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Abstract The authors consider a family of smooth immersions F ( · , t) : Mn → R
n+1 of

closed hypersurfaces in R
n+1 moving by the mean curvature flow ∂F (p,t)

∂t
= −H(p, t)·ν(p, t)

for t ∈ [0, T ). They show that if the norm of the second fundamental form is bounded
above by some power of mean curvature and the certain subcritical quantities concerning
the mean curvature integral are bounded, then the flow can extend past time T . The result
is similar to that in [6–9].
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1 Introduction

Let Mn be a compact n-dimensional hypersurface without boundary, and let F0 : Mn →
R

n+1 be a smooth immersion of Mn into R
n+1. Consider a smooth one-parameter family of

immersions

F ( · , t) : Mn → R
n+1

satisfying

F ( · , 0) = F0( · )
and

∂F (p, t)
∂t

= −H(p, t)ν(p, t), ∀(p, t) ∈M × [0, T ). (1.1)

Here H(p, t) and ν(p, t) denote the mean curvature and a choice of unit normal for the hy-
persurface Mt = F (Mn, t) at F (p, t). We sometimes also write x(p, t) = F (p, t) and refer to
(1.1) as to the mean curvature flow equation. For any compact n-dimensional hypersurface
Mn which is smoothly embedded in R

n+1 by F : Mn → R
n+1, let us denote by g = (gij) the

induced metric, A = (hij) the second fundamental form, dμ =
√

det (gij) dx the volume form,
∇ the induced Levi-Civita connection and Δ the induced Laplacian. Then the mean curvature
of Mn is given by H = gijhij . We use the following notation throughout the whole paper:

‖v‖Lp,q(M×[0,T )) :=
( ∫ T

0

(∫
Mt

|v|p dμ
) q

p

dt
) 1

q
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for a function v( · , t) defined on M × [0, T ).
Without any special assumptions on M0, the mean curvature flow (1.1) will in general

develop singularities in finite time, characterized by a blow-up of the second fundamental form
A( · , t).

Theorem 1.1 (see [4]) Suppose that T <∞ is the first singularity time for a compact mean
curvature flow. Then sup

Mt

|A|( · , t) → ∞ as t→ T .

In [7, 9–10], it was proved that at the first singularity time of the mean curvature flow,
certain scaling invariant quantities blow up. Specifically, the results are as follows.

Theorem 1.2 Suppose that T <∞ is the first singularity time for a compact mean curva-
ture flow. Let p and q be positive numbers satisfying n

p + 2
q = 1. Then ‖A‖Lp,q(M×[0,t)) → ∞ as

t→ T . In particular, for p = q = n+ 2, one has
∫ t

0

∫
Ms

|A|n+2dμds→ ∞ as t→ T.

Theorem 1.3 Let Ft : Mn → R
n+1 be a solution to the mean curvature flow of closed

hypersurfaces on a finite time interval [0, T ). If
(1) there is a positive constant B such that hij ≥ −Bgij for (x, t) ∈M × [0, T );
(2) ‖H‖α,M×[0,T ) = (

∫ T

0

∫
Mt

|H |αdμdt)
1
α < +∞ for some α ≥ n+ 2,

then this flow can be extended over time T .

The proof of Theorem 1.2 was completed by using a blow-up argument, and the proof of
Theorem 1.3 was based on the Moser iteration and a blow-up argument.

In [8], N. Q. Le and N. Sesum established the blow-up of the mean curvature H at the
first singular time of the mean curvature flow in the case of type I singularities. This result
somewhat extends that of Huisken [5] on the blow-up of the second fundamental form at the
first singular time of the mean curvature flow. Before stating their results, we first recall the
following definition.

Definition 1.1 We say that the mean curvature flow (1.1) is of type I at the first singular
time T <∞, if the blow-up rate of the curvature satisfies an upper bound of the form

max
Mt

|A|2( · , t) ≤ C0

T − t
, 0 ≤ t < T (1.2)

for all t ∈ [0, T ).

In [8], N. Q. Le and N. Sesum proved the following results.

