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Spacelike Graphs with Parallel Mean Curvature in
Pseudo-Riemannian Product Manifolds

Zicheng ZHAO!

Abstract The author introduces the w-function defined on the considered spacelike graph
M. Under the growth conditions w = o(log z) and w = o(r), two Bernstein type theorems
for M in R%™™ are got, where z and r are the pseudo-Euclidean distance and the distance
function on M to some fixed point respectively. As the ambient space is a curved pseudo-
Riemannian product of two Riemannian manifolds (X1, g1) and (32, g2) of dimensions n
and m, a Bernstein type result for n = 2 under some curvature conditions on ¥; and X
and the growth condition w = o(r) is also got. As more general cases, under some curvature
conditions on the ambient space and the growth condition w = o(r) or w = o(/r), the
author concludes that if M has parallel mean curvature, then M is maximal.
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1 Introduction

Bernstein theorem says that the only entire minimal graph in R"*! is a hyperplane when
n < 7 (due to Bernstein for n = 2, de Giorgi [8] for n = 3, Almgren [1] for n = 4, and Simons
[15] for n = 5,6,7). Bombieri, de Giorgi and Giusti [2] gave counterexamples when n > 7.
Chern [7] and Flanders [10] proved independently that the only entire graphic hypersurface in
R"*! with constant mean curvature must be minimal.

In Lorentz-Minkowski space, there is also the Bernstein result, which says that the only
entire maximal hypersurface in R} is a hyperplane (see [3] for n < 4 and [6] for all n). Jost
and Xin [11] extended it to a higher codimension, which is as follows.

Theorem 1.1 (see [11]) Let M be a spacelike extremal n-submanifold in RF™. If M is
closed with respect to the Fuclidean topology, then M has to be a linear subspace.

Besides the hyperboloids, Treibergs [16] constructed many nonlinear examples of complete
spacelike hypersurfaces with nonzero constant mean curvature. On the other hand, Xin [1§]
showed that when a constant mean curvature spacelike hypersurface M in R?“ has a bounded
Gauss image, it must be a hyperplane. Later, Xin and Ye [22] improved this result by proving
that when the Gauss image lies in a horoball in the hyperbolic space, M will also be a hyper-
plane. In [19], Xin extended the result in [18] to higher codimension, that is, if an n-dimensional
spacelike submanifold M in R”"™ has parallel mean curvature and a bounded Gauss image, it
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must be an n-plane. By relaxing the boundedness of the Gauss image to a controlled growth,
Dong [9] proved that M is still an n-plane. For more details on spacelike submanifolds in
pseudo-Euclidean space, please consult Xin’s book [17].

To state our results, let us introduce the w-function at first.

Let N = (31 x 32,91 — g2) be the pseudo-Riemannian product,where (31, ¢91) and (22, g2)
are Riemannian manifolds of dimensions n and m. Let K>, Ric™, R¥ denote the sectional
curvature, Ricci curvature and curvature tensor of ¥; respectively, i = 1,2. Let M = {(z, f(x)) :
x € X1} be a spacelike graph over ¥;, where f : ¥; — X5 is a smooth map. For any p € ¥4,
df is a linear map from T,%; to Ty, X2. As in [14], we can use singular value decomposition
to find the orthonormal basis {a;} for T;,%1, and {aa} for T X2, such that

df(az) = )\ianﬂ-.
Since M is spacelike, |\;| < 1. Notice that A; = 0 when ¢ > min{n, m}. Set
— (0 + At
ei = ————(a; + \itn1:),
T— X2 i

N
1
bq = ———o—

\/1_)‘3771

Then ¢; € T,M and e, € T;-M are Lorentzian bases of N at p. Define the w-function as

(/\a—naoz—n + aa)-

w={e1 A - Nen, a1 AN\ ay).

Obviously, it is independent of the choice of the orthonormal basis of ¥; and the orthonormal
basis of M. Notice that we also have

we— (1.1)

T10 - 2)

(3

In [13], Li and Salavessa defined cosh = W, where 6 is called the hyperbolic
et{g1—J" 92
angle. When the ambient space is R%"™, Dong [9] defined a function

1

n+m '
det (1- 35 fofe)
a=n+1

Our definition here is similar to the one in [21], where Xin and Yang defined it for a sub-

*() =

They are essentially the same as w.

manifold in Euclidean space. The role of w here is somewhat like v = % in [21] (see also
12)).

