0) on Mt, we can choose t sufficiently small, such that ρt is still proper. In fact,

ρt(y) ≈ ρ0(y) +
d
dt
ρt(y)|t=0 · t = ρ0(y) +

〈
∇ρt,

d
dt

〉∣∣∣
t=0

· t
= ρ0(y) + 〈∇ρ0,

−→
H 〉 · t ≥ ρ0(y) − c1t.
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Let f(x, t) = f(F (x, t)) be a smooth function bounded from above on Mt, 0 ≤ t ≤ ε0, which
can also be viewed as a function on M× [0, ε0]. Let ε0 be a small number, such that ρt is proper
for each t ∈ [0, ε0],

Define a function on M × [0, ε0],

g(x, t) =
f(x, t) − f(x0, 0) + 1

[log(ρ2
t (x) + 2)]

1
j

for any j > 0. It is easy to see that g must attain its supremum at the certain point (xj , tj).
We have

g(xj , tj) = sup
M×[0,ε0]

g = sup
Mtj

g.

Thus at (xj , tj),

∇f =
2(f − f(x0, 0) + 1)ρ∇ρ
j(ρ2 + 2) log(ρ2 + 2)

. (3.17)

Then we have

|∇f | ≤ 2(f − f(x0, 0) + 1)ρ
j(ρ2 + 2) log(ρ2 + 2)

→ 0,

as j → ∞. If tj is the first time such that g attains a new maximum, then dg
dt ≥ 0, namely,

df
dt

≥ 2(f − f(x0, 0) + 1)ρ
j(ρ2 + 2) log(ρ2 + 2)

dρ
dt
. (3.18)

Since

dρ
dt

=
〈
∇ρ, d

dt

〉
= 〈∇ρ,−→H 〉 ≤

√
1 + c(k − 1)k(1 + ρ2 log2(ρ+ 2)), (3.19)

from (3.18) and (3.19),

df
dt

≥ 0, as j → ∞.

We also have Δg ≤ 0 at (xj , tj). By direct computation and using (3.1), (3.17), we obtain

Δf ≤ 2(f − f(x0, 0) + 1)(ρΔρ+ 1)
j(ρ2 + 2) log(ρ2 + 2)

≤ 2(f − f(x0, 0) + 1)
j(ρ2 + 2) log(ρ2 + 2)

{2ρ
√

1 + c(k − 1)k(1 + ρ2 log2(ρ+ 2)) + 1} → 0,

as j → ∞. It is not difficult to see that

lim
j→∞

f(xj , tj) = sup
Mt(0≤t≤ε0)

f.

Hence, we have the following maximum principle.

Theorem 3.3 Let Mt be complete mean curvature flow in N with

sup
M0

|−→H | < c1, sup
Mt(t>0)

|−→H | ≤
√

1 + c(k − 1)k(1 + ρ2
t log2(ρt + 2)).
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Let 0 ≤ t ≤ ε0, such that ρt is proper for each t in this interval. Let f be a smooth function
bounded from above on Mt. Then for any ε > 0, there exists a sequence of points {xj} ⊂ Mtj ,
such that

lim
j→∞

f(xj , tj) = sup
Mt(0≤t≤ε0)

f,

and when j is sufficiently large,

|∇f |(xj , tj) < ε,
df
dt

(xj , tj) ≥ −ε, Δf(xj , tj) < ε.

Theorem 3.4 Let Mt be a complete mean curvature flow in N with bounded mean curvature
for 0 ≤ t ≤ ε0. Let f be a smooth function bounded from above on Mt and satisfy the following
evolution equation: ( d

dt
− Δ

)
f ≤ 〈A,∇f〉

for a vector A with uniformly bounded |A|. Then,

sup
Mt

f ≤ sup
M0

f (3.20)

for any 0 ≤ t ≤ ε0.

Proof Suppose sup
Mt

f > sup
M0

f . Then by Theorem 3.3, we have

lim
j→∞

f(xj , tj) = sup
Mt(0<t≤ε0)

f.

For any δ > 0, let f satisfy ( d
dt

− Δ
)
f ≤ 〈A,∇f〉 − δ. (3.21)

Using Theorem 3.3, we have that ∃xj ∈Mtj , such that

Δf(xj , tj) + |∇f ||A| ≤ δ

2
.

It follows that
df
dt

∣∣∣
(xj ,tj)

≤ − δ
2
,

which contradicts the conclusion of Theorem 3.3. Hence we prove (3.20).
Let

f̃ = f − sup
M0

f − δt− δ, ∀δ > 0.

Then f̃ satisfies (3.21). The previous discussion implies

sup
Mt

f̃ ≤ sup
M0

f̃ = −δ,

namely,

f ≤ sup
M0

f + δt.

Letting δ → 0, we have (3.20).



