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1 Introduction

Let X1, X2, · · · be i.i.d. random variables with EX1 = 0 and EX1
2 = 1. If the second

moment of X1 exists, then the central limit theorem holds, i.e.,

P
{ S∗

n√
n

� x
}

w−→ Φ(x), as n → ∞, (1.1)

for all x ∈ R, where S∗
n =

n∑
i=1

Xi, Φ(x) = 1√
2π

∫ x

−∞ e−
t2
2 dt.

In recent years, many researchers discussed almost sure central limit theorem for partial
sums of some sequences of random variables, which was first studied by Brosamler [3] and
Schatte [14]. The simplest form of the almost sure central limit theorem states as follows:

1
log n

n∑
k=1

1
k
I{ S∗

k√
k

�x}
a.s.−−→ Φ(x), as n → ∞ (1.2)

for all x ∈ R, where I{A} denotes the indicator function of the event A.
The above result was extended by Lacey and Philipp [7] based on an almost sure invariance

principle. Peligrad and Shao [10] and Matula [9] proved the almost sure central limit theorem
for strongly mixing and associated sequences, which both satisfy the weak dependence condition
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introduced by Doukhan and Louhichi [4]. For more extensions, we refer to Berkes and Csáki
[2] and the reference therein.

Zhang et al. [16] studied an irreducible and positive recurrent Markov chain, and obtained
some limit results. To the best of our knowledge, there is no work about the almost sure central
limit theorem for partial sums for this type of Markov chain.

In this paper, we will deal with the almost sure central limit theorem for partial sums based
on this type of irreducible and positive recurrent Markov chain using logarithmic means. The
paper is organized as follows. In Section 2, we present the main results by giving some basic
assumptions. In Section 3, we show some lemmas and finish the proofs of the main results.

2 Main Results

Throughout this paper, {Yn, n = 1, 2, · · ·} is an irreducible and positive recurrent Markov
chain, S is its state space, u is the initial distribution and π is the invariant distribution.
τ

(r)
j denotes the time that the process {Yn, n = 1, 2, · · ·} reached state j for the r-th time,

r = 0, 1, 2, · · · and τ
(0)
j = 0. Ej(τ

(1)
j ) = E(τ (2)

j − τ
(1)
j ) denotes the average time that the

process reached state j. T
(r)
i = #{m ∈ (τ (r)

j , τ
(r+1)
j ] : Ym = i}, r = 0, 1, 2, · · · , denotes the

times of the process reaching state i during the time of the r-th and (r + 1)-th reaching state
j. Let Nn be the times of the process reaching state j until time n, Nm,n be the times of the
process reaching state j from time m to time n.

Now, we state the main results of this paper.

Theorem 2.1 Let {Yn, n = 1, 2, · · ·} be an irreducible and positive recurrent Markov
chain. Assume that the real valued function f satisfies

Eπ[|f(Y1)|] =
∑
i∈S

πi|f(i)| < +∞, (2.1)

where
∑
i∈S

πi = 1. Let Sk =
k∑

m=1
[f(Ym) − μ], k = 1, 2, · · · , Zr =

τ
(r+1)
j∑

k=τ
(r)
j +1

(f(Yk) − μ), r =

0, 1, 2, · · · , j ∈ S, μ = Eπ[f(Y1)] =
∑
i∈S

πif(i). If

Ej(Z2
r ) = σ2 < +∞, (2.2)

then for any bounded Lipschitz 1 function g, we have

1
log n

n∑
k=1

1
k

g
( Sk

σ
√

kπj

)
a.s.−−→

∫ +∞

−∞
g(x)dΦ(x), as n → ∞, (2.3)

for any x ∈ R, where σ > 0, πj = lim
n→∞

Nn

n = (Ej(τ
(1)
j ))−1. Specially, if Ej(Z2

r ) = Ej(τ
(1)
j ),

then we have

1
log n

n∑
k=1

1
k

g
( Sk√

k

)
a.s.−−→

∫ +∞

−∞
g(x)dΦ(x), as n → ∞. (2.4)

Corollary 2.1 Under the conditions of Theorem 2.1, for any x ∈ R, we have

1
log n

n∑
k=1

1
k

I{ Sk
σ
√

kπj
�x}

a.s.−−→ Φ(x), as n → ∞. (2.5)
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If Ej(Z2
r ) = Ej(τ

(1)
j ), then we have

1
log n

n∑
k=1

1
k

I{ Sk√
k

�x}
a.s.−−→ Φ(x), as n → ∞. (2.6)

3 Proofs

First, we state and prove several lemmas, which will be used in the proof of the main results.