Theorem 1.4 (see [8, Theorem 1.2]) Assume (1.2) for the mean curvature flow (1.1). If

max
Mt

|H |2( · , t) ≤ C0,

then the flow can be extended past time T .

Theorem 1.5 (see [8, Theorem 1.3]) Assume (1.2) for the mean curvature flow (1.1). If∫ T

0

∫
Mt

|H |n+2dμdt <∞,

then the flow can be extended past time T .

In [6], the following theorem was improved by N. Q. Le.

Theorem 1.6 (see [6]) Assume that for the mean curvature flow (1.1), we have∫ T

0

∫
Mt

|A|n+2

ln (2 + |A|)dμdt <∞.
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Then the flow can be extended past time T .

The proof of Theorem 1.6 was based on the Moser iteration and a Gronwall-type argument
on sup

x∈Mt

|A|(x, t).

A national question is whether we can get a result similar to Theorem 1.6 by improving
Theorem 1.3 or Theorem 1.5. Luckily, we get it as follows.

Theorem 1.7 Let Ft : Mn −→ R
n+1 be a solution of the mean curvature flow of closed

hypersurfaces on a finite time interval [0, T ). If
(1) |A|2(x, t) ≤ C∗|H |τ (x, t) + C∗∗, (x, t) ∈M × [0, T ),
(2)

∫ T

0

∫
Mt

|H|n+2

ln (2+|H|)dμdt <∞,
where 2 ≤ τ < 2 + 2

n+2 and C∗, C∗∗ are uniform positive constants, then this flow can be
extended over time T .

Remark 1.1 In condition (1), if we choose τ = 2, from the second fundamental form
bounded from below all the way to T , M0 being a mean convex hypersurface or being a
starshaped hypersurface, we can obtain the condition. So our result recovers Theorem 1.3.

Remark 1.2 Considering the inequality (2.15), one can see that the upper bound of τ is
optimal.

The proof of Theorem 1.7 is also based on the Moser iteration and a Gronwall-type argument
on sup

x∈Mt

|H |(x, t). Our method is from [6–7].

The rest of the paper is organized as follows. In Section 2, we use Sobolev type inequality
for mean curvature flow to prove the reverse Hölder inequality, and use the reverse Hölder
inequality to prove Harnack inequality by Moser iteration. In Section 3, we prove a critical
proposition. The proof of Theorem 1.7 is carried out in Section 4.

2 Reverse Hölder and Harnack Inequalities

In this section, we state a soft version of reverse Hölder inequality (see Proposition 2.1)
and a Harnack inequality (see Proposition 2.2) for parabolic inequality (2.2) during the mean
curvature flow.

Lemma 2.1 (see [6]) (Sobolev Type Inequality for Mean Curvature Flow) For all nonneg-
ative Lipschitz functions v, one has

‖v‖β
Lβ(M×[0,T ))

≤ cn max
0≤t≤T

‖v‖ 4
n

L2(Mt)

(
‖∇v‖2

L2(M×[0,T )) + max
0≤t≤T

‖v‖2
L2(Mt)

‖H‖
2(n+3)

3

Ln+3,
2(n+3)

3 (M×[0,T ))

)
, (2.1)

where β := 2(n+2)
n .

We start with the differential inequality( ∂
∂t

− Δ
)
H2 ≤ 2|A|2H2. (2.2)

Let v = H2, and let η(t, x) be a smooth function with the property that η(0, x) = 0 for all x.

Proposition 2.1 Let

C1 =
(
1 + ‖H‖

2(n+3)
3

Ln+3,
2(n+3)

3 (M×[0,T ))

) n
n+2

, C2 =
(∫ T

0

∫
Mt

|H |n+3dμdt
) τ

n+3
, (2.3)
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β > 1 be a fixed number, and q = n+3
τ , 2 ≤ τ < 2 + 2

n+2 and |A|2 ≤ C∗|H |τ +C∗∗. Then there
exists a positive constant Ca(n, τ, C2, C1, C∗, C∗∗), such that

‖η2vβ‖
L

n+2
n (M×[0,T ))

≤ CaΛ(β)1+ν
∥∥∥vβ

(
η2 + |∇η|2 + 2η

∣∣∣( ∂

∂t
− Δ

)
η
∣∣∣)∥∥∥

L1(M×[0,T ))
, (2.4)

where

ν =
n+ 2

2q − (n+ 2)
=

τ(n + 2)
2(n+ 3) − (n+ 2)τ

> 0,

and Λ(β) is a positive constant depending on β, such that Λ(β) ≥ 1 if β ≥ 2 (e.g., we can
choose Λ(β) = 100β).