Proper Submanifolds in Product Manifolds 11

4 Geometric Applications

Using the results on the generalized maximum principle in the last section, we can estimate
the mean curvature of k-dimensional properly immersed submanifolds with bounded projection
in N1 in the certain product manifold Nn1

1 ×Nn2
2 (k > n2). In the following we denote

Cb(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
b cot(

√
bt), if b > 0, t <

π

2
√
b
,

1
t
, if b = 0,

√−b coth(
√−b t), if b < 0.

Theorem 4.1 Let N1, N2 be complete Riemannian manifolds of dimensions n1, n2 respec-
tively, and let the radial sectional curvature of N2 satisfy κrad

N2
≥ −c(1 + ρ2

2 log2(ρ2 + 2)),
where c is a positive constant, ρ2 is the distance function from a fixed point on N2. Let
ψ : Mk → N1 × N2 be an isometric immersion of a complete Riemannian manifold of di-
mension k > n2 with mean curvature vector

−→
H . Given q ∈ M, p = π1(ψ(q)) ∈ N1. Let BN1(r)

be the geodesic ball of N1 centered at p with radius r. Assume that the radial sectional curva-
ture κrad

N1
along the radial geodesics issuing from p is bounded as κrad

N1
≤ b (const.) in BN1(r).

Suppose that

ψ(M) ⊂ BN1(r) ×N2

for r < min
{
injN1

(p), π
2
√

b

}
, where we replace π

2
√

b
by +∞ if b ≤ 0.

(1) If ψ : Mk → N1 ×N2 is proper, then

sup
M

|−→H | ≥ (k − n2)Cb(r); (4.1)

(2) If

sup
M

|−→H | < (k − n2)Cb(r), (4.2)

then M is stochastically incomplete.

Proof Define ρ̃1 : N1 ×N2 → R by

ρ̃1(x1, x2) = ρ1(x1) = distN1(p, x1),

and f : Mk → R by

f(x) = ρ̃1(ψ(x)).

We shall prove (4.1) by contradiction, namely, suppose

sup
M

|−→H | < (k − n2)Cb(r).

Since ψ(M) ⊂ BN1(r) × N2, we have that sup
M

f ≤ r < +∞, so by Theorem 3.1 there exists a

sequence {xj} ⊂M , such that

|∇f |(xj) <
1
j
, Δf(xj) <

1
j
.
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In a way similar to (3.9), we get

Δf(xj) =
k∑

i=1

HessN1×N2(ρ̃1(ψ(xj)))(ei, ei) + 〈−→H (xj), gradN1×N2 ρ̃1(ψ(xj))〉, (4.3)

where {e1, · · · , ek} is an orthonormal frame on M .
Letting { ∂

∂ρ1
, E1, · · · , En1} be an orthonormal basis for Tπ1(xj)N1 and the normal coordi-

nates (x1
2, · · · , xn2

2 ) on N2 near π2(xj), we choose

ei = ai
∂

∂ρ1
+

n1∑
j=2

bijEj +
n2∑
l=1

cil
∂

∂xl
2

.

Since

1 = |ei|2 = a2
i +

n1∑
j=2

b2ij +
n2∑
l=1

c2il,

by direct computation and the Hessian comparison theorem, we have

HessN1×N2(ρ̃1(ψ(xj)))(ei, ei) = HessN1(ρ1(xj1))(π1∗ei, π1∗ei)

=
n1∑

j=2

b2ijHessN1(ρ1(xj1))(Ej , Ej)

≥
n1∑

j=2

b2ijCb(r) =
(
1 − a2

i −
n2∑
l=1

c2il

)
Cb(r), (4.4)

|∇f |2(xj) =
k∑

i=1

〈gradN1×N2 ρ̃1(ψ(xj)), ei〉2

=
k∑

i=1

〈gradN1ρ1, ei〉2 =
k∑

i=1

a2
i <

1
j2
. (4.5)

We observe that at π2(xj),

k∑
i=1

n2∑
l=1

c2il =
n2∑
l=1

|grad(xl
2 · ψ)|2 ≤

n2∑
l=1

|gradN2(xl
2)|2 = n2. (4.6)

Thus from (4.3)–(4.4), we have

1
j
>

(
k −

k∑
i=1

a2
i −

∑
i,l

c2il

)
Cb(r) − sup

M
|−→H |.

Using (4.5) and (4.6), it follows that

1
j

+
Cb(r)
j2

+ sup
M

|−→H | > (k − n2)Cb(r). (4.7)

Letting j → +∞, we get

sup
M

|−→H | ≥ (k − n2)Cb(r).
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This is a contradiction. Hence, (4.1) is proved.
To prove (4.2), we assume that M is stochastically complete. Define h : N1 ×N2 → R by

h(x1, x2) = gb(ρ1(x1)),

where

gb(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − cos(
√
bs), if b > 0, s <

π

2
√
b
,

s2, if b = 0,

cosh(
√−bs), if b < 0.

