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Spacelike Graphs with Parallel Mean Curvature in
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Abstract The author introduces the w-function defined on the considered spacelike graph
M . Under the growth conditions w = o(log z) and w = o(r), two Bernstein type theorems
for M in R

n+m
m are got, where z and r are the pseudo-Euclidean distance and the distance

function on M to some fixed point respectively. As the ambient space is a curved pseudo-
Riemannian product of two Riemannian manifolds (Σ1, g1) and (Σ2, g2) of dimensions n
and m, a Bernstein type result for n = 2 under some curvature conditions on Σ1 and Σ2

and the growth condition w = o(r) is also got. As more general cases, under some curvature
conditions on the ambient space and the growth condition w = o(r) or w = o(

√
r), the

author concludes that if M has parallel mean curvature, then M is maximal.
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1 Introduction

Bernstein theorem says that the only entire minimal graph in R
n+1 is a hyperplane when

n ≤ 7 (due to Bernstein for n = 2, de Giorgi [8] for n = 3, Almgren [1] for n = 4, and Simons
[15] for n = 5, 6, 7). Bombieri, de Giorgi and Giusti [2] gave counterexamples when n > 7.
Chern [7] and Flanders [10] proved independently that the only entire graphic hypersurface in
R

n+1 with constant mean curvature must be minimal.
In Lorentz-Minkowski space, there is also the Bernstein result, which says that the only

entire maximal hypersurface in R
n+1
1 is a hyperplane (see [3] for n ≤ 4 and [6] for all n). Jost

and Xin [11] extended it to a higher codimension, which is as follows.

Theorem 1.1 (see [11]) Let M be a spacelike extremal n-submanifold in R
n+m
m . If M is

closed with respect to the Euclidean topology, then M has to be a linear subspace.

Besides the hyperboloids, Treibergs [16] constructed many nonlinear examples of complete
spacelike hypersurfaces with nonzero constant mean curvature. On the other hand, Xin [18]
showed that when a constant mean curvature spacelike hypersurface M in R

n+1
1 has a bounded

Gauss image, it must be a hyperplane. Later, Xin and Ye [22] improved this result by proving
that when the Gauss image lies in a horoball in the hyperbolic space, M will also be a hyper-
plane. In [19], Xin extended the result in [18] to higher codimension, that is, if an n-dimensional
spacelike submanifold M in R

n+m
m has parallel mean curvature and a bounded Gauss image, it
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must be an n-plane. By relaxing the boundedness of the Gauss image to a controlled growth,
Dong [9] proved that M is still an n-plane. For more details on spacelike submanifolds in
pseudo-Euclidean space, please consult Xin’s book [17].

To state our results, let us introduce the w-function at first.
Let N = (Σ1 × Σ2, g1 − g2) be the pseudo-Riemannian product,where (Σ1, g1) and (Σ2, g2)

are Riemannian manifolds of dimensions n and m. Let KΣi , RicΣi , RΣi denote the sectional
curvature, Ricci curvature and curvature tensor of Σi respectively, i = 1, 2. Let M = {(x, f(x)) :
x ∈ Σ1} be a spacelike graph over Σ1, where f : Σ1 → Σ2 is a smooth map. For any p ∈ Σ1,
df is a linear map from TpΣ1 to Tf(p)Σ2. As in [14], we can use singular value decomposition
to find the orthonormal basis {ai} for TpΣ1, and {aα} for Tf(p)Σ2, such that

df(ai) = λian+i.

Since M is spacelike, |λi| < 1. Notice that λi = 0 when i > min{n, m}. Set

ei =
1√

1 − λ2
i

(ai + λian+i),

eα =
1√

1 − λ2
α−n

(λα−naα−n + aα).

Then ei ∈ TpM and eα ∈ T⊥
p M are Lorentzian bases of N at p. Define the w-function as

w = 〈e1 ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉.

Obviously, it is independent of the choice of the orthonormal basis of Σ1 and the orthonormal
basis of M . Notice that we also have

w =
1√∏

i

(1 − λ2
i )

. (1.1)

In [13], Li and Salavessa defined cosh θ = 1√
det(g1−f∗g2)

, where θ is called the hyperbolic

angle. When the ambient space is R
n+m
m , Dong [9] defined a function

∗Ω =
1√

det
(
I −

n+m∑
α=n+1

fα
xi

fα
xj

) .