In fact, we can choose

Ca(n, τ, C2, C1, C∗, C∗∗) = (2c(n,C∗,C∗∗)(C2 + 1)C1)1+ν . (2.5)

This proposition can be proved in a way similar to the proof of Lemma 4.1 in [7] by using
the Sobolev type inequality for the mean curvature flow established in Lemma 2.1. We give the
proof here.

Proof of Proposition 2.1 We use η2vβ−1 as a test function in the inequality

−Δv +
∂v

∂t
≤ 2|A|2v.

It follows that, for any s ∈ (0, T ], we have
∫ s

0

∫
Mt

(−Δv)η2vβ−1dμdt+
∫ s

0

∫
Mt

∂v

∂t
η2vβ−1dμdt ≤

∫ s

0

∫
Mt

2|A|2η2vβdμdt. (2.6)

By integrating by parts, we note∫
Mt

(−Δv)η2vβ−1dμ =
∫

Mt

2〈∇v,∇η〉ηvβ−1dμ+ (β − 1)
∫

Mt

η2vβ−2|∇v|2dμ. (2.7)

Using the evolution of the volume form ∂tdμ = −H2dμ and recalling the properties of η, we
get

∫ s

0

∫
Mt

∂v

∂t
η2vβ−1dμdt =

1
β

∫ s

0

∫
Mt

∂(vβ)
∂t

η2dμdt

=
1
β

∫
Mt

vβη2dμ
∣∣∣s
0
− 1
β

∫ s

0

∫
Mt

vβ∂t(η2dμ)dt

=
1
β

∫
Ms

vβη2dμ− 1
β

∫ s

0

∫
Mt

vβ
(
2η
∂η

∂t
−H2

)
dμdt. (2.8)

Therefore, we deduce from (2.6)–(2.8) the following inequality:
∫ s

0

∫
Mt

(2〈∇v,∇η〉ηvβ−1 + (β − 1)η2vβ−2|∇v|2)dμdt+
1
β

∫
Ms

vβη2dμ

≤ 1
β

∫ s

0

∫
Mt

vβ2η
∂η

∂t
dμdt+

∫ s

0

∫
Mt

2|A|2η2vβdμdt. (2.9)
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As will be seen later, because we can get good control of the quantity ( ∂
∂t − Δ)η for suitable

choice of η, it is more convenient to make this term appear on the right-hand side of (2.9).
Observe that, integrating by parts yields

1
β

∫ s

0

∫
Mt

vβ2η
∂η

∂t
dμdt

=
1
β

∫ s

0

∫
Mt

(
vβ2η

( ∂

∂t
− Δ

)
η + vβ2ηΔη

)
dμdt

=
1
β

∫ s

0

∫
Mt

(
vβ2η

( ∂

∂t
− Δ

)
η − 2∇(vβη)∇η

)
dμdt

=
1
β

∫ s

0

∫
Mt

(
vβ2η

( ∂

∂t
− Δ

)
η − 2vβ |∇η|2 − 2β〈∇v,∇η〉ηvβ−1

)
dμdt

≤ 1
β

∫ s

0

∫
Mt

vβ2η
( ∂
∂t

− Δ
)
ηdμdt−

∫ s

0

∫
Mt

2η〈∇v,∇η〉vβ−1dμdt.