Lemma 3.1 Let {Yn, n = 1, 2, · · ·} be an irreducible and positive recurrent Markov chain.
Assume that the real valued function f satisfies

Ej [|f(Y1)| + · · · + |f(Y
τ
(1)
j

)|] < +∞. (3.1)

Then

lim
n→∞

1
n

n∑
k=1

f(Yk) =
Ej [f(Y1) + · · · + f(Y

τ
(1)
j

)]

Ej(τ
(1)
j )

a.s. (3.2)

Proof Let

Sn =
n∑

k=1

f(Yk), n = 1, 2, · · ·

and

Zr =
τ
(r+1)
j∑

k=τ
(r)
j +1

f(Yk), r = 0, 1, 2, · · · .

According to the strong Markov property, Z0, Z1, Z2, · · · are i.i.d. random variables. By the
strong law of large number, we obtain

lim
r→∞

1
r

r∑
s=1

Zs = EZ0 = EZ1, a.s. (3.3)

Let Nn be the times of the process reaching state j until time n, τ
(r)
j be the time that the

process reached state j for the r-th time. We have

Nn = max{r � 0, τ
(r)
j � n}

and

Sn =
τ
(1)
j∑

k=1

f(Yk) +
Nn∑
r=1

Zr −
τ
(Nn+1)
j∑
k=n+1

f(Yk). (3.4)

By using the condition of (3.1), we have

lim
n→∞

1
n

τ
(1)
j∑

k=1

f(Yk) = 0, a.s.
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and ∣∣∣ 1
n

τ
(Nn+1)
j∑
k=n+1

f(Yk)
∣∣∣ � 1

n

τ
(Nn+1)
j∑
k=n+1

|f(Yk)| a.s.−−→ 0, n → ∞.

From (3.4) we get

Sn

n
=

1
n

Nn∑
r=1

Zr + Rn =
Nn

n
· 1
Nn

Nn∑
r=1

Zr + Rn. (3.5)

Note that

lim
n→∞Rn = lim

n→∞

( 1
n

τ
(1)
j∑

k=1

f(Yk) − 1
n

τ
(Nn+1)
j∑
k=n+1

f(Yk)
)

= 0, a.s.

and

lim
n→∞

1
Nn

Nn∑
r=1

Zr = EZ0 = EZ1, a.s. (3.6)

Let f ≡ 1 instead of f in (3.6). We have

lim
n→∞

τ
(Nn+1)
j − τ

(1)
j

Nn
= E(τ (2)

j − τ
(1)
j ).

Since
n − τ

(1)
j � τ

(Nn+1)
j − τ

(1)
j ,

we have

lim
n→∞

n

Nn
= lim

n→∞
τ

(Nn+1)
j − τ

(1)
j

Nn
= E(τ (2)

j − τ
(1)
j ) = Ej(τ

(1)
j ). (3.7)

Combining (3.5)–(3.7), we obtain the desired result.

Lemma 3.2 Let {Yn, n = 1, 2, · · ·} be an irreducible and positive recurrent Markov chain.
We have

πj = (Ej(τ
(1)
j ))−1, j ∈ S. (3.8)

Proof Let

T
(r)
i = #{m ∈ (τ (r)

j , τ
(r+1)
j ] : Ym = i}, r = 0, 1, 2, · · · .

Note that T
(r)
i are the times of process {Yn, n = 1, 2, · · ·} reaching state i during the time

of the r-th and (r + 1)-th reaching state j. By the strong Markov property, we know that
{T (r)

i : r = 1, 2, · · ·} is an i.i.d. sequence of random variables. Let

θ
(i)
j = Ej(T

(r)
i ). (3.9)

Then ∑
i∈S

θ
(i)
j =

∑
i∈S

Ej(T
(1)
i ) = Ej

(∑
i∈S

(T (1)
i )

)
= E(τ (2)

j − τ
(1)
j ) =

1
πj

.
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Let f be the indicator function of state i, and let i instead of j in (3.2). We have

lim
n→∞

#{m � n : Ym = i}
n

= πi, a.s.