When the ambient space is R%F, we can define the w-function in a way parallel to [21],
and in this way, we do not need the graph condition.

Let G7',,, be the pseudo-Grassmannian manifold of all spacelike n-subspaces in RF™ Tt is

m
n,m?

spanned by a unit n-vector e; A - - A e,, we define a

a symmetric space of non-compact type. Fix Py € G which is spanned by a unit spacelike

m
n,m>

n-vector e1 A---Ae,. Forany P € G
function w on G7',,, by
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W(P)=(P,Py) =(e1 N+~ Nen, E1A--Aép).

For an n-dimensional complete spacelike submanifold M in Rt™, we define the generalized
Gauss map v: M — G}, by

v(x) =T.M € G}',..

Then, define w = w o~y. When M is a graph in this case, we can take 1, --,&, to be an
orthonormal basis of R™. Then it is easy to see that the two definitions are equivalent.
Now we state our first two results as follows.

Theorem 1.2 Let M be a spacelike submanifold of RT™ with parallel mean curvature,
which is closed with respect to the Euclidean topology of RIST™. Let 2 = (X, X) be the pseudo-
FEuclidean distance of R“T™ where X € RIMT™ s the position vector. Assume 0 € M. If the

w-function satisfies
w(z)

9 log z(x) -
when z is restricted to M, then M must be an n-plane.

Theorem 1.3 Let M be a spacelike submanifold of R™T™ with parallel mean curvature,

which is closed with respect to the Euclidean topology of RT™. If the w-function satisfies
w(z)

li =0
oo r(z) ’

where r(x) is the distance function of M with respect to some fixed point xo, then M must be
an n-plane.

Under the assumptions that M is an entire graph with parallel mean curvature and w = o(p),
where p = \/E—xf is the Euclidean distance of R™, Dong [9] concluded that M is an n-plane.
It is easy to see that p? > 2 and p > r (here we take z¢ as f(0) in Theorem 1.3, where 0 is
the origin of R™), so the conditions on w in Theorems 1.2 and 1.3 all imply that pEToo % =0.
Consequently, we can get the above two theorems by Dong’s result when M is an entire graph.
In Section 4, we give their proofs in another way. Our method is also valid when the ambient
space is a curved pseudo-Riemannian product manifold.

When N is a curved pseudo-Riemannian product manifold, Salavessa [14] proved, under
some condition on the second fundamental form at infinity, that if a spacelike graphic submani-
fold M has parallel mean curvature, and the Cheeger constant of M is zero, then M is maximal.

Li and Salavessa [13] proved the following theorems.

Theorem 1.4 (see [13]) If M is a complete maximal spacelike graphic surface, and for each
p € X1, K¥1(p) > max{0, K=2(f(p))}, then M is totally geodesic.

Theorem 1.5 (see [13]) Assume that M is a complete spacelike graph with parallel mean
curvature, and for any p € X1, Riczl(p) >0, K¥(p) > K*(f(p)). If K**, K*2 and w are
all bounded, then M is maximal.

By considering some special cases of 31 and Y5, we can relax the condition on w in Theorem
1.5 to w = o(r) in the following theorem, and also conclude the maximal results. Furthermore,
by Theorem 1.4, we can get a Bernstein type result for the first case.
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Theorem 1.6 Let M = {(p, f(p)) : p € X1} be a complete spacelike graphic submanifold
with parallel mean curvature. Assume that the w-function satisfies
w(z)

li =0
oo r(z) ’

where r(x) is the distance function of M with respect to some fized point xo. Then

(i) If n = 2, that is, ¥ is a Riemannian surface, and K > 0, K5 < 0, M must be totally
geodesic.

(i) If X1 = R", X5 is a Riemannian surface with KQE <0, then M must be mazimal.

(iii) If N = R™ x H™, the pseudo-Riemannian product of the Euclidean space and the
hyperbolic space, M must be mazximal.

When ¥ is 1-dimensional, ¥ is complete, Ric™ > 0, Li and Salavessa [13, Proposition 2]
also proved that M is maximal provided w = o(r).
When the conditions on ¥; and 35 are the same as in Theorem 1.5, we can relax the

condition on w to w = o(r2), and get the following theorem.