Then (2.9) implies
∫ s

0

∫
Mt

(
4〈∇v,∇η〉ηvβ−1 + (β − 1)η2vβ−2|∇v|2

)
dμdt+

1
β

∫
Ms

vβη2dμ

≤ 1
β

∫ s

0

∫
Mt

vβ2η
∣∣∣( ∂

∂t
− Δ

)
η
∣∣∣dμdt+

∫ s

0

∫
Mt

2|A|2η2vβdμdt. (2.10)

Using the Cauchy-Schwartz inequality∫ s

0

∫
Mt

4〈∇v,∇η〉ηvβ−1dμdt ≥ −2ε2
∫ s

0

∫
Mt

η2vβ−2|∇v|2dμdt− 2
ε2

∫ s

0

∫
Mt

vβ |∇η|2dμdt,

we get from (2.10) that
∫ s

0

∫
Mt

(β − 1 − 2ε2)η2vβ−2|∇v|2dμdt+
1
β

∫
Ms

vβη2dμ

≤ 1
β

∫ s

0

∫
Mt

vβ2η
∣∣∣( ∂
∂t

− Δ
)
η
∣∣∣dμdt+

∫ s

0

∫
Mt

2|A|2η2vβdμdt

+
2
ε2

∫ s

0

∫
Mt

vβ |∇η|2dμdt. (2.11)

Choosing ε2 = β−1
4 and observing |∇(v

β
2 )|2 = β2

4 v
β−2|∇v|2 yield

2
(
1 − 1

β

) ∫ s

0

∫
Mt

η2|∇(v
β
2 )|2dμdt+

∫
Ms

vβη2dμ

≤
∫ s

0

∫
Mt

vβ2η
∣∣∣( ∂

∂t
− Δ

)
η
∣∣∣dμdt+ β

∫ s

0

∫
Mt

2|A|2η2vβdμdt

+
8β
β − 1

∫ s

0

∫
Mt

vβ |∇η|2dμdt.

Combining the previous estimate with

|∇(ηv
β
2 )|2 ≤ 2η2|∇(v

β
2 )|2 + 2vβ |∇η|2
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implies

(
1 − 1

β

)∫ s

0

∫
Mt

|∇(ηv
β
2 )|2dμdt+

∫
Ms

vβη2dμ

≤
∫ s

0

∫
Mt

vβ2η
∣∣∣( ∂

∂t
− Δ

)
η
∣∣∣dμdt+ β

∫ s

0

∫
Mt

2|A|2η2vβdμdt

+ 8
( β

β − 1
+
β − 1
β

)∫ s

0

∫
Mt

vβ |∇η|2dμdt.

It follows that, for some Λ(β) ≥ 1 (say Λ(β) = 100β if β ≥ 2), and |A|2 ≤ C∗|H |τ +C∗∗, where
2 ≤ τ < 2 + 2

n+2 , we get
∫ s

0

∫
Mt

|∇(ηv
β
2 )|2dμdt+

∫
Ms

vβη2dμ

≤ Λ(β)
{ ∫ s

0

∫
Mt

vβ
(
2η

∣∣∣( ∂

∂t
− Δ

)
η
∣∣∣ + |∇η|2

)
dμdt

+
∫ s

0

∫
Mt

2(C∗|H |τ + C∗∗)η2vβdμdt
}

≤ Λ(β)
{ ∫ s

0

∫
Mt

vβ
(
2η

∣∣∣( ∂

∂t
− Δ

)
η
∣∣∣ + |∇η|2

)
dμdt

+ 2C∗
(∫ s

0

∫
Mt

|H |n+3dμdt
) τ

n+3 ‖η2vβ‖
L

q
q−1 (M×[0,T ))

+ 2C∗∗
∫ s

0

∫
Mt

η2vβdμdt
}

=: A0,

where we choose q = n+3
τ .