They are essentially the same as w.
Our definition here is similar to the one in [21], where Xin and Yang defined it for a sub-

manifold in Euclidean space. The role of w here is somewhat like v = 1
w in [21] (see also

[12]).
When the ambient space is R

n+m
m , we can define the w-function in a way parallel to [21],

and in this way, we do not need the graph condition.
Let Gm

n,m be the pseudo-Grassmannian manifold of all spacelike n-subspaces in R
n+m
m . It is

a symmetric space of non-compact type. Fix P0 ∈ Gm
n,m, which is spanned by a unit spacelike

n-vector ε1 ∧ · · · ∧ εn. For any P ∈ Gm
n,m, spanned by a unit n-vector e1 ∧ · · · ∧ en, we define a

function w̃ on Gm
n,m by
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w̃(P ) = 〈P, P0〉 = 〈e1 ∧ · · · ∧ en, ε1 ∧ · · · ∧ εn〉.
For an n-dimensional complete spacelike submanifold M in R

n+m
m , we define the generalized

Gauss map γ : M → Gm
n,m by

γ(x) = TxM ∈ Gm
n,m.

Then, define w = w̃ ◦ γ. When M is a graph in this case, we can take ε1, · · · , εn to be an
orthonormal basis of R

n. Then it is easy to see that the two definitions are equivalent.
Now we state our first two results as follows.

Theorem 1.2 Let M be a spacelike submanifold of R
n+m
m with parallel mean curvature,

which is closed with respect to the Euclidean topology of R
n+m
m . Let z = 〈X, X〉 be the pseudo-

Euclidean distance of R
n+m
m , where X ∈ R

n+m
m is the position vector. Assume 0 ∈ M . If the

w-function satisfies

lim
z→+∞

w(x)
log z(x)

= 0,

when z is restricted to M , then M must be an n-plane.

Theorem 1.3 Let M be a spacelike submanifold of R
n+m
m with parallel mean curvature,

which is closed with respect to the Euclidean topology of R
n+m
m . If the w-function satisfies

lim
r→+∞

w(x)
r(x)

= 0,

where r(x) is the distance function of M with respect to some fixed point x0, then M must be
an n-plane.

Under the assumptions that M is an entire graph with parallel mean curvature and w = o(ρ),
where ρ =

√
Σx2

i is the Euclidean distance of R
n, Dong [9] concluded that M is an n-plane.

It is easy to see that ρ2 ≥ z and ρ ≥ r (here we take x0 as f(0) in Theorem 1.3, where 0 is
the origin of R

n), so the conditions on w in Theorems 1.2 and 1.3 all imply that lim
ρ→+∞

w
ρ = 0.

Consequently, we can get the above two theorems by Dong’s result when M is an entire graph.
In Section 4, we give their proofs in another way. Our method is also valid when the ambient
space is a curved pseudo-Riemannian product manifold.

When N is a curved pseudo-Riemannian product manifold, Salavessa [14] proved, under
some condition on the second fundamental form at infinity, that if a spacelike graphic submani-
fold M has parallel mean curvature, and the Cheeger constant of M is zero, then M is maximal.
Li and Salavessa [13] proved the following theorems.

Theorem 1.4 (see [13]) If M is a complete maximal spacelike graphic surface, and for each
p ∈ Σ1, KΣ1(p) ≥ max{0, KΣ2(f(p))}, then M is totally geodesic.

Theorem 1.5 (see [13]) Assume that M is a complete spacelike graph with parallel mean
curvature, and for any p ∈ Σ1, RicΣ1(p) ≥ 0, KΣ1(p) ≥ KΣ2(f(p)). If KΣ1 , KΣ2 and w are
all bounded, then M is maximal.

By considering some special cases of Σ1 and Σ2, we can relax the condition on w in Theorem
1.5 to w = o(r) in the following theorem, and also conclude the maximal results. Furthermore,
by Theorem 1.4, we can get a Bernstein type result for the first case.
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Theorem 1.6 Let M = {(p, f(p)) : p ∈ Σ1} be a complete spacelike graphic submanifold
with parallel mean curvature. Assume that the w-function satisfies

lim
r→+∞

w(x)
r(x)

= 0,

where r(x) is the distance function of M with respect to some fixed point x0. Then
(i) If n = 2, that is, Σ1 is a Riemannian surface, and KΣ

1 ≥ 0, KΣ
2 ≤ 0, M must be totally

geodesic.
(ii) If Σ1 = R

n, Σ2 is a Riemannian surface with KΣ
2 ≤ 0, then M must be maximal.

(iii) If N = R
n × H

m, the pseudo-Riemannian product of the Euclidean space and the
hyperbolic space, M must be maximal.

When Σ2 is 1-dimensional, Σ1 is complete, RicΣ1 ≥ 0, Li and Salavessa [13, Proposition 2]
also proved that M is maximal provided w = o(r).

When the conditions on Σ1 and Σ2 are the same as in Theorem 1.5, we can relax the
condition on w to w = o(r

1
2 ), and get the following theorem.

