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Abstract The Wielandt subgroup of a group G, denoted by w(G), is the intersection
of the normalizers of all subnormal subgroups of G. In this paper, the authors show
that for a p-group of maximal class G, either wi(G) = ζi(G) for all integer i or wi(G) =
ζi+1(G) for every integer i, and w(G/K) = ζ(G/K) for every normal subgroup K in G
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1 Introduction

All groups considered in this paper are finite.
The Wielandt subgroup w(G) of a group G is the intersection of the normalizers of all

subnormal subgroups of G. Wielandt [14] showed that for a group G, w(G) is a non-trivial
characteristic subgroup of G, and defined an ascending normal series terminating at the group.
Let w0(G) = 1, and wi+1(G)/wi(G) = w(G/wi(G)) for i ≥ 0. The smallest n for which
wn(G) = G is called the Wielandt length of G. A related concept is the norm of a group
G, denoted by N(G), which is the intersection of the normalizers of all subgroups of G. This
concept was introduced by Baer [1] in 1934. The Wielandt subgroup of a nilpotent group G

coincides with the norm of the group. Schenkman [13] showed that the norm is in the second
center of a group. Thus for any group G, we have ζ(G) ≤ N(G) ≤ ζ2(G).

So the interesting question is to investigate the relationship between the Wielandt series
and the upper central series of a nilpotent group. Bryce et al. [6] showed that for metabelian
p-groups of exponent dividing p2 and of sufficiently large class, the Wielandt series and the
upper central series coincide. Ormerod [11] showed that wr+1(G) ⊆ ζn+1(G) for a metabelian
p-group G with wr(G) ⊆ ζn(G), where r ≥ 1, n ≥ 2.

In the present paper, we are interested in p-groups of maximal class. We show that for a
p-group of maximal class G, either wi(G) = ζi(G) for all integer i or wi(G) = ζi+1(G) for every
integer i and w(G/K) = ζ(G/K) for every normal subgroup K in G with K �= 1. Meanwhile,
we give a necessary and sufficient condition for a regular p-group of maximal class G satisfying
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w(G) = ζ2(G). Finally, we prove that the power automorphism group PAut(G) is an elementary
abelian p-group if G is a non-abelian p-group with elementary ζ(G) ∩ �1(G).

2 Preliminaries

In this section we give some basic facts, which will be useful for later use. We recall that
an automorphism of a group is a power automorphism if it maps every subgroup onto itself.
A power automorphism is said to be universal if every element of the group is mapped to the
same power. We denote by PAut(G) the power automorphisms of G.

Theorem 2.1 (see [5]) Let G be a p-group of maximal class of order pn and Gi be the i-th
member of the lower center series of G. Then

(1) |G : G2| = p2, G2 = Φ(G), d(G) = 2;
(2) |Gi/Gi+1| = p, i = 2, 3, · · · , n − 1;
(3) If i ≥ 2, then Gi is the unique normal subgroup of G of order pn−i;
(4) If N � G and |G/N | ≥ p2, then G/N is also of maximal class;
(5) If 0 ≤ i ≤ n− 1, then ζi(G) = Gn−i, where 1 = ζ0(G) < · · · < ζn−1(G) = G is the upper

central series of G;
(6) If p > 2 and n > 3, then G has no cyclic normal subgroup of order p2.

Theorem 2.2 (see [12]) Let G be a minimal non-abelian p-group. Then G is isomorphic
to one of the following p-groups:

(1) Q8;
(2) (Metacyclic) Mp(n, m) = 〈a, b | apn

= bpm

= 1, ab = a1+pn−1〉 with n ≥ 2;
(3) (Non-metacyclic) Mp(n, m, 1) = 〈a, b, c | apn

= bpm

= cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉
with n ≥ m, and n + m ≥ 3 when p = 2.

Theorem 2.3 (see [9, Theorem 11.9]) Let G be a 2-group of maximal class of order 2n.
Then G is isomorphic to one of the following 2-groups:

(1) D2n = 〈a, b | a2n−1
= b2 = 1, [a, b] = a−2〉, where n ≥ 3;

(2) SD2n = 〈a, b | a2n−1
= b2 = 1, [a, b] = a−2+2n−2〉, where n ≥ 4;

(3) Q2n = 〈a, b | a2n−1
= 1, b2 = a2n−2

, [a, b] = a−2〉, where n ≥ 3.

Theorem 2.4 (see [8, Hilfssatz 5]) Let G be a non-abelian p-group, α ∈ PAut(G). Then
for any g ∈ G, gα = gi, where i is an integer and i ≡ 1 (mod p), and PAut(G) is an abelian
p-group.

Lemma 2.1 (see [7, Theorem 5.3.1]) If G is a group whose Sylow subgroups are regular,
then every power automorphism of G is universal.