Consequently,

max
0≤s≤T

∫
Ms

η2vβdμ ≤ A0 (2.12)

and ∫ T

0

∫
Mt

|∇(ηv
β
2 )|2dμdt ≤ A0. (2.13)

We are now in a position to apply Lemma 2.1 to ηv
β
2 and get the following estimates:

‖η2vβ‖
n+2

n

L
n+2

n (M×[0,T ))
= ‖ηv β

2 ‖
2(n+2)

n

L
2(n+2)

n (M×[0,T ))

≤ cn max
0≤t≤T

‖ηv β
2 ‖ 4

n

L2(Mt)

(
‖∇(ηv

β
2 )‖2

L2(M×[0,T ))

+ max
0≤t≤T

‖ηv β
2 ‖2

L2(Mt)
‖H‖

2(n+3)
3

Ln+3,
2(n+3)

3 (M×[0,T ))

)

≤ cnA0
2
n

(
A0 +A0‖H‖

2(n+3)
3

Ln+3,
2(n+3)

3 (M×[0,T ))

)

= cnA0

n+2
n

(
1 + ‖H‖

2(n+3)
3

Ln+3,
2(n+3)

3 (M×[0,T ))

)
.
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Let S := M × [0, T ) and let the norm ‖ · ‖Lp(M×[0,T )) be shortly denoted by ‖ · ‖Lp(S). Then
the previous estimate, using a definition of A0, can be rewritten as

‖η2vβ‖
L

n+2
n (S)

≤ cnA0

(
1 + ‖H‖

2(n+3)
3

Ln+3,
2(n+3)

3 (M×[0,T ))

) n
n+2

= cnC1Λ(β)
( ∫ T

0

∫
Mt

vβ
{
2η

∣∣∣( ∂

∂t
− Δ

)
η
∣∣∣ + |∇η|2

}
dμdt

+ 2C∗C2‖η2vβ‖
L

q
q−1 (S)

+ 2C∗∗‖η2vβ‖L1(S)

)
. (2.14)

Since 1 < q
q−1 <

n+2
n , by using the interpolation inequality

‖η2vβ‖
L

q
q−1 (S)

≤ ε‖η2vβ‖
L

n+2
n (S)

+ ε−ν‖η2vβ‖L1(S) (2.15)

in (2.14), for ν = n+2
2q−(n+2) = τ(n+2)

2(n+3)−(n+2)τ > 0, one gets

[1 − cnΛ(β)C2C1ε]‖η2vβ‖
L

n+2
n (S)

≤ cnC1Λ(β)
[
(2C∗C2 + 2C∗∗)ε−ν‖η2vβ‖L1(S) +

∥∥∥vβ
(
|∇η|2 + 2η

( ∂
∂t

− Δ
)
η
)∥∥∥

L1(S)

]
.

If we choose ε = 1
2Λ(β)cnC2C1

, then

‖η2vβ‖
L

n+2
n (S)

≤ 2cnC1Λ(β)
[
((C∗C2 + C∗∗)(2Λ(β)cnC2C1)ν)‖η2vβ‖L1(S)

+
∥∥∥vβ

(
|∇η|2 + 2η

( ∂
∂t

− Δ
)
η
)∥∥∥

L1(S)

]

≤ Ca(n,C2, C1, C∗, C∗∗)Λ(β)1+ν
∥∥∥vβ

(
η2 + |∇η|2 + 2η

( ∂
∂t

− Δ
)
η
)∥∥∥

L1(S)
,

where

Ca(n, τ, C2, C1, C∗, C∗∗) = (2c(n,C∗,C∗∗)(C2 + 1)C1)1+ν . (2.16)

In conclusion, we get a soft reverse Hölder inequality

‖η2vβ‖
L

n+2
n (S)

≤ Ca(n, τ, C2, C1, C∗, C∗∗)Λ(β)1+ν
∥∥∥vβ

(
η2 + |∇η|2 + 2η

∣∣∣( ∂
∂t

− Δ
)
η
∣∣∣)∥∥∥

L1(S)
.

Next, we show that an L∞-norm of v over a smaller set can be bounded by an Lβ-norm of v
on a bigger set, where β ≥ 2. Fix x0 ∈ R

n+1. As in [7], we consider the following sets in space
and time:

D =
⋃

0≤t≤1

(B(x0, 1) ∩Mt), D′ =
⋃

1
12≤t≤1

(
B

(
x0,

1
2

)
∩Mt

)
.