Theorem 1.7 Let M = {(p, f(p)) : p € X1} be a complete spacelike graphic submanifold
of N = (31 X ¥a,91 — g2), which has parallel mean curvature. If
(i) K> and K> are bounded, and for any p € ¥1, Ric™ (p) > 0, K> (p) > K>2(f(p)).

(ii) the w-function satisfies

li =
= )

where r(x) is the distance function of M with respect to some fized point xq, then M must be

0,

mazximal.

Finally, we point out that our proofs of the theorems depend on various generalized maximal
principles, which we give as the lemmas in Section 3. Those are interesting in their own right
and would be useful in other problems.

2 Local Formulas

Let N be an (n+ m)-dimensional pseudo-Riemannian manifold of index m. Let M be an n-
dimensional spacelike submanifold of N. We choose a local Lorentzian frame field ey, -, €4m
in N, such that when restricted to M, ey, - , e, is a tangent frame field. Let wy, -+ ,wy4m be
its dual frame field. We agree with the following range of indices:

ABC,---=1,---,n+m; k=1, n; a,B,y,---=n+1,--- . n+m.
Then the pseudo-Riemannian metric of N is given by
ds* = Zw? — Zwi = ZGAwi,
where ¢; = 1, ¢, = —1. The structure equations of N are given by
dws = epwap Awp, wap+wpa=0,

1
dwap = Z €cwac NweB — 3 Z ecepKapcpwe Nwp.
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When restricted to M, w, = 0, we may put
Wia = h%w]‘, (22)

where h; are components of the second fundamental form of M in N. The induced Riemannian

metric of M is given by ds3, = > w?, and the structure equations of M are

dw; = Zwij ANwy,

dw;j = Zwik ANwyj — % Z Rijriwr A wy. 23)
From (2.1) and (2.3), we have the Gauss equation
Rijrr = Kijr — »_(hgihS — hihSy). (2.4)
The covariant derivative of hf; is defined by
D higwn = dhf + Y hfw + Y hijwk — ) hjwsa. (2.5)
The exterior differentiation of (2.2) gives
S dng Aws =3 (= B — hri + Bwpe - %Kiakjwk) Aw;. (2.6)
From (2.5) and (2.6), we have the Codazzi equation
ik — P = Kiajk- (2.7)

The mean curvature vector of M in N is defined by

1 o
H = Eh”ea.

If .
DH = —hjjwreq =0,
n

M is said to have parallel mean curvature. If H = 0, M is called a maximal spacelike subman-
ifold.

Let ai,-- -, apim be another local Lorentzian frame field, and 61, - - - , 0,41, be its dual frame
field. Denote 045 as the connection forms of 61, , 0, 4m. Let w = (epwap), 0 = (egfap)
(we do not take the sum with respect to B here), which are (n+m) x (n+m) matrices. Write

€1 ay

€nt+m Gn+m

Then there exists a reversible matrix A, such that
e = Aa. (2.8)
Take its covariant differentiation. Then

wRe=(dA+ Af) @ a= (dA+ AD)A ' @e,
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so,
w=(dA)A™! + A9A".
From
0=d(AA™") = (dA)A™' + AdA™!,
we get
dA™ = —A"Y(dA) AL,
SO
do=—dANdA ™ +dANOA™ + A(dO)A™! — AGdA™!
= (dA)A A (dA)AT + dANOAT + A(dO)A™ + AG N A™H(dA)ATE,
wAw=(dA)AT' A (dAA™Y + AGNOAT - dANOAT 4 AGA™I A (dA)ATY.
Then
do—wAw=A(dd —0NOA,
that is
egecepKapocpwe Nwp = AAE(€F€G€HK%FGH9G A QH)A;‘}B.
So
1 | Bc(e Op(e
egecepKapop = eregenAap Ko panArg 92563 9§Eeg;
= ercenAapKEpon Arp(AccApa — AcnApe), (2.9)

where K? is the curvature tensor of N with respect to the basis {ai, a0}

3 Generalized Maximal Principles

We state some propositions first, which will be used in the proofs of the following lemmas.

Proposition 3.1 (see [11]) Let z = (X, X) be the pseudo-FEuclidean distance of RI%T™,
where X € RMF™ s the position vector. Let M be an n-dimensional spacelike submanifold of
R™F™ with parallel mean curvature. Assume that M is closed with respect to the Euclidean
topology of R™T™ and 0 € M. Then z is a proper function on M.