By the strong law of large number and (3.7), (3.9), we obtain

lim
n→∞

Nn∑
r=1

T
(r)
i

n
= lim

n→∞
Nn

n

( Nn∑
r=1

T
(r)
i

Nn

)
= πjθ

(i)
j .

Thus

πi = πjθ
(i)
j (3.10)

and ∑
i∈S

πi = πj

∑
i∈S

θ
(i)
j =

πj

πj
= 1.

By Lebesgue dominated convergence theorem,

∑
i∈S

∣∣∣ 1
n

n∑
m=1

p
(m)
ji − πi

∣∣∣ −→ 0, as n → ∞.

Consequently,

∣∣∣∑
i∈S

πipij −
∑
i∈S

( 1
n

n∑
m=1

p
(m)
ji

)
pij

∣∣∣ �
∑
i∈S

∣∣∣πi − 1
n

n∑
m=1

p
(m)
ji

∣∣∣ −→ 0, as n → ∞,

which implies

∑
i∈S

πipij = lim
n→∞

∑
i∈S

( 1
n

n∑
m=1

p
(m)
ji

)
pij = lim

n→∞
1
n

∑
i∈S

( n∑
m=1

p
(m)
ji

)
pij

= lim
n→∞

1
n

∑
i∈S

n∑
m=1

p
(m)
ji pij = lim

n→∞
1
n

n∑
m=1

p
(m+1)
jj = πj .

This completes the proof.

Lemma 3.3 Let {Yn, n = 1, 2, · · ·} be an irreducible and positive recurrent Markov chain.
If (2.1) holds, then we get (3.1) and

lim
n→∞

1
n

n∑
k=1

f(Yk) = Eπ [f(Y1)] =
∑
i∈S

πif(i) a.s. (3.11)

Proof By the definition of T
(1)
i , we get

τ
(2)
j∑

k=τ
(1)
j +1

|f(Yk)| =
∑
i∈S

|f(i)|T (1)
i .
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In view of (3.9) and (3.10), we have

E(T (1)
i ) = θ

(i)
j =

πi

πj
.

Applying Fubini theorem, we obtain

E|Z0| = E|Z1| = E
( τ

(2)
j∑

k=τ
(1)
j +1

|f(Yk)|
)

= E
(∑

i∈S

|f(i)|T (1)
i

)
=

∑
i∈S

|f(i)|πi

πj
< ∞. (3.12)

Similarly, we get

EZ0 = EZ1 = E
( τ

(2)
j∑

k=τ
(1)
j +1

f(Yk)
)

= E
(∑

i∈S

f(i)T (1)
i

)

=
∑
i∈S

f(i)E(T (1)
i ) =

∑
i∈S

f(i)
πi

πj
=

1
πj

∑
i∈S

πif(i). (3.13)

Thus (3.11) follows from Lemma 3.1.

Lemma 3.4 Let {Xj, j � 1} be an i.i.d. sequence of random variables with EXj = 0 and
σ2 = EX2

j < ∞. Suppose that {vn, n � 1} is a non-negative and integer valued sequence of
random variables satisfying

lim
n→∞

vn

n
= α (3.14)

for some constant α > 0. Then

lim
n→∞P

{ vn∑
j=1

Xj

√
vn

� x
}

=
1√
2πσ

∫ x

−∞
e−

t2

2σ2 dt. (3.15)

Proof Without loss of generality, we assume that σ = 1. Let S∗
n = X1 + X2 + · · · + Xn.

Then ∀ε > 0,

P{|S∗
vn

− S∗
[nα]| � ε[nα]

1
2 }

� P{|vn − [nα]| � ε3[nα]} + P
{

max
m:|m−[nα]|<ε3[nα]

{|S∗
m − S∗

[nα]| � ε[nα]
1
2 }

}
.

By (3.14), we get
lim

n→∞P{|vn − [nα]| � ε3[nα]} = 0.