Let us denote

Dk =
⋃

tk≤t≤1

(B(x0, rk) ∩Mt),

where

rk =
1
2

+
1

2k+1
, tk =

1
12

(
1 − 1

4k

)
.
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Then

ρk := rk−1 − rk =
1

2k+1
, tk − tk−1 = ρ2

k.

Let us choose a test function ηk = ηk(t, x), following Ecker [2], of the form

ηk(t, x) = ϕρk
(t) × ψρk

(|x− x0|2). (2.17)

In (2.17), the function ϕρk
satisfies

ϕρk
(t) =

⎧⎨
⎩

1, if tk ≤ t ≤ 1,
∈ [0, 1], if tk−1 ≤ t ≤ tk,
0, if t ≤ tk−1

and

|ϕ′
ρk
|(t) ≤ cn

ρ2
k

,

whereas in (2.17), the function ψρk
(s) satisfies

ψρk
(s) =

⎧⎨
⎩

0, if s ≥ r2k−1,
∈ [0, 1], if r2k ≤ s ≤ r2k−1,
1, if s ≤ r2k

and

|ψ′
ρk
|(s) ≤ cn

ρ2
k

.

We have

0 ≤ ηk ≤ 1; ηk ≡ 1 in Dk; ηk ≡ 0 outside Dk−1. (2.18)

Use the following identity for the mean curvature flow derived in [1] or [3]:( d
dt

− Δ
)
|x− x0|2 = −2n, ∀x ∈Mt. (2.19)

In [7], N. Q. Le and N. Sesum verified the following lemma.

Lemma 2.2 (see [7])

sup
t∈[0,1]

sup
x∈Mt

(
η2

k(t, x) + |∇ηk(t, x)|2 + 2ηk(t, x)
∣∣∣( ∂
∂t

− Δ
)
ηk(t, x)

∣∣∣) ≤ cn
ρ2

k

= cn4k+1. (2.20)

Then, we have the following Harnack inequality.

Proposition 2.2 Consider equation (2.2) with T = 1. Let us denote λ = n+2
n , and let

q = n+3
τ and β ≥ 2. Then, there exists a constant Cb = Cb(n, τ, β, C2, C1, C∗, C∗∗), such that

‖v‖L∞(D′) ≤ Cb(n, τ, β, C2, C1, C∗, C∗∗)‖v‖Lβ(D), (2.21)

where C1 is defined by (2.3).
In fact, we can choose

Cb(n, τ, β, C2, C1, C∗, C∗∗) = (4λ1+νCzβ
1+ν)

n2
β , (2.22)

where

Cz(n, τ, C2, C1, C∗, C∗∗) := 42 × 1001+νcnCa(n, τ, C2, C1, C∗, C∗∗). (2.23)

The proof of this proposition, by using Proposition 2.1, Lemma 2.2 and Moser iteration, is
similar to that of Lemma 5.2 in [7]. We omit it here.
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3 Bounding the Mean Curvature

In this section, we prove Proposition 3.2.
First, we establish the following rescaled version of Proposition 3.2.

Proposition 3.1 There is a universal constant c0 depending only on n, C∗, C∗∗ and τ ,
such that if

∫ 1

0

∫
Mt

|H |n+3dμdt ≤ c0, (3.1)

then

sup
1
12≤t≤1

sup
x∈Mt

|H(x, t)| ≤ 1. (3.2)

Proof The proposition is now an easy consequence of Proposition 2.2 when β = n+3
2 . In

fact, from (2.5), one has

Ca(n, τ, C2, C1, C∗, C∗∗) = (2c(n,C∗,C∗∗)(C2 + 1)C1)1+ν .

As

C1 =
(
1 + ‖H‖

2(n+3)
3

Ln+3,
2(n+3)

3 (M×[0,T ))

) n
n+2

, C2 =
( ∫ T

0

∫
Mt

|H |n+3dμdt
) τ

n+3
,

so by Hölder inequality

C1 =
(
1 +

∫ 1

0

( ∫
Mt

|H |n+3dμ
) 2

3
dt

) n
n+2 ≤

(
1 +

( ∫ 1

0

∫
Mt

|H |n+3dμdt
) 2

3
) n

n+2
.