Theorem 1.7 Let M = {(p, f(p)) : p ∈ Σ1} be a complete spacelike graphic submanifold
of N = (Σ1 × Σ2, g1 − g2), which has parallel mean curvature. If

(i) KΣ1 and KΣ2 are bounded, and for any p ∈ Σ1, RicΣ1(p) ≥ 0, KΣ1(p) ≥ KΣ2(f(p)).
(ii) the w-function satisfies

lim
r→+∞

w(x)√
r(x)

= 0,

where r(x) is the distance function of M with respect to some fixed point x0, then M must be
maximal.

Finally, we point out that our proofs of the theorems depend on various generalized maximal
principles, which we give as the lemmas in Section 3. Those are interesting in their own right
and would be useful in other problems.

2 Local Formulas

Let N be an (n+m)-dimensional pseudo-Riemannian manifold of index m. Let M be an n-
dimensional spacelike submanifold of N . We choose a local Lorentzian frame field e1, · · · , en+m

in N , such that when restricted to M , e1, · · · , en is a tangent frame field. Let ω1, · · · , ωn+m be
its dual frame field. We agree with the following range of indices:

A, B, C, · · · = 1, · · · , n + m; i, j, k, · · · = 1, · · · , n; α, β, γ, · · · = n + 1, · · · , n + m.

Then the pseudo-Riemannian metric of N is given by

ds2 =
∑

ω2
i −

∑
ω2

α =
∑

εAω2
A,

where εi = 1, εα = −1. The structure equations of N are given by

dωA =
∑

εBωAB ∧ ωB, ωAB + ωBA = 0,

dωAB =
∑

εCωAC ∧ ωCB − 1
2

∑
εCεDKABCDωC ∧ ωD.

(2.1)
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When restricted to M , ωα = 0, we may put

ωiα = hα
ijωj , (2.2)

where hα
ij are components of the second fundamental form of M in N . The induced Riemannian

metric of M is given by ds2
M =

∑
ω2

i , and the structure equations of M are

dωi =
∑

ωij ∧ ωj ,

dωij =
∑

ωik ∧ ωkj − 1
2

∑
Rijklωk ∧ ωl.

(2.3)

From (2.1) and (2.3), we have the Gauss equation

Rijkl = Kijkl −
∑

(hα
ikhα

jl − hα
ilh

α
jk). (2.4)

The covariant derivative of hα
ij is defined by∑

hα
ijkωk = dhα

ij +
∑

hα
ikωkj +

∑
hα

kjωki −
∑

hβ
ijωβα. (2.5)

The exterior differentiation of (2.2) gives∑
dhα

ij ∧ ωj =
∑(

− hα
ikωkj − hα

jkωki + hβ
ijωβα − 1

2
Kiαkjωk

)
∧ ωj . (2.6)

From (2.5) and (2.6), we have the Codazzi equation

hα
ijk − hα

ikl = Kiαjk. (2.7)

The mean curvature vector of M in N is defined by

H =
1
n

hα
iieα.

If
DH =

1
n

hα
iikωkeα ≡ 0,

M is said to have parallel mean curvature. If H = 0, M is called a maximal spacelike subman-
ifold.

Let a1, · · · , an+m be another local Lorentzian frame field, and θ1, · · · , θn+m be its dual frame
field. Denote θAB as the connection forms of θ1, · · · , θn+m. Let ω = (εBωAB), θ = (εBθAB)
(we do not take the sum with respect to B here), which are (n + m)× (n + m) matrices. Write

e =

⎛⎜⎝ e1

...
en+m

⎞⎟⎠ , a =

⎛⎜⎝ a1

...
an+m

⎞⎟⎠ .

Then there exists a reversible matrix A, such that

e = Aa. (2.8)

Take its covariant differentiation. Then

ω ⊗ e = (dA + Aθ) ⊗ a = (dA + Aθ)A−1 ⊗ e,
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so,
ω = (dA)A−1 + AθA−1.

From
0 = d(AA−1) = (dA)A−1 + AdA−1,

we get
dA−1 = −A−1(dA)A−1,

so

dω = −dA ∧ dA−1 + dA ∧ θA−1 + A(dθ)A−1 − AθdA−1

= (dA)A−1 ∧ (dA)A−1 + dA ∧ θA−1 + A(dθ)A−1 + Aθ ∧ A−1(dA)A−1,

ω ∧ ω = (dA)A−1 ∧ (dA)A−1 + Aθ ∧ θA−1 + dA ∧ θA−1 + AθA−1 ∧ (dA)A−1.

Then
dω − ω ∧ ω = A(dθ − θ ∧ θ)A−1,

that is
εBεCεDKABCDωC ∧ ωD = AAE(εF εGεHKθ

EFGHθG ∧ θH)A−1
FB .

So

εBεCεDKABCD = εF εGεHAAEKθ
EFGHA−1

FB

∣∣∣∣ θG(eC) θH(eC)
θG(eD) θH(eD)

∣∣∣∣
= εF εGεHAAEKθ

EFGHA−1
FB(ACGADH − ACHADG), (2.9)

where Kθ is the curvature tensor of N with respect to the basis {ai, aα}.