Proposition 3.2 (see [11]) Let M be a space-like submanifold in pseudo-FEuclidean space
R™T™ of index m with parallel mean curvature. Let z be the pseudo-distance function on M. If
for some k > 0, the set {z < k} is compact, then there is a constant b depending only on the
dimension n and the norm of the mean curvature |H|, such that for all x € M with z < %,

[Vz| < b(z+1).

Proposition 3.3 (see [4]) Let M be a complete Riemannian manifold of dimension n with
Riccl, > —cF(r), where ¢ > 0 is constant, r is the distance from a fized point xq to the point
z, F': R — R is a nondecreasing function and F > 1. If x is not on the cut locus of the point
xo, then for r(z) > r(xg),

Ar(z) < /14 (n —1)cF(r(x)).
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Lemma 3.1 Let z = (X, X) be the pseudo-Euclidean distance of RIF™, where X € RIVE™
is the position vector. Let M be an n-dimensional spacelike submanifold of RI:F™ with parallel
mean curvature. Assume that M is closed with respect to the Fuclidean topology, and 0 € M.
Then for any C?-function f defined on M satisfying

f(z)

2(x)——+oo log z(x)

=0, (3.1)

when z is restricted to M, there exists a sequence {qi} in M, such that
Jm fge) =sup f, - lim [VF(gr)| =0, lim Af(g) <0.

Proof By Proposition 3.1, we know that z > 0, and is proper on M. Together with
Proposition 3.2, we have

[Vz(2)| < er(z(x) + 1), Vae M, (3.2)
where ¢; is a constant depending on n and |H| only. By [20, (2.24)],
Az(x) < coz(x) +c3, Yo € M, (3.3)

where ¢g, ¢35 are also constants depending on n and |H| only.
Let {ex} be a sequence of positive numbers, such that ¢ — 0 as k — oco. Let

fi(@) = f(x) — exlog(z(z) + 1). (3-4)

Then by the condition on f, f — —o0 as z — +00. Since z is proper, the set {z(x) < C:x €
M} is compact for any constant C' > 0, so fi has a lower bound, say A, on it. Then there is a
constant C' > C such that fi(z) < A for z € {z(x) > C : 2 € M}, so f;, attains its maximum
at some point g € {z(z) < C:xe M}, and thus,

Vik(ar) =0, Afi(gr) <0. (3.5)
From (3.2)—(3.5), we have
. L Vz(qr)|
A [Vienl = Jim ey v1 =0

Selw) V) y
2(qr) +1 (2(qr) + 1) '

Jim, Af(ar) < Jim e

If there is a subsequence {qr, } # {qx}, such that llim f(qxr,) = sup f, then, by still denoting

{qr, } as {qr}, our proof is completed. Otherwise, we claim that klim f(qr) =sup f. In fact, if
— 00

this were not true, then for an arbitrary big kg, we can find ¢ € M and § > 0, such that

fla) =6 = flae), k=ko. (3.6)

Since

felar) = flar) — exlog(2(qr) + 1) > fi(q) = f(q) — exlog(z(q) + 1),
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we have
Flar) = f(q) + ex(log(z(qr) + 1) — log(2(q) + 1)).
If there is a subsequence of {g;} (it may be {qx} itself), which we still denote as {gi}, such
that z(qr) — +o0, then
log(z(qx) +1) —log(2(q) +1) >0
for k big enough, and then f(gx) > f(g), which contradicts (3.6).
If z(gx) is bounded, then

Jim ey (log(=(g¢) + 1) ~ Tog(2(g) + 1)) = 0,
so f(qx) > f(g), which is again a contradiction to (3.6). Thus we complete the proof.