Since elements of N(G) induce power automorphisms of the group G, we have the following
conclusion.

Corollary 2.1 Let G be a regular p-group with w ∈ w(G). Then there exists an integer n

such that gw = gn for all g ∈ G.

Lemma 2.2 (see [9, Lemma 14.14]) Let G be a p-group of maximal class of order pn,
n ≤ p + 1. Then exp(G′) = p.

Lemma 2.3 (see [9, Theorem 14.21]) Let G be a p-group of maximal class. Then G is
regular if and only if |G| ≤ pp.
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3 Main Results

In this section, we give our main results. All p-groups of maximal class considered in this
section are non-abelian.

For convenience, we denote by N(G : H) and w(G : H) the preimages of N(G/H) and
w(G/H), respectively, if H is a normal subgroup of a group G and α: G → G/H is the natural
homomorphism.

Lemma 3.1 Let G be a group and H ≤ ζ(G). Then for any g, h ∈ G and n ∈ N(G : H),
we have

(1) [g, n, h], [h, n, g], [g, h, n] ∈ ζ(G);
(2) [n, g, g] = 1, [n, g−1] = [n, g]−1;
(3) [g, n, h][h, n, g] = 1.

Proof (1) It follows from [13] that N(G/H) ≤ ζ2(G/H) ≤ ζ3(G)/H and therefore n ∈
ζ3(G). Thus [g, n, h], [h, n, g], [g, h, n] ∈ ζ(G).

(2) Let G = G/H . For any n ∈ N(G) and g ∈ G, we have gn = gi, where i is a positive
integer. This means that gn ≡ gi (mod H) and therefore gn commutes with g. Thus 1 =
[gn, g] = [g[g, n], g] = [g, n, g] = [n, g, g] and [n, g−1] = [n, g]−1.

(3) By (2) we get that [gh, n]gh = [gh, n] = [g, n][h, n][g, n, h]. On the other hand, [gh, n]gh =
([gh, n]g)h = ([g, n][h, n][h, n, g][g, n, h])h = [g, n][g, n, h]2[h, n][h, n, g]. Thus [g, n, h][h, n, g] =
1.

Lemma 3.2 Let G be a group with cyclic G′ ∩ ζ2(G). Then N(G/ζ(G)) = ζ(G/ζ(G)).

Proof Suppose that N(G/ζ(G)) �= ζ(G/ζ(G)). Then there exists an n ∈ N(G : ζ(G))
and g, h ∈ G such that [g, n, h] �= 1. Noticing that [g, n], [h, n] ∈ G′ ∩ ζ2(G), we see that either
[g, n] = [h, n]i or [h, n] = [g, n]j . If [g, n] = [h, n]i, then by Lemma 3.1(2), [g, n, h] = [[h, n]i, h] =
1. Using the same arguments, we get that [h, n, g] = 1 if [h, n] = [g, n]j . Thus [g, n, h] = 1, a
contradiction.

Theorem 3.1 Let G be a p-group of maximal class of order pn.
(1) If wi(G) ⊆ ζr(G), then wi+1(G) ⊆ ζr+1(G), where i ≥ 1, r ≥ 1;
(2) wi(G) = ζi(G) for all integer i or wi(G) = ζi+1(G) for every integer i except for

G ∼= Mp(2, 1), where p > 2;
(3) If 1 < K � G, then w(G/K) = ζ(G/K).

Proof (1) By Theorem 2.1, we get |ζ(G)| = p. Furthermore, ζ2(G) ∼= Cp ×Cp if p > 2 and
n > 3. We claim that w(G/ζi(G)) = ζ(G/ζi(G)) for any positive integer i.

(i) p > 2.
It is clear that w(G/ζi(G)) = ζ(G/ζi(G)) for n ≤ 3. Now assume that n ≥ 4. We first

consider the case i = 1. Let G = G/ζ(G). Assume that w(G) �= ζ(G). Then there exists an
n ∈ w(G : ζ(G)) and g, h ∈ G such that [g, n, h] �= 1. Since [g, n, h] ∈ ζ(G) and |ζ(G)| = p,
ζ(G) = 〈[g, n, h]〉. Noticing that [g, n] ∈ ζ2(G), [h, n] ∈ ζ2(G) and ζ2(G) ∼= Cp×Cp, we see that
ζ2(G) = 〈[g, n]〉 × 〈[h, n]〉. So [hj , [g, n]] = ([h, [g, n]])j = [g, n][h, n]i, where p � ij. This means
that h−j[g, n]−1hj = [h, n]i and therefore [g, n]−1 = [h, n]i, a contradiction.