By Kolmogorov maximal inequality, we have

P
{

max
m:|m−[nα]|<ε3[nα]

{|S∗
m − S∗

[nα]| � ε[nα]
1
2 }

}
� (ε[nα]

1
2 )−2ε3[nα] = ε,

which implies

S∗
vn

− S∗
[nα]√

[nα]
P−→ 0, as n → ∞. (3.16)
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According to central limit theorem, for any x ∈ R,

lim
n→∞P

{ S∗
[nα]√
[nα]

� x
}

=
1√
2π

∫ x

−∞
e−

t2
2 dt = Φ(x),

which combining with (3.16) implies

lim
n→∞P

{ S∗
vn√
[nα]

� x
}

=
1√
2π

∫ x

−∞
e−

t2
2 dt = Φ(x).

Applying (3.14), we get the desired result.

Lemma 3.5 Let {Yn, n = 1, 2, · · ·} be an irreducible and positive recurrent Markov chain

and f be a real function satisfying Eπ[|f(Y1)|] =
∑
i∈S

πi|f(i)| < +∞. Let Sk =
k∑

m=1
[f(Ym) − μ],

k = 1, 2, · · · , Zr =
τ
(r+1)
j∑

k=τ
(r)
j +1

(f(Yk) − μ), r = 0, 1, 2, · · · , μ = Eπ[f(Y1)] =
∑
i∈S

πif(i). If

Ej(Zr − EjZr)2 = σ2 < +∞, then

lim
n→∞ P

{ Sn

σ
√

nπj
� x

}
= Φ(x). (3.17)

Proof By Lemma 3.3 and (3.13), we have

Ej(Zr) = Ej(τ
(r)
j )Eπ[f(Y1) − μ] = 0, r = 0, 1, 2, · · · .

Note that {Zr, r = 0, 1, 2, · · ·} is an i.i.d. sequence of random variables with Ej(Zr) = 0 and
Ej(Z2

r ) = σ2 < +∞. By (3.7) and (3.8), we have πj = lim
n→∞

Nn

n = (Ej(τ
(1)
j ))−1. Using (3.4),

(3.5) and Lemma 3.4, we have

lim
n→∞

Sn√
n

= lim
n→∞

√
Nn

n
· 1√

Nn

Nn∑
r=1

Zr ∼ N(0, πjσ
2),

which implies

lim
n→∞ P

{ Sn

σ
√

nπj
� x

}
= Φ(x).

This completes the proof of the lemma.

Lemma 3.6 Let {ξk, k = 1, 2, · · ·} be a sequence of bounded random variables, i.e., there
exists some M ∈ (0, ∞), such that |ξk| � M a.s. for all k ∈ N, satisfying Eξk → ν, as k → ∞.
Suppose furthermore that {pn, n � 1} is a sequence of non-negative numbers and partial sums
Pn ↗ ∞, such that for some ε > 0,

Var
( n∑

k=1

pkξk

)
= O(P (2−ε)

n ), n = 1, 2, · · · .

Then we have
1

Pn

n∑
k=1

pkξk
a.s.−−→ ν, n → ∞.
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Proof See [5, Lemma 1].

Proof of Theorem 2.1 Let S̃Nk
= Z1 + Z2 + · · · + ZNk

, S̃Nl
= Z1 + Z2 + · · · + ZNk

+
ZNk+1 + · · ·+ZNl

(k < l) and S̃Nk,l
= ZNk+1 +ZNk+2 + · · ·+ZNl

. Note that S̃Nl
− S̃Nk

= S̃Nk,l
.

According to Lemma 3.1, S̃Nk
and S̃Nk,l

are independent. By Lemmas 3.1–3.4, we obtain

S̃Nn√
n

=

√(Nn

n

)
· 1√

Nn

Nn∑
r=1

Zr ∼ N(0, πjσ
2), as n → ∞,

where πj = lim
n→∞

Nn

n = (Ej(τ
(1)
j ))−1, σ2 = Ej(Zr − EjZr)2 = Ej(Z2

r ). By Lemma 3.5, we have

lim
n→∞P

{ Sn

σ
√

nπj
� x

}
= lim

n→∞ P
{ S̃Nn

σ
√

nπj
� x

}
= Φ(x) (3.18)

for any x ∈ R. By the dominated convergence theorem, we have

lim
k→∞

Eg
( S̃Nk

σ
√

kπj

)
=

∫ +∞

−∞
g(x)dΦ(x),

which implies

lim
n→∞

1
log n

n∑
k=1

1
k

Eg
( S̃Nk

σ
√

kπj

)
=

∫ +∞

−∞
g(x)dΦ(x). (3.19)