Lemma 3.2 Let M be a complete Riemannian manifold of dimension n with Ricci curvature
bounded below by —c(r(z) + 1), where r(x) is the distance function of M with respect to some
fized point xg, and ¢ > 0 and 0 < a < 1 are constants. Then for any C%-function f defined on

M satisfying @
flz

r—+too pl—o (:C) -

there exists a sequence {qi} in M, such that
Jm flgr) =sup . lim [V f(ge)| =0, lim Af(g) <0

Proof By Proposition 3.3, we get

Ar(z) < \/1 + (n — De(1 + r(z))?e, (3.7)

when z is not the cut locus of zg.
Let {ex} be a sequence of positive numbers, such that ¢ — 0 as k — oco. Let

fu(x) = f(z) — en(1 +r(z)' 7 (3-8)

Then by the condition on f, fr — —oo as r — +00, so fi attains its maximum at some point
qx- As in [5], we can assume that fj is C? in a neighborhood of g, and thus,

Vii(a) =0, Afi(qr) <O0. (3.9)
From (3.7)-(3.9), we have
. s \Vr(g)
Jm [V f(ge)| = lim e(1— Q)W =0,
. : r(qk) Vr(aw)l?
Ji, 7(w) < Jim e0 =) (37 — o )

VIt —D)e(+ ()
< Jlim ex(l—a) (1 +r(qr))™ :

If there is a subsequence {qx,} # {qx}, such that lim f(qr,) = sup f, then, by still denoting

=0.

{qr, } as {qr}, our proof is completed. Otherwise, we clalm that hm f(qr) =sup f. In fact, if
this were not true, then for an arbitrary big kg, we can find ¢q € M and 0 > 0, such that

fla) =6 = flae), k= ko. (3.10)
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Since

Felar) = flar) = en(L+r(a) ™ = fila) = fla) —ex(1 +7(q)' 77,

we have
Flar) > F@) + e +7(gr) ™ = (1 +7(g))' ™).

If there is a subsequence of {q;} (it may be {qx} itself), which we still denote as {qx}, such
that r(gx) — 400, then
(1+7(gr))' = = (1+7(q)' ™" >0

for k big enough, and then f(qx) > f(g), which contradicts (3.10).
If r(qx) is bounded, then

dim (14 7(ae))! ™ = (14 r()' ) =0,

so f(qr) > f(q), which is again a contradiction to (3.10). Thus we complete the proof.

4 Proofs of Main Theorems

Proof of Theorem 1.2 Since M is closed with respect to the Euclidean topology, and has
parallel mean curvature, by [11, Theorem 3.3], M is complete. So M is an entire graph (for
details, see [20, Section 2]).

The following proof is divided into two steps. In Step 1, we calculate the Laplacian of w,
and give it a nonnegative lower bound in terms of w, \;, and the components of the second
fundamental form. In Step 2, we use Lemma 3.1 to get a sequence {gy } such that w(g;) — sup w,
|Vw(qr)| — 0, Aw — 0 as k — +o00. Then by careful analysis, we get that |B|?(gx) — 0, and
thus H = 0. Then by Theorem 1.1, we conclude that M is an n-plane.

Step 1 Let

Wi = (€1 A Neag Ao Nen, a1 A+ Aay),

which is got by substituting e, for e; in w. And get wiqo;s by substituting eg for e; in wjq.
Then
AiAjw, a=n+1i,0=n+],

Winip = § —ANiAjw, a=n+j,0=n+1, (4.1)

ANw, a=n-+i,
Wie, =
0, otherwise.

0, a#En+i,

Now we go on to calculate Aw.

dsz(el/\---/\(dei)/\---/\en, ap A Aag)

B
_ E _ § «
- - WiqWiq = — hikwiawkv
2%

ika

D( =3 Hwia) = = 3 d(hiwia) = 3 hijwias

ilo

- Z (dhzqk + Z h?f%k)’wia - Z hdwie,
ia ! et
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dwio, =d{er N Neg A= Nep, a1 A+ Nay)
== wigler Ao Aea Ao NegAveNen, ar A+ Aay)

i
B

—l—Zwﬁ(el/\---/\ea/\---/\ei/\---/\en, ap A Aag)

J#i
—l—waiw—Zwa@(el/\---/\eg/\---/\en, ap A Aag)
B
- - ijﬁwwzjﬁ ijzw]a + Wi — Zwaﬁwlﬁv
iz J#
SO
D(= Y ngwia) = D7 (= 3 hiawia + Y hihGwiaje + > K hGw e,
1 l 1 i#£] 1
af
and

- Z hirWia + Z h?kh?kwiajﬁ + Z hihiw

ika i ika
= — Z(hgki + Kpaik)Wia + Z h?kh?kwmjg + Z(h?k)Qw. (4.2)
ika i#] ika
ko
From (4.1), we have

> bl wiags = NAjw(hF R — R R, (4.3)

i i

ko k

When the mean curvature vector is parallel,
Z hkkz (44)

Since R™F™ is flat, we also have
- Z Kiaikwio =0, (45)
ika
and from (4.2)—(4.5),
Aw = w(|BE + Y AN R = )

i#]
k

=w(|Bf + Z (Z)\ h"“) =S R =23 AR ), (46)
ik

7<]

where |B|? is the square length of the second fundamental form. Let = 0, when ¢ > m.