3 Generalized Maximal Principles

We state some propositions first, which will be used in the proofs of the following lemmas.

Proposition 3.1 (see [11]) Let z = 〈X, X〉 be the pseudo-Euclidean distance of R
n+m
m ,

where X ∈ R
n+m
m is the position vector. Let M be an n-dimensional spacelike submanifold of

R
n+m
m with parallel mean curvature. Assume that M is closed with respect to the Euclidean

topology of R
n+m
m , and 0 ∈ M . Then z is a proper function on M.

Proposition 3.2 (see [11]) Let M be a space-like submanifold in pseudo-Euclidean space
R

n+m
m of index m with parallel mean curvature. Let z be the pseudo-distance function on M. If

for some k > 0, the set {z ≤ k} is compact, then there is a constant b depending only on the
dimension n and the norm of the mean curvature |H |, such that for all x ∈ M with z ≤ k

2 ,

|∇z| ≤ b(z + 1).

Proposition 3.3 (see [4]) Let M be a complete Riemannian manifold of dimension n with
Ricc|x ≥ −cF (r), where c > 0 is constant, r is the distance from a fixed point x0 to the point
x, F : R → R is a nondecreasing function and F ≥ 1. If x is not on the cut locus of the point
x0, then for r(x) ≥ r(x0),

Δr(x) ≤
√

1 + (n − 1)cF (r(x)).
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Lemma 3.1 Let z = 〈X, X〉 be the pseudo-Euclidean distance of R
n+m
m , where X ∈ R

n+m
m

is the position vector. Let M be an n-dimensional spacelike submanifold of R
n+m
m with parallel

mean curvature. Assume that M is closed with respect to the Euclidean topology, and 0 ∈ M .
Then for any C2-function f defined on M satisfying

lim
z(x)→+∞

f(x)
log z(x)

= 0, (3.1)

when z is restricted to M, there exists a sequence {qk} in M , such that

lim
k→∞

f(qk) = sup f, lim
k→∞

|∇f(qk)| = 0, lim
k→∞

Δf(qk) ≤ 0.

Proof By Proposition 3.1, we know that z ≥ 0, and is proper on M . Together with
Proposition 3.2, we have

|∇z(x)| ≤ c1(z(x) + 1), ∀x ∈ M, (3.2)

where c1 is a constant depending on n and |H | only. By [20, (2.24)],

Δz(x) ≤ c2z(x) + c3, ∀x ∈ M, (3.3)

where c2, c3 are also constants depending on n and |H | only.
Let {εk} be a sequence of positive numbers, such that εk → 0 as k → ∞. Let

fk(x) = f(x) − εk log(z(x) + 1). (3.4)

Then by the condition on f , fk → −∞ as z → +∞. Since z is proper, the set {z(x) ≤ C : x ∈
M} is compact for any constant C > 0, so fk has a lower bound, say A, on it. Then there is a
constant C̃ ≥ C such that fk(x) < A for x ∈ {z(x) ≥ C̃ : x ∈ M}, so fk attains its maximum
at some point qk ∈ {z(x) ≤ C̃ : x ∈ M}, and thus,

∇fk(qk) = 0, Δfk(qk) ≤ 0. (3.5)

From (3.2)–(3.5), we have

lim
k→∞

|∇f(qk)| = lim
k→∞

εk
|∇z(qk)|
z(qk) + 1

= 0,

lim
k→∞

Δf(qk) ≤ lim
k→∞

εk

( Δz(qk)
z(qk) + 1

− |∇z(qk)|2
(z(qk) + 1)2

)
= 0.

If there is a subsequence {qkl
} �= {qk}, such that lim

l→∞
f(qkl

) = sup f , then, by still denoting

{qkl
} as {qk}, our proof is completed. Otherwise, we claim that lim

k→∞
f(qk) = sup f . In fact, if

this were not true, then for an arbitrary big k0, we can find q ∈ M and δ ≥ 0, such that

f(q) − δ ≥ f(qk), k ≥ k0. (3.6)

Since

fk(qk) = f(qk) − εk log(z(qk) + 1) ≥ fk(q) = f(q) − εk log(z(q) + 1),
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we have
f(qk) ≥ f(q) + εk(log(z(qk) + 1) − log(z(q) + 1)).

If there is a subsequence of {qk} (it may be {qk} itself), which we still denote as {qk}, such
that z(qk) → +∞, then

log(z(qk) + 1) − log(z(q) + 1) > 0

for k big enough, and then f(qk) > f(q), which contradicts (3.6).
If z(qk) is bounded, then

lim
k→∞

εk(log(z(qk) + 1) − log(z(q) + 1)) = 0,

so f(qk) ≥ f(q), which is again a contradiction to (3.6). Thus we complete the proof.