Then f = h ·ψ is a C∞ bounded function on M , and by [16, Theorem 1.1], we know that there
is a sequence {xj} ⊂M , such that

f(xj) > sup
M

f − 1
j

and Δf(xj) <
1
j
.

Similarly as before, we get

HessN1×N2(h(ψ(xj)))(ei, ei)

= HessN1gb(ρ1(xj1))(π1∗ei, π1∗ei)

= g′′b (ρ1(xj1))a2
i + g′b(ρ1(xj1))

n1∑
j=2

b2ijHessN1(ρ1)(xj1)(Ej , Ej)

≥ g′′b (ρ1(xj1))a2
i + g′b(ρ1(xj1))Cb(ρ1(xj1))

n1∑
j=2

b2ij

= g′′b (ρ1(xj1))a2
i + g′b(ρ1(xj1))Cb(ρ1(xj1))

(
1 − a2

i −
n2∑
l=1

c2il

)

= g′b(ρ1(xj1))Cb(ρ1(xj1))
(
1 −

n2∑
l=1

c2il

)
.

Hence

1
j
> Δf(xj) =

k∑
i=1

HessN1×N2(h(ψ(xj)))(ei, ei) + 〈−→H (x), gradN1×N2h(ψ(xj))〉

≥ g′b(ρ1(xj1))Cb(ρ1(xj1))
(
k −

∑
i,l

c2il

)
+ g′b(ρ1(xj1))〈gradN1ρ1,

−→
H 〉

≥ g′b(ρ1(xj1))(Cb(ρ1(xj1))
(
k − n2) − sup

M
|−→H |

)
.

Letting ε→ 0, j → +∞, and since lim
j→∞

g′b(ρ1(xj1)) > 0, we get

sup
M

|−→H | ≥ (k − n2)Cb(r).

It is a contradiction.

Remark 4.1 This implies that when κrad
N1

≤ b and κrad
N2

≥ −c(1 + ρ2
2 log2(ρ2 + 2)), where

b, c > 0 are constants, ρ2 is the distance function from a fixed point on N2, there does not
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exist any complete proper minimal immersion ψ : Mk → Nn1
1 × Nn2

2 (k > n2) which has
bounded projection in N1. In other words, any k-dimensional complete minimal submanifold
in Nn1

1 ×Nn2
2 (k > n2) with bounded projection in N1 cannot be proper.

Remark 4.2 In [1], the authors proved similar results in Nn−l×R
l by using the generalized

Omori-Yau maximum principle due to S. Pigola, M. Rigori and A. Setti’s [16]. The above
theorem generalizes their results.

Corollary 4.1 (see [1, Corollary 1]) Let ψ : Mn−1 → R
n be a complete hypersurface with

mean curvature
−→
H . If ψ(M) ⊂ BR2(r) × R

n−2 and sup
M

|−→H | < 1
r , then ψ cannot be proper.

Let us recall that a submanifold f : Σn → R×ρ M
n is called two-sided if its normal bundle

is trivial, namely, there is a globally defined unit normal vector field. We can then define the
smooth angle function ν : Σn → [−1, 1] by ν(p) = 〈N(p), ∂

∂t 〉, where N denotes the global
normal field.

Theorem 4.2 Let f : Σn → R ×ρ M
n be a two-sided complete proper hypersurface of

constant mean curvature H, where M is a complete n-dimensional Riemannian manifold of
constant sectional curvature κ0. Let y(t) = ρ′(t)

ρ(t) . Assume that max{−κ0, 0} < y′(t) ≤ a,
y2(t) ≤ b (a, b are constants), and the angle function ν does not change the sign. If f(Σn) ⊂
[t1, t2] ×Mn, where t1, t2 ∈ R are finite, then f(Σn) is a slice.

Proof Using the relationship between the curvature tensors of a warped product (see [13]),
by direct computation, we obtain the sectional curvature of R ×ρ M

n

κ = R(Ei, Ej , Ei, Ej)

= RMn

((Ei)Mn , (Ej)Mn , (Ei)Mn , (Ej)Mn) − (ρ′)2

ρ2
(〈(Ei)Mn , (Ei)Mn〉〈(Ej)Mn , (Ej)Mn〉

− 〈(Ei)Mn , (Ej)Mn〉〈(Ei)Mn , (Ej)Mn〉)