We rewrite |B|? as

n-+i
hjk

B = S+ SO + ()R), (17)
ik

i<y
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as in [14]. Then from (4.6)—(4.7) and (1.1),

Aw > w(z hn—i—z + Z hn+z thrj) )7

7<]

+ Z (ZA h”“) ST =23 h”“h”*ﬂ)
ik

1<J

>w Y (1= ARG +wd (1= NN + (R

1<7

> wz (1= A2)(hiF)? + —wz (1= A7+ 1= A (W) + (R

7<]

)RR 4 - m 1=A iy s
Zw%:(l A (R )™ + ;(\/1 ¥ \/1_>\2> + (h; 7 )?)

>w Y (1= AR+ (A2 + (h)?). (4.8)
ik

1<J
Step 2 Since Aw > 0, by Lemma 3.1, we can get a sequence {¢;} C M, such that
llim w(q;) = sup w, llim [Vw(q)| =0, llim Aw(g) = 0. (4.9)

From (4.8)—(4.9), we have

llirglo h?,ji(ql) =0 for i j and Vk, (4.10)
Jim By Jw(@) (1= A (@) (hi (@)* = 0.

In the following, we will conclude that llim hZ“(ql) =0. Thus, H = 0.
—00
(I) If for some Iy,
Jim w(@)(L = X (@) =0,

since
V1= I
wl—)\ , 1 # I,
( I1(1—22) Sy
i#lo
1—)\2 1—)\2
wi )= —MAZA S VIZAN oy
31;1-(1 —2) \/1 Y
we have
Jim w(@) (1= A (@) = +oo, i #To.
So

Jim T (q) =0, i #Io. (4.11)
—00
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By (4.10), we have
lim A (q)h5 (q) =0, i # Io.
[—o00 0
Since llim [Vw(q)| =0, ie., llim w(q) Y Ni(q)h (1) = 0, Yk, we can let k = Ij, and together
— 00 — 00 i

with the above equation, we have

Jim g ()i, (ar) = 0.

Iolo

Since llgrolo A1, = 1, we have
Jim hﬁ;}O(ql) =0. (4.12)
Thus, by (4.10)—(4.12), we finally get
H = lim H(q) =0,

since M has parallel mean curvature.
(IT) If for all 4,

llinélo w(g)(1 = A (q1)) #0,

there exists an €; > 0, and a subsequence {g; } of {¢;}, such that

w(g) (1 = Ai(a)) > 1.

If for some 7 > 1,
lim w(g})(1 — M2(q})) =0,

l—o0

then by (I), we can get H = 0. Otherwise, we continue to choose a subsequence {¢7?} of {g}},
such that for some e; > 0,

w(g?)(1 = A3(q)) > e

Continuing this process, we finally get a subsequence of {¢;}, which we still denote as {¢;}, and
€0 > 0, such that

w(g) (1 =X (a)) > €0, Vi
So, we can conclude that
Ji 12 ) =0
Together with (4.10), we again get
H=0.
Finally, by Theorem 1.1, we conclude that M is an n-plane.

Proof of Theorem 1.3 First M is an entire graph. Then as Step 1 in the proof of Theorem
1.2, we also have (4.8)

Aw>le—>\2 W2 > (R + (B )?).

L<J
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As Kiji = 0, from the Gauss equation, we have
Ric™ (fis fi) = = D _(hihG; — hish3)
«@
1 2 p?
= (-3 2m) - TP+ 0g)?
[e% 7 e
2
n
> _I |H|27
where {f1,---, fn} is an orthonormal basis of M that diagonalizes RicM. So M and w satisfy

the conditions in Lemma 3.2 with a = 0. Again, we can get a sequence {¢;}, such that

lim w(q;) =supw, lim [Vw(g)| =0, lim Aw(g)=0.
l—00 l—o00 l—o0

Then following the proof of Theorem 1.2, we can get that M is maximal. By Theorem 1.1, M

is an n-plane.