From (2.23), we get

Cz(n,C2, C1) = 42 × 1001+νcn(2c(n,C∗,C∗∗)(C2 + 1)C1)1+ν

= c(n, τ, C∗, C∗∗)(C2 + 1)1+νC1+ν
1

≤ c(n, τ, C∗, C∗∗)
(( ∫ 1

0

∫
Mt

|H |n+3dμdt
) 2(1+ν)

n+3
+ 1

)

×
(
1 +

(∫ 1

0

∫
Mt

|H |n+3dμdt
) 2n(1+ν)

3(n+2)
)
.

Then, from (2.22), we have

Cb = (4λ1+νCzβ
1+ν)

n2
β

= c(n, τ, C∗, C∗∗)C
2n2
n+3
z

≤ c(n, τ, C∗, C∗∗)
((∫ 1

0

∫
Mt

|H |n+3dμdt
) 4n2(1+ν)

(n+3)2 + 1
)

×
(
1 +

( ∫ 1

0

∫
Mt

|H |n+3dμdt
) 4n3(1+ν)

3(n+2)(n+3)
)
.



70 X. R. Jiang and C. S. Liao

Now, by (2.21), one has

‖v‖L∞(D′) ≤ Cb‖v‖Lβ(D)

≤ c(n, τ, C∗, C∗∗)
(( ∫ 1

0

∫
Mt

|H |n+3dμdt
) 4n2(1+ν)

(n+3)2 + 1
)

×
(
1 +

(∫ 1

0

∫
Mt

|H |n+3dμdt
) 4n3(1+ν)

3(n+2)(n+3)
)
‖v‖Lβ(D)

≤ c(n, τ, C∗, C∗∗)
(
c

4n2(1+ν)
(n+3)2

0 + 1
)(

1 + c
4n3(1+ν)

3(n+2)(n+3)
0

)
c

2
n+3
0

≤ 1,

if c0 is small and universal.
Then sup

1
12≤t≤1

sup
x∈Mt

H(x, t)2 ≤ 1, so sup
1
12≤t≤1

sup
x∈Mt

|H(x, t)| ≤ 1.

Proposition 3.2 For all λ ∈ (0, 1], there is a constant cλ, such that for all T ≥ λ,

sup
x∈MT

|H(x, T )| ≤ cλ

(
1 +

∫ T

0

∫
Mt

|H |n+3dμdt
)
. (3.3)

Remark 3.1 As in [6], we can choose cλ = 1

λ
1
2

(
1 + 1

c0

)
.

Proof of Proposition 3.2 We first consider the special case λ = 1 and T ≥ 1. There are
two cases.

Case 1 This is the case when∫ T

0

∫
Mt

|H |n+3dμdt ≤ c0.

In this case, we consider a new one-parameter family of immersions F̃ defined by F̃ (x, t) =
F (x, T − 1 + t). Then

∫ 1

0

∫
M̃t

|H̃|n+3dμdt =
∫ T

T−1

∫
Mt

|H |n+3dμdt ≤
∫ T

0

∫
Mt

|H |n+3dμdt ≤ c0.

By Proposition 3.1, one has sup
x∈M̃1

|H̃(x, 1)| ≤ 1. Hence

sup
x∈MT

|H(x, T )| ≤ 1. (3.4)

Case 2 This is the case when∫ T

0

∫
Mt

|H |n+3dμdt ≥ c0.

In this case, we consider a new one-parameter family of immersions F̃ defined by F̃ (x, t) =
QF (x, t

Q2 ). We find that

∫ Q2T

0

∫
M̃t

|H̃ |n+3dμdt =
1
Q

∫ T

0

∫
Mt

|H |n+3dμdt = c0,
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if we choose

Q =
1
c0

∫ T

0

∫
Mt

|H |n+3dμdt ≥ 1.