For i ≥ 2, if |G/ζi(G)| ≤ p2, then w(G/ζi(G)) = ζ(G/ζi(G)). Assume |G/ζi(G)| ≥ p3. Then
|G/ζi−1(G)| ≥ p4 and therefore G/ζi−1(G) is a p-group of maximal class by Theorem 2.1(4). By
the proof of i = 1, we have w(G/ζi−1(G)

/
ζ(G/ζi−1(G))) = ζ(G/ζi−1(G)

/
ζ(G/ζi−1(G))). Since

G/ζi−1(G)
/
ζ(G/ζi−1(G)) = G/ζi−1(G)

/
ζi(G)/ζi−1(G) ∼= G/ζi(G), we have w(G/ζi(G)) =

ζ(G/ζi(G)).
(ii) p = 2.
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If G is a 2-group of maximal class, then by Theorem 2.3, we get that G is a metacyclic
p-group. By Lemma 3.2, we have w(G/ζ(G)) = ζ(G/ζ(G)). For i ≥ 2, since (G/ζi(G))′ is
cyclic, we have w(G/ζi−1(G)

/
ζ(G/ζi−1(G))) = ζ(G/ζi−1(G)

/
ζ(G/ζi−1(G))) by Lemma 3.2.

Noticing that G/ζi−1(G)
/
ζ(G/ζi−1(G)) = G/ζi−1(G)

/
ζi(G)/ζi−1(G) ∼= G/ζi(G), we see that

w(G/ζi(G)) = ζ(G/ζi(G)).
Let w ∈ wi+1(G). Then for each g ∈ G, there is an integer k such that gw ≡ gk (mod wi(G)).

Hence g−kgw ∈ wi(G) ≤ ζr(G). Let G = G/ζr(G). Since g−kgw ∈ ζr(G), gw = gk. Thus
wi+1(G)ζr(G)/ζr(G)≤w(G/ζr(G)). Noticing that w(G/ζr(G))=ζ(G/ζr(G))=ζr+1(G)/ζr(G),
we see that wi+1(G) ⊆ ζr+1(G).

(2) First we claim that either w(G) = ζ(G) or w(G) = ζ2(G) except for G ∼= Mp(2, 1), where
p > 2.

If n > 3, then by Theorem 2.1 we have |ζ(G)| = p and |ζ2(G)| = p2. Since ζ(G) ≤ w(G) ≤
ζ2(G), either w(G) = ζ(G) or w(G) = ζ2(G).

Assume that n = 3. By Theorem 2.2, G is isomorphic to one of the groups Q8, Mp(1, 1, 1)
and Mp(2, 1).

If G ∼= Q8, then w(G) = ζ2(G). If G ∼= Mp(1, 1, 1) = 〈a, b, c | ap = bp = cp = 1, [a, b] = c〉,
then for any aibjck ∈ w(G), we have aaibjck ∈ 〈a〉. So p | j. Using the same arguments, we get
p | i. It follows that w(G) = ζ(G). Assume that G ∼= Mp(2, 1) = 〈a, b | ap2

= bp = 1, [a, b] =
ap〉, where p > 2. We may prove that w(G) = 〈b, ap〉. Since (bjai)b = bjai[a, b]i = bjaiaip =
(bjai)1+p and ap ∈ ζ(G), 〈b, ap〉 ≤ w(G). Noticing 〈b, ap〉 � G, we see that w(G) = 〈b, ap〉.

If wi(G) = ζr(G), then wi+1(G)/wi(G) = w(G/wi(G)) = w(G/ζr(G)) = ζ(G/ζr(G)) =
ζr+1(G)/ζr(G). It follows that wi+1(G) = ζr+1(G). Since w(G) = ζ(G) or w(G) = ζ2(G)
except for G ∼= Mp(2, 1), where p > 2, by induction, we get that either wi(G) = ζi(G) or
wi(G) = ζi+1(G) except for Mp(2, 1).

(3) If |K| ≥ pn−1, then it is clear that w(G/K) = ζ(G/K).
Assume that |K| = pn−i (2 ≤ i ≤ n − 1). Then, since Gi is the unique normal subgroup of

G of order pn−i, we have K = Gi. Noticing that Gi = ζn−i(G), we see that K = ζn−i(G). By
the proof of (1), we get w(G/ζn−i(G)) = ζ(G/ζn−i(G)). Hence w(G/K) = ζ(G/K).

Remark 3.1 The importance of Theorem 3.1 is that we find out a class of p-groups such
that w(G/K) = ζ(G/K) for every group G in this class and every normal subgroup K in G
with K �= 1. However, this is not true in general. You may find examples in Section 4.

Corollary 3.1 Let G be a p-group of order pn with wr(G) ⊆ ζi(G), where n ≤ 5, r ≥ 1
and i ≥ 1. Then wr+1(G) ⊆ ζi+1(G).