Proof of Theorem 1.6 We also divide the proof into two steps.
Step 1 We have that (4.2)

Aw = =" (hfy + Kiaie)wia + 3 hghDwiajs + > (hG)*w

ko i#] ko
kafB

still holds. Now we show that
- Z KrairWia > 0.

iko

Without loss of generality, we can assume n > m, and write

1 )\1
V1-X2 \/1-X2
1
1-A2,
€1
= 1
1-)2
e n
n+m A 1
1-72 1-x2
Am
1-22,
ai ai
. c D
o “\DT E
Ap4+m Gn+m

Then

1-X2

ay

aner
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From (2.9), we have

~Kpaik = erecen Ake Ky pen Apl (Aic A — Airr Arc)
- Ak]K A (AerkG AisAkr)

jlrs

- AkBKﬂryaTA—y(y (AiUAkT - AiTAka)
2o
= — Klg(afn)ki
V== 02,1 -A3)
A2\,
+ k Kot kyalnt k) (i) - (4.13)

VA =22)(1=x2_ )01 = x)

Let II;; and H;j be the two planes spanned by {a;,a;} and {a,yi, ant;} respectively. Notice
that

0 b 0 IDY
Khiki = Biaris - Klniynti) () n4) = ~ k) (n) (nk) (i) (4.14)
Then by (4.1), (4.13)—(4.14), we have

K o 2>‘k>‘ K 2)\12 K0
_ %{; kaikWia = %; m (n+k)(n+z)(n+k)(n+l)w + m kikiW
2/\2)\2 A2
k¥ Kzl H?, _ KZQ H/ 7 . 3 ;
((1 _ )\2)(1 — )\%)( (i) (IT;,)) + —5=Ric™ (a ))

>0

- )

since for any p € 1, Ric™ (p) > 0, and K> (p) > K>2(f(p)). Then we also have that (4.8)
holds.

Step 2 Let {f1, -, fn} be an orthonormal basis of M that diagonalizes RicM at a given
point, and by the Gauss equation, we have

Ric (fi, f) = 3 (K (fi,fj,fi,m—Z(hzh;z G)

J#i
=Y K(fi. i, fir 1)) +Z( %Zh;*j) ——|H|2+Z . (4.15)
J#i J i

Suppose f; = Pj;je;, where (P;;) is an orthogonal matrix. Then

YK (fii fi fis i) = Y PiPuPuPisK (ex, €1, er, €5)
i# i
= ZPikPirK(ek;el;er;el)- (4.16)
klr

As we get (4.13) in the above, we have

R (ay, ar, ar, ar) — Mg A AP R (A gk, Gty s Qg 1)
(T=2) 1= A)(1=AP) '

K(ek, e, er,e) = (4.17)

Case (i)

RZI (ak) ag, r, a/l) RE2 (an+k7 an+l7 an+r7 an+l) = 0) k 7é T,

A
L
|
<

0,
> >
R** (ak, a1, ar,a1) >0,  R¥(Antk, Cnti, Gngr, Ont1) <
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Case(ii)

0, r#k
RZl(akaalaaraal)ZOv Rzz(anJrkvanHvanJrrvanH){ 07 7_é ’

Case (iii)

0, r#k,

z >
R¥(ag,ai, ar,a1) =0, R7*(ntks Gty Qnetry Gngt) = {_2 r—k
, =k.

So, in all the cases, we can get K (ey, e;, e, ;) > 0 from (4.17). And from (4.16), K(fs, f;, fi, f5)
> 0, and finally from (4.15), Ric™ (f;, fi) > —"TQ|H|2. Thus M and w satisfy the conditions in
Lemma 3.2 with o = 0, and we can use Lemma 3.2 to get a sequence {¢;}, such that

llim w(q;) = sup w, llim [Vw(q)| =0, llirn Aw(q) = 0.
Then following the proof of Theorem 1.2, we can get that M is maximal. This completes the
proof of Cases (ii) and (iii). Using Theorem 1.4, we can complete the proof of Case (i).

Proof of Theorem 1.7 As in the proof of Theorem 1.6, we have
- Z KraikWia > 0.
iko
Thus, (4.8) still holds.
Choosing fi1,- -, fn as in the proof of Theorem 1.6, we also have that (4.15)—(4.17) hold.