Now, we are back in Case 1 and thus can conclude sup
x∈M̃Q2T

|H̃ |(x,Q2T ) ≤ 1. This gives

sup
x∈MT

|H(x, T )| = Q sup
x∈M̃Q2T

|H̃ |(x,Q2T ) ≤ Q =
1
c0

∫ T

0

∫
Mt

|H |n+3dμdt.

Combining the above two cases, we find that for T ≥ 1, one has

sup
x∈MT

|H(x, T )| ≤ Q =
(
1 +

1
c0

)(
1 +

∫ T

0

∫
Mt

|H |n+3dμdt
)
. (3.5)

Finally, we consider the general case λ ∈ (0, 1] and T ≥ λ. As usual, let us consider a new
one-parameter family of immersions F̃ defined by F̃ (x, t) = QF (x, t

Q2 ) where Q = 1

T
1
2
≤ 1

λ
1
2
.

Then Q2T = 1. Thus, from the estimate (3.5) in the special case, one has

sup
x∈M̃Q2T

|H̃ |(x,Q2T ) ≤
(
1 +

1
c0

)(
1 +

∫ Q2T

0

∫
Mt

|H̃ |n+3dμdt
)

=
(
1 +

1
c0

)(
1 +

1
Q

∫ T

0

∫
Mt

|H |n+3dμdt
)
.

Consequently,

sup
x∈MT

|H |(x, T ) = Q sup
x∈M̃Q2T

|H̃ |(x,Q2T ) ≤ Q
(
1 +

1
c0

)(
1 +

1
Q

∫ T

0

∫
Mt

|H |n+3dμdt
)

≤ 1
λ

1
2

(
1 +

1
c0

)(
1 +

∫ T

0

∫
Mt

|H |n+3dμdt
)
.

4 Proof of Theorem 1.7

Firstly, we bound mean curvature. Fix τ1 < T such that 0 < τ1 < 1. Then, by Proposition
3.2, for any t ≥ τ1, there is a universal constant c depending only on τ1, such that

sup
x∈Mt

|H(x, t)| ≤ c
(
1 +

∫ t

0

∫
Ms

|H |n+3dμds
)
. (4.1)

Let f(t) = sup
x∈Mt

|H(x, t)|, Ψ(s) = s ln (2 + s) and G(s) =
∫

Ms

|H|n+2

ln (2+|H|)dμ. Then Ψ is an

increasing function. Note that (4.1) gives

f(t) ≤ c
(
1 +

∫ t

0

∫
Ms

Ψ(|H |) |H |n+2

ln (2 + |H |)dμds
)

≤ c
(
1 +

∫ t

0

Ψ
(

sup
x∈Ms

|H(x, s)|
) ∫

Ms

|H |n+2

ln (2 + |H |)dμds
)

= c
(
1 +

∫ t

0

Ψ(f(s))G(s)ds
)
.
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Let h(t) = c
(
1 +

∫ t

0 Ψ(f(s))G(s)ds
)
. Then for t ≥ τ1, we have f(t) ≤ h(t) and h′(t) =

cΨ(f(t))G(t) ≤ cΨ(h(t))G(t). Let Ψ̃(y) =
∫ y

c
1

Ψ(s)ds. Then for t ≥ τ1,

Ψ̃(h(t)) − Ψ̃(h(τ1)) ≤ c

∫ t

τ1

G(s)ds ≤ c

∫ T

0

G(s)ds <∞.

Hence, since h(τ1) is finite, we get

sup
τ1≤t<T

Ψ̃(h(t)) ≤ Ψ̃(h(τ1)) + c

∫ T

0

G(s)ds <∞.

Since
∫ ∞

c
1

Ψ(s)ds = ∞, we deduce that sup
τ1≤t<T

h(t) < ∞. Hence, sup
τ1≤t<T

f(t) < ∞. So, we have

bounded the mean curvature.
Secondly, by using condition (1), we have

|A|2(x, t) ≤ C∗|H |τ (x, t) + C∗∗, (x, t) ∈M × [0, T ).

Then from Theorem 1.1, the flow can be extended past time T .
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