− ρ′′

ρ
〈(Ei)Mn , (Ei)Mn〉

〈
Ej ,

∂

∂t

〉2

+
ρ′′

ρ
〈(Ei)Mn , (Ej)Mn〉

〈
Ei,

∂

∂t

〉〈
Ej ,

∂

∂t

〉

+
ρ′′

ρ
〈(Ei)Mn , (Ej)Mn〉

〈
Ei,

∂

∂t

〉〈
Ej ,

∂

∂t

〉
− ρ′′

ρ
〈(Ej)Mn , (Ej)Mn〉

〈
Ei,

∂

∂t

〉2

= κ0 − (ρ′)2

ρ2
−

(ρ′′
ρ

− (ρ′)2

ρ2
+ κ0

)(〈
Ei,

∂

∂t

〉2

+
〈
Ej ,

∂

∂t

〉2)
, i �= j, (4.8)

where {Ei} is an orthonormal frame on R ×ρ M
n, (Ei)Mn = Ei − 〈Ei,

∂
∂t 〉 ∂

∂t .
Since max{−κ0, 0} < y′(t) ≤ a, y2(t) ≤ b, we get

κ ≥ κ0 − (ρ′)2

ρ2
−

(ρ′′
ρ

− (ρ′)2

ρ2
+ κ0

)
= −ρ

′′

ρ
= −y′(t) − y2(t) ≥ −a− b.

Let ∇ and ∇ be the Levi-Civita connection on Σn and R ×ρ M
n respectively, and let u be

the height function of Σn. Then the gradient of u is

∇u =
∂

∂t
−

〈 ∂

∂t
,N

〉
N =

∂

∂t
− νN, (4.9)

where N is the global normal field. So we have

|∇u|2 = 1 − ν2. (4.10)
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It follows from (4.9) that

∇ei(∇u) =
ρ′(u)
ρ(u)

(
ei −

〈
ei,

∂

∂t

〉)
− ei(ν)N + νA(ei),

where {ei} is an orthonormal frame on Σ. Then we get

Δu = 〈∇ei(∇u), ei〉 = 〈(∇ei(∇u))	, ei〉

=
〈ρ′(u)
ρ(h)

(
ei −

〈
ei,

∂

∂t

〉 ∂

∂t

)
+ νA(ei), ei

〉
= y(u)〈ei − 〈ei,∇u〉∇u, ei〉 + νH

= y(u)(n− |∇u|2) + νH. (4.11)

According to Theorem 3.2, using (4.10) and (4.11), for any k ∈ N, there exists a sequence
{xk} ∈ Σn, such that

lim
k→∞

u(xk) = sup u <∞, (4.12)

|∇u|2(xk) = 1 − ν2(xk) <
(1
k

)2

, (4.13)

Δu(xk) = y(u(xk))(n − |∇u|2(xk)) + ν(xk)H(xk) <
1
k
. (4.14)

Inequality (4.13) gives that

lim
k→∞

ν(xk) = sgn ν. (4.15)

Using (4.12)–(4.15), we get

y(sup u) ≤ − 1
n

sgn ν ·H. (4.16)

Similarly, applying Theorem 3.2 to −u, we obtain that

y(inf u) ≥ − 1
n

sgn ν ·H, (4.17)

where inf u > −∞. From (4.16)–(4.17), we get y(inf u) = y(sup u). Since y′(t) > 0, we conclude
that sup u = inf u, namely, f(Σn) is a slice.

Remark 4.3 In [2], the authors gave a similar result under the certain curvature condition
of the hypersurface. In our given ambient space, we do not require that the Ricci curvature of
the hypersurface Σn is bounded from below while we need the proper condition.

Corollary 4.2 Let f : Σn → Mn × R be a complete proper hypersurface of constant
mean curvature H, where M is a complete n-dimensional Riemannian manifold of constant
sectional curvature κ0. Assume that the angle function ν does not change the sign. If f(Σn) ⊂
Mn × [t1, t2], where t1, t2 ∈ R are finite, then f(Σn) is minimal.

Proof ρ = 1, from (4.8), we have that the sectional curvature of Mn × R is κ = κ0(1 −
〈Ei,

∂
∂t 〉2 − 〈Ej ,

∂
∂t 〉2). So −|κ0| ≤ κ ≤ |κ0|. Then by (4.16)–(4.17), it follows that H = 0.

Corollary 4.3 Let Mn be a complete n-dimensional Riemannian manifold of constant
sectional curvature and u : Mn → R be a smooth function. Let G(u) = {(x, u(x)) ∈Mn×R;x ∈
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Mn} be a complete entire graph with constant mean curvature. If u is bounded, then the graph
G(u) must be minimal.

Proof Actually u is the height function of the graph. Let ∇̃ be the Levi-Civita connection
on Mn. It is easy to know that the unit normal field of the graph is

N =
(
− ∇̃u√

1 + |∇̃u|2
,

1√
1 + |∇̃u|2

)
.

It follows that ν = 〈N, ∂
∂t 〉 = 1√

1+|∇̃u|2
> 0. Then by Corollary 4.2, the graph G(u) is minimal.
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