Since K*', K*2 are bounded, we have R™ (a,a;, ar,a;) and R¥2(a,4k, Gntls Gntr,Gnyy) are
bounded too. Then,

|K(€k,€l,€r,€l)| é C’U)Q (418)

for some positive constant ¢. From the condition

lim =0
r=teo \/r(x)

we have

w < +/r, whenr>rg (4.19)
for some constant r9 > 0. Then by (4.15)—(4.16) and (4.18)—(4.19), we get

Ric" (fi, fi) = —c(1 +7).

So M and w satisfy the conditions of Lemma 3.2 with o = % Thus we again have a sequence
{q1}, such that

llim w(q) = supw, llim [Vw(q)| =0, llirn Aw(g) = 0.
Following the proof of Theorem 1.2, we complete this proof.

Acknowledgements The author wishes to express his sincere thanks to his thesis advisor,
Professor Y. L. Xin, for his guidance and advice on this work. He would also like to thank all
the members in our differential geometry seminar for discussions and encouragement.



32

Z. C. Zhao

References

Almgren, F. J. Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernsteins
theorem, Ann. Math., 84, 1966, 277-292.

Bombieri, E., de Giorgi, E. and Giusti, E., Minimal cones and the Bernstein problem, Invent. Math., 7,
1969, 243-268.

Calabi, E., Examples of Bernstein problems for some nonlinear equations, Proc. Symp. Pure Math., 15,
1970, 223-230.

Chen, Q. and Xin, Y. L., A generalized maximal principle and its applications in geometry, Amer. J.
Math., 114, 1992, 355-366.

Cheng, S. Y. and Yau, S. T., Differential equations on Riemannian manifolds and geometric applications,
Comm. Pure Appl. Math., 28, 1975, 333-354.

Cheng, S. Y. and Yau, S. T., Maximal spacelike hypersurfaces in the Lorentz-Minkowski space, Ann.
Math., 104, 1976, 407-419.

Chern, S. S., On the Curvature of a Piece of Hypersurface in Euclidean Space, Abh. Math. Sem., Hamburg,
29, 1964.

de Giorgi, E., Una estensione del teorema di Bernstein, Ann. Scuola Norm. Sup. Pisa., 19, 1965, 79-85.

Dong, Y. X., Bernstein theorems for space-like graphs with parallel mean curvature and controlled growth,
J. Geom. Phys., 58, 2008, 324-333.

Flanders, H., Remark on mean curvature, J. London Math. Soc., 41, 1966, 364—366.

Jost, J. and Xin, Y. L., Some aspects of the global geometry of entire spacelike submaniflods, Results
Math., 40, 2001, 233-245.

Jost, J., Xin, Y. L. and Yang, L., The Gauss image of entire graphs of higher codimension and Bernstein
type theorems, Calc. Var. Part. Diff. Eq., to appear. arXiv: 1009.3901v1

Li, G. H. and Salavessa, 1., Graphic Bernstein results in curved pseudo-Riemannian manifolds, J. Geom.
Phys., 59, 2009, 1306-1313.

Salavessa, 1., Spacelike graphs with parallel mean curvature, Bull. Belg. Math. Soc., 15, 2008, 65-76.
Simons, J., Minimal varieties in Riemannian manifolds, Ann. Math., 88, 1968, 62—105.

Triebergs, A., Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent.
Math., 66, 1982, 39-56.

Xin, Y. L., Minimal Submanifolds and Related Topics, World Scientific Publishing, Singapore, 2003.

Xin, Y. L., On Gauss image of a spacelike hypersurface with constant mean curvature in Minkowski space,
Comment. Math. Helv., 66, 1991, 590-598.

Xin, Y. L., A rigidity theorem for a space-like graph of higher codimension, Manuscripta Math., 103, 2000,
191-202.

Xin, Y. L., Mean curvature flow with bounded Gauss image, Results Math., 59, 2011, 415-436.

Xin, Y. L. and Yang, L., Convex functions on Grassmannian manifolds and Lawson-Osserman problem,
Adv. Math., 219(4), 2008, 1298-1326.

Xin, Y. L. and Ye, R. G., Bernstein-type theorems for space-like surfaces with parallel mean curvature, J.
Reine Angew. Math., 489, 1997, 189-198.