Lemma 3.2 Let M be a complete Riemannian manifold of dimension n with Ricci curvature
bounded below by −c(r(x)+1)2α, where r(x) is the distance function of M with respect to some
fixed point x0, and c > 0 and 0 ≤ α < 1 are constants. Then for any C2-function f defined on
M satisfying

lim
r→+∞

f(x)
r1−α(x)

= 0,

there exists a sequence {qk} in M , such that

lim
k→∞

f(qk) = sup f, lim
k→∞

|∇f(qk)| = 0, lim
k→∞

Δf(qk) ≤ 0.

Proof By Proposition 3.3, we get

Δr(x) ≤
√

1 + (n − 1)c(1 + r(x))2α, (3.7)

when x is not the cut locus of x0.
Let {εk} be a sequence of positive numbers, such that εk → 0 as k → ∞. Let

fk(x) = f(x) − εk(1 + r(x))1−α. (3.8)

Then by the condition on f , fk → −∞ as r → +∞, so fk attains its maximum at some point
qk. As in [5], we can assume that fk is C2 in a neighborhood of qk, and thus,

∇fk(qk) = 0, Δfk(qk) ≤ 0. (3.9)

From (3.7)–(3.9), we have

lim
k→∞

|∇f(qk)| = lim
k→∞

εk(1 − α)
|∇r(qk)|

(1 + r(qk))α
= 0,

lim
k→∞

Δf(qk) ≤ lim
k→∞

εk(1 − α)
( Δr(qk)

(1 + r(qk))α
− α

|∇r(qk)|2
(1 + r(qk))1+α

)
≤ lim

k→∞
εk(1 − α)

√
1 + (n − 1)c(1 + r(qk))2α

(1 + r(qk))α
= 0.

If there is a subsequence {qkl
} �= {qk}, such that lim

l→∞
f(qkl

) = sup f , then, by still denoting

{qkl
} as {qk}, our proof is completed. Otherwise, we claim that lim

k→∞
f(qk) = sup f . In fact, if

this were not true, then for an arbitrary big k0, we can find q ∈ M and δ ≥ 0, such that

f(q) − δ ≥ f(qk), k ≥ k0. (3.10)
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Since

fk(qk) = f(qk) − εk(1 + r(qk))1−α ≥ fk(q) = f(q) − εk(1 + r(q))1−α,

we have
f(qk) ≥ f(q) + εk((1 + r(qk))1−α − (1 + r(q))1−α).

If there is a subsequence of {qk} (it may be {qk} itself), which we still denote as {qk}, such
that r(qk) → +∞, then

(1 + r(qk))1−α − (1 + r(q))1−α > 0

for k big enough, and then f(qk) > f(q), which contradicts (3.10).
If r(qk) is bounded, then

lim
k→∞

εk((1 + r(qk))1−α − (1 + r(q))1−α) = 0,

so f(qk) ≥ f(q), which is again a contradiction to (3.10). Thus we complete the proof.

4 Proofs of Main Theorems

Proof of Theorem 1.2 Since M is closed with respect to the Euclidean topology, and has
parallel mean curvature, by [11, Theorem 3.3], M is complete. So M is an entire graph (for
details, see [20, Section 2]).

The following proof is divided into two steps. In Step 1, we calculate the Laplacian of w,
and give it a nonnegative lower bound in terms of w, λi, and the components of the second
fundamental form. In Step 2, we use Lemma 3.1 to get a sequence {qk} such that w(qk) → sup w,
|∇w(qk)| → 0, Δw → 0 as k → +∞. Then by careful analysis, we get that |B|2(qk) → 0, and
thus H = 0. Then by Theorem 1.1, we conclude that M is an n-plane.

Step 1 Let
wiα = 〈e1 ∧ · · · ∧ eα ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉,

which is got by substituting eα for ei in w. And get wiαjβ by substituting eβ for ej in wiα.
Then

wiα =
{

λiw, α = n + i,
0, α �= n + i,

wiαjβ =

⎧⎨⎩
λiλjw, α = n + i, β = n + j,
−λiλjw, α = n + j, β = n + i,
0, otherwise.

(4.1)

Now we go on to calculate Δw.

dw =
∑

i

〈e1 ∧ · · · ∧ (dei) ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉

= −
∑
iα

ωiαwiα = −
∑
ikα

hα
ikwiαωk,

D
(
−

∑
iα

hα
ikwiα

)
= −

∑
iα

d(hα
ikwiα) −

∑
ilα

hα
ilwiαωlk

= −
∑
iα

(
dhα

ik +
∑

l

hα
ilωlk

)
wiα −

∑
iα

hα
ikdwiα,
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dwiα = d〈e1 ∧ · · · ∧ eα ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉
= −

∑
j �=i

β

ωjβ〈e1 ∧ · · · ∧ eα ∧ · · · ∧ eβ ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉

+
∑
j �=i

ωji〈e1 ∧ · · · ∧ eα ∧ · · · ∧ ei ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉

+ ωαiw −
∑

β

ωαβ〈e1 ∧ · · · ∧ eβ ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉

= −
∑
j �=i

β

ωjβwiαjβ −
∑
j �=i

ωjiwjα + ωαiw −
∑

β

ωαβwiβ ,

so

D
(
−

∑
iα

hα
ikwiα

)
=

∑
l

(
−

∑
iα

hα
iklwiα +

∑
i�=j
αβ

hα
ikhβ

jlwiαjβ +
∑
iα

hα
ikhα

ilw
)
ωl,

and

Δw = −
∑
ikα

hα
ikkwiα +

∑
i�=j
kαβ

hα
ikhβ

jkwiαjβ +
∑
ikα

hα
ikhα

ikw

= −
∑
ikα

(hα
kki + Kkαik)wiα +

∑
i�=j
kαβ

hα
ikhβ

jkwiαjβ +
∑
ikα

(hα
ik)2w. (4.2)

From (4.1), we have ∑
i�=j
kαβ

hα
ikhβ

jkwiαjβ =
∑
i�=j

k

λiλjw(hn+i
ik hn+j

jk − hn+j
ik hn+i

jk ). (4.3)

When the mean curvature vector is parallel,∑
k

hα
kki = 0. (4.4)

Since R
n+m
m is flat, we also have

−
∑
ikα

Kkαikwiα = 0, (4.5)

and from (4.2)–(4.5),

Δw ≥ w
(
|B|2 +

∑
i�=j

k

λiλj(hn+i
ik hn+j

jk − hn+j
ik hn+i

jk )
)

= w
(
|B|2 +

∑
k

(∑
i

λih
n+i
ik

)2

−
∑
ik

(λih
n+i
ik )2 − 2

∑
i<j

k

λiλjh
n+i
jk hn+j

ik

)
, (4.6)

where |B|2 is the square length of the second fundamental form. Let hn+i
jk = 0, when i > m.

We rewrite |B|2 as

|B|2 =
∑
ik

(hn+i
ik )2 +

∑
i<j

k

((hn+i
jk )2 + (hn+j

ik )2), (4.7)
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as in [14]. Then from (4.6)–(4.7) and (1.1),

Δw ≥ w
( ∑

ik

(hn+i
ik )2 +

∑
i<j

k

((hn+i
jk )2 + (hn+j

ik )2),

+
∑

k

(∑
i

λih
n+i
ik

)2

−
∑
ik

(λih
n+i
ik )2 − 2

∑
i<j

k

|λiλjh
n+i
jk hn+j

ik |
)

≥ w
∑
ik

(1 − λ2
i )(h

n+i
ik )2 + w

∑
i<j

k

(1 − |λiλj |)((hn+i
jk )2 + (hn+j

ik )2)

≥ w
∑
ik

(1 − λ2
i )(h

n+i
ik )2 +

1
2
w

∑
i<j

k

(1 − λ2
i + 1 − λ2

j)((h
n+i
jk )2 + (hn+j

ik )2)

≥ w
∑
ik

(1 − λ2
i )(h

n+i
ik )2 +

1
2

∑
i<j

k

(√
1 − λ2

i√
1 − λ2

j

+

√
1 − λ2

j√
1 − λ2

i

)
((hn+i

jk )2 + (hn+j
ik )2)

≥ w
∑
ik

(1 − λ2
i )(h

n+i
ik )2 +

∑
i<j

k

((hn+i
jk )2 + (hn+j

ik )2). (4.8)

Step 2 Since Δw ≥ 0, by Lemma 3.1, we can get a sequence {ql} ⊂ M, such that

lim
l→∞

w(ql) = sup w, lim
l→∞

|∇w(ql)| = 0, lim
l→∞

Δw(ql) = 0. (4.9)

From (4.8)–(4.9), we have

lim
l→∞

hn+i
jk (ql) = 0 for i �= j and ∀k, (4.10)

lim
l→∞

∑
i

w(ql)(1 − λ2
i (ql))(hn+i

ii (ql))2 = 0.

In the following, we will conclude that lim
l→∞

hn+i
ii (ql) = 0. Thus, H = 0.

(I) If for some I0,
lim
l→∞

w(ql)(1 − λ2
I0(ql)) = 0,

since

w(1 − λ2
I0) =

√
1 − λ2

I0√ ∏
i�=I0

(1 − λ2
i )

≥
√

1 − λ2
I0√

1 − λ2
i

, i �= I0,

w(1 − λ2
i ) =

√
1 − λ2

i√∏
j �=i

(1 − λ2
j)

≥
√

1 − λ2
i√

1 − λ2
I0

, i �= I0,

we have
lim
l→∞

w(ql)(1 − λ2
i (ql)) = +∞, i �= I0.