First, we prove that

1
log n

n∑
k=1

1
k
g
( S̃Nk

σ
√

kπj

)
a.s.−−→

∫ +∞

−∞
g(x)dΦ(x), n → ∞. (3.20)

By Lemma 3.6 and (3.19), in order to prove (3.20), we only need to prove that

Var
( n∑

k=1

1
k

g
( S̃Nk

σ
√

kπj

))
= O((log n)2−ε). (3.21)

Note that

Var
( n∑

k=1

1
k

g
( S̃Nk

σ
√

kπj

))

=
n∑

k=1

1
k2

Var
(
g
( S̃Nk

σ
√

kπj

))
+ 2

∑
1�k<l�n

1
k
· 1

l
Cov

(
g
( S̃Nk

σ
√

kπj

)
, g

( S̃Nl

σ
√

lπj

))
=: A1 + A2.

Obviously, for some M ∈ (0, ∞), we have

A1 =
n∑

k=1

1
k2

Var
(
g
( S̃Nk

σ
√

kπj

))
� M

n∑
k=1

1
k

= O(log n).
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It is easy to check that

∣∣∣Cov
(
g
( S̃Nk

σ
√

kπj

)
, g

( S̃Nl

σ
√

lπj

))∣∣∣
=

∣∣∣Cov
(
g
( S̃Nk

σ
√

kπj

)
, g

( S̃Nl

σ
√

lπj

)
− g

( S̃Nk,l

σ
√

lπj

)
+ g

( S̃Nk,l

σ
√

lπj

))∣∣∣
�

∣∣∣Cov
(
g
( S̃Nk

σ
√

kπj

)
, g

( S̃Nl

σ
√

lπj

)
− g

( S̃Nk,l

σ
√

lπj

))∣∣∣ +
∣∣∣Cov

(
g
( S̃Nk

σ
√

kπj

)
, g

( S̃Nk,l

σ
√

lπj

))∣∣∣
=: B1 + B2.

Since S̃Nk
and S̃Nk,l

are independent, then B2 = 0. Noting that g is a bounded Lipschitz 1
function, for some C ∈ (0,∞), and we have

B1 � ME
∣∣∣g( S̃Nl

σ
√

lπj

)
− g

( S̃Nk,l

σ
√

lπj

)∣∣∣ � CE
∣∣∣ S̃Nl

− S̃Nk,l√
l

∣∣∣ � C√
l
(E(S̃Nk

)2)
1
2 .

By Wald equality and (3.7), we have

E(S̃Nk
)2 = σ2ENk = O(k).

Thus

B1 = O
(√

k

l

)
.

Consequently,

A2 � M
∑

1�k<l�n

1
k
· 1

l
·
√

k

l
� M

n∑
l=2

1
l
3
2

l−1∑
k=1

1√
k

� 2M

n∑
l=2

1
l

= O(log n).

Hence

Var
( n∑

k=1

1
k

g
( S̃Nk

σ
√

kπj

))
= O(log n)

satisfies (3.21) with ε = 1. Thus, (3.20) holds.
From (3.4)–(3.6), we have

Sn√
n
− S̃Nn√

n
= o(1), a.s. (3.22)

Thus, for any bounded Lipschitz 1 function g, we have

∣∣∣g( Sn

σ
√

nπj

)
− g

( S̃Nn

σ
√

nπj

)∣∣∣ � C
∣∣∣ Sn√

n
− S̃Nn√

n

∣∣∣ = o(1), a.s.

By (3.20) and [7, Theorem 1], we have

1
log n

n∑
k=1

1
k
g
( Sk

σ
√

kπj

)
a.s.−−→

∫ +∞

−∞
g(x)dΦ(x), n → ∞.
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If Ej(Z2
r ) = Ej(τ

(1)
j ), we have πjEj(Z2

r ) = πjσ
2 = 1. Similarly, we get

1
log n

n∑
k=1

1
k

g
( Sk√

k

)
a.s.−−→

∫ +∞

−∞
g(x)dΦ(x), n → ∞.

The proof is completed now.

Corollary 2.1 is a special case of Theorem 2.1.
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