So

lim
l→∞

hn+i
ii (ql) = 0, i �= I0. (4.11)
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By (4.10), we have
lim
l→∞

λi(ql)hn+i
iI0

(ql) = 0, i �= I0.

Since lim
l→∞

|∇w(ql)| = 0, i.e., lim
l→∞

w(ql)
∑
i

λi(ql)hn+i
ik (ql) = 0, ∀k, we can let k = I0, and together

with the above equation, we have

lim
l→∞

λI0(ql)hn+I0
I0I0

(ql) = 0.

Since lim
l→∞

λI0 = 1, we have

lim
l→∞

hn+I0
I0I0

(ql) = 0. (4.12)

Thus, by (4.10)–(4.12), we finally get

H = lim
l→∞

H(ql) = 0,

since M has parallel mean curvature.
(II) If for all i,

lim
l→∞

w(ql)(1 − λ2
i (ql)) �= 0,

there exists an ε1 > 0, and a subsequence {q1
l } of {ql}, such that

w(q1
l )(1 − λ2

1(q
1
l )) > ε1.

If for some i > 1,
lim
l→∞

w(q1
l )(1 − λ2

i (q
1
l )) = 0,

then by (I), we can get H = 0. Otherwise, we continue to choose a subsequence {q2
l } of {q1

l },
such that for some ε2 > 0,

w(q2
l )(1 − λ2

2(q
2
l )) > ε2.

Continuing this process, we finally get a subsequence of {ql}, which we still denote as {ql}, and
ε0 > 0, such that

w(ql)(1 − λ2
i (ql)) > ε0, ∀i.

So, we can conclude that
lim
l→∞

hn+i
ii (ql) = 0.

Together with (4.10), we again get
H = 0.

Finally, by Theorem 1.1, we conclude that M is an n-plane.

Proof of Theorem 1.3 First M is an entire graph. Then as Step 1 in the proof of Theorem
1.2, we also have (4.8)

Δw ≥ w
∑
ik

(1 − λ2
i )(h

n+i
ik )2 +

∑
i<j

k

((hn+i
jk )2 + (hn+j

ik )2).
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As Kijkl = 0, from the Gauss equation, we have

RicM (fi, fi) = −
∑
α

(hα
iih

α
jj − hα

ijh
α
ji)

=
∑
α

(
hα

ii −
1
2

∑
j

hα
jj

)2

− n2

4
|H |2 +

∑
j �=i
α

(hα
ij)

2

≥ −n2

4
|H |2,

where {f1, · · · , fn} is an orthonormal basis of M that diagonalizes RicM . So M and w satisfy
the conditions in Lemma 3.2 with α = 0. Again, we can get a sequence {ql}, such that

lim
l→∞

w(ql) = sup w, lim
l→∞

|∇w(ql)| = 0, lim
l→∞

Δw(ql) = 0.

Then following the proof of Theorem 1.2, we can get that M is maximal. By Theorem 1.1, M

is an n-plane.

Proof of Theorem 1.6 We also divide the proof into two steps.
Step 1 We have that (4.2)

Δw = −
∑
ikα

(hα
kki + Kkαik)wiα +

∑
i�=j
kαβ

hα
ikhβ

jkwiαjβ +
∑
ikα

(hα
ik)2w

still holds. Now we show that

−
∑
ikα

Kkαikwiα ≥ 0.

Without loss of generality, we can assume n ≥ m, and write

⎛⎜⎝ e1

...
en+m

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
1−λ2

1

λ1√
1−λ2

1

. . . . . .
1√

1−λ2
m

λm√
1−λ2

m

. . .
1√

1−λ2
n

λ1√
1−λ2

1

1√
1−λ2

1

. . . . . .
λm√
1−λ2

m

1√
1−λ2

m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝ a1

...
an+m

⎞⎟⎠

= A

⎛⎜⎝ a1

...
an+m

⎞⎟⎠ =
(

C D
DT E

) ⎛⎜⎝ a1

...
an+m

⎞⎟⎠ .

Then

A−1 =
(

C −D
−DT E

)
.
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From (2.9), we have

−Kkαik = εF εGεHAkEKθ
EFGHA−1

Fα(AiGAkH − AiHAkG)

= AkjK
θ
jlrsA

−1
lα (AirAks − AisAkr)

− AkβKθ
βγστA−1

γα(AiσAkτ − Aiτ Akσ)

=
2λα−n√

(1 − λ2
i )(1 − λ2

α−n)(1 − λ2
k)

Kθ
k(α−n)ki

+
2λ2

kλi√
(1 − λ2

i )(1 − λ2
α−n)(1 − λ2

k)
Kθ

(n+k)α(n+k)(n+i). (4.13)

Let Πij and Π′
ij be the two planes spanned by {ai, aj} and {an+i, an+j} respectively. Notice

that

Kθ
kiki = RΣ1

kiki, Kθ
(n+k)(n+i)(n+k)(n+i) = −RΣ2

(n+k)(n+i)(n+k)(n+i). (4.14)

Then by (4.1), (4.13)–(4.14), we have

−
∑
ikα

Kkαikwiα =
∑
ik

2λ2
kλ2

i

(1 − λ2
i )(1 − λ2

k)
Kθ

(n+k)(n+i)(n+k)(n+i)w +
2λ2

i

(1 − λ2
i )(1 − λ2

k)
Kθ

kikiw

= w
( 2λ2

kλ2
i

(1 − λ2
i )(1 − λ2

k)
(KΣ1(Πik) − KΣ2(Π′

ik)) +
2λ2

i

(1 − λ2
i )

RicΣ1(ai)
)

≥ 0,

since for any p ∈ Σ1, RicΣ1(p) ≥ 0, and KΣ1(p) ≥ KΣ2(f(p)). Then we also have that (4.8)
holds.

Step 2 Let {f1, · · · , fn} be an orthonormal basis of M that diagonalizes RicM at a given
point, and by the Gauss equation, we have

RicM (fi, fi) =
∑
j �=i

(
K(fi, fj , fi, fj) −

∑
α

(hα
iih

α
jj − hα

ijh
α
ji)

)
=

∑
j �=i

K(fi, fj, fi, fj) +
∑
α

(
hα

ii −
1
2

∑
j

hα
jj

)2

− n2

4
|H |2 +

∑
j �=i
α

(hα
ij)

2. (4.15)

Suppose fi = Pijej , where (Pij) is an orthogonal matrix. Then∑
j �=i

K(fi, fj , fi, fj) =
∑
j �=i
klrs

PikPjlPirPjsK(ek, el, er, es)

=
∑
klr

PikPirK(ek, el, er, el). (4.16)

As we get (4.13) in the above, we have

K(ek, el, er, el) =
RΣ1(ak, al, ar, al) − λkλrλ

2
l R

Σ2(an+k, an+l, an+r, an+l)√
(1 − λ2

k)(1 − λ2
r)(1 − λ2

l )
. (4.17)

Case (i)

RΣ1(ak, al, ar, al) = 0, RΣ2(an+k, an+l, an+r, an+l) = 0, k �= r,

RΣ1(ak, al, ar, al) ≥ 0, RΣ2(an+k, an+l, an+r, an+l) ≤ 0, k = r.



Spacelike Graphs with Parallel Mean Curvature 31

Case(ii)

RΣ1(ak, al, ar, al) = 0, RΣ2(an+k, an+l, an+r, an+l)
{

= 0, r �= k,
≤ 0, r = k.

Case (iii)

RΣ1(ak, al, ar, al) = 0, RΣ2(an+k, an+l, an+r, an+l) =
{

0, r �= k,
−2, r = k.

So, in all the cases, we can get K(ek, el, er, el) ≥ 0 from (4.17). And from (4.16), K(fi, fj, fi, fj)
≥ 0, and finally from (4.15), RicM (fi, fi) ≥ −n2

4 |H |2. Thus M and w satisfy the conditions in
Lemma 3.2 with α = 0, and we can use Lemma 3.2 to get a sequence {ql}, such that

lim
l→∞

w(ql) = sup w, lim
l→∞

|∇w(ql)| = 0, lim
l→∞

Δw(ql) = 0.

Then following the proof of Theorem 1.2, we can get that M is maximal. This completes the
proof of Cases (ii) and (iii). Using Theorem 1.4, we can complete the proof of Case (i).

Proof of Theorem 1.7 As in the proof of Theorem 1.6, we have

−
∑
ikα

Kkαikwiα ≥ 0.

Thus, (4.8) still holds.
Choosing f1, · · · , fn as in the proof of Theorem 1.6, we also have that (4.15)–(4.17) hold.

Since KΣ1 , KΣ2 are bounded, we have RΣ1(ak, al, ar, al) and RΣ2(an+k, an+l, an+r, an+l) are
bounded too. Then,

|K(ek, el, er, el)| ≤ cw2 (4.18)

for some positive constant c. From the condition

lim
r→+∞

w(x)√
r(x)

= 0,

we have

w ≤ √
r, when r ≥ r0 (4.19)

for some constant r0 > 0. Then by (4.15)–(4.16) and (4.18)–(4.19), we get

RicM (fi, fi) ≥ −c(1 + r).

So M and w satisfy the conditions of Lemma 3.2 with α = 1
2 . Thus we again have a sequence

{ql}, such that

lim
l→∞

w(ql) = sup w, lim
l→∞

|∇w(ql)| = 0, lim
l→∞

Δw(ql) = 0.

Following the proof of Theorem 1.2, we complete this proof.
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