Proof If G/ζ(G) ∼= Q8 = 〈a, b | a4 = 1, a2 = b
2
, [a, b] = a2〉, then a2 ≡ b2 (mod ζ(G))

and therefore a2 ∈ ζ(G), a contradiction. Assume that G/ζ(G) ∼= Mp(2, 1) = 〈a, b | ap2
=

1, b
p

= 1, [a, b] = ap〉. Then G′ = 〈[a, b]〉. By Lemma 3.2, w(G/ζ(G)) = ζ(G/ζ(G)). However,
by Theorem 3.1(2), w(G/ζ(G)) �= ζ(G/ζ(G)), a contradiction. So G/ζ(G) is either abelian
or isomorphic to Mp(1, 1, 1) if n ≤ 4. By Theorem 3.1(2), we get w(G/ζ(G)) = ζ(G/ζ(G)) if
n ≤ 4.

Now assume that n = 5. If |ζ(G)| ≥ p2, then by the above proof we have w(G/ζ(G)) =
ζ(G/ζ(G)). If |ζ(G)| = p, then we consider three cases: (i) c(G) ≤ 2; (ii) c(G) = 4; (iii)
c(G) = 3.

(i) If c(G) ≤ 2, then it is clear that w(G/ζ(G)) = ζ(G/ζ(G));
(ii) If c(G) = 4, then by the proof of Theorem 3.1(1), w(G/ζ(G)) = ζ(G/ζ(G));
(iii) Now assume that c(G) = 3. Then |G′| = p2 or |G′| = p3. If G′ ∼= Cp × Cp, then by

using the same arguments as Theorem 3.1(1), we may prove that w(G/ζ(G)) = ζ(G/ζ(G)).
If G′ ∼= Cp2 , then by Lemma 3.2, we get w(G/ζ(G)) = ζ(G/ζ(G)). Assume |G′| = p3. Then
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|G/ζ(G)| = p4, c(G/ζ(G)) = 2 and d(G/ζ(G)) = 2. It follows that ζ(G/ζ(G)) = (G/ζ(G))′ =
Φ(G/ζ(G)) and therefore G/ζ(G) is a minimal non-abelian p-group, which is a contradiction
to |(G/ζ(G))′| = p2.

For i≥2, since |G/ζi−1(G)|≤p4 and G/ζi−1(G)
/
ζ(G/ζi−1(G))=G/ζi−1(G)

/
ζi(G)/ζi−1(G)

∼= G/ζi(G), we have w(G/ζi(G)) = ζ(G/ζi(G)). Using the same arguments as Theorem 3.1(1),
we may get the conclusion.

Theorem 3.2 Let G be a 2-group of maximal class of order 2n.
(1) If G ∼= D2n or SD2n, then w(G) = ζ(G);
(2) If G ∼= Q2n , then w(G) = ζ2(G).

Proof By Theorem 2.3, G is isomorphic to one of groups D2n , SD2n and Q2n .
(1) If G ∼= D2n = 〈a, b | a2n−1

= 1, b2 = 1, [a, b] = a−2〉, we consider two cases: n = 3
or n ≥ 4. If n = 3, then G ∼= D8. By Theorem 3.1(2), we have w(G) = ζ(G). If n ≥ 4,

then since ζ2(G) = Gn−2 = 〈a2n−3〉 and ba2n−3

= ba2n−2 �∈ 〈b〉, we get w(G) �= ζ2(G) and
therefore w(G) = ζ(G) by Theorem 3.1(2). Using the same arguments, we may prove that
w(SD2n) = ζ(SD2n).

(2) Now assume that G ∼= Q2n = 〈a, b | a2n−1
= 1, b2 = a2n−2

, [a, b] = a−2〉.
(i) If n = 3, then G ∼= Q8 and therefore w(G) = ζ2(G);
(ii) If n ≥ 4, then ζ2(G) = Gn−2 = 〈a2n−3〉. For any g ∈ G, g can be written as bai or

ai, where i is a non-negative integer. Clearly, a2n−3 ∈ NG(〈ai〉). We assume that bai is an

element of G, then (bai)a2n−3

= b−1ai = (bai)3 ∈ 〈bai〉. Hence a2n−3 ∈ w(G) and therefore
w(G) = ζ2(G).

Lemma 3.3 Let G be a regular p-group with n ∈ w(G). If h ∈ G with o(h) = exp(G) and
hn = hi, then gn = gi for all g ∈ G, where i is a positive integer.

Proof It follows from Corollary 2.1 that there exists an integer m such that gn = gm for all
g ∈ G. If o(h) = exp(G) and hn = hi, then i ≡ m (mod exp(G)). Thus gn = gi for all g ∈ G.

Theorem 3.3 Let G = 〈g1, g2, · · · , gt〉 be a regular p-group, where o(gi) ≤ o(g1) = pm,
exp (ζ(G)) = pk and 2 ≤ i ≤ t.

(1) If exp(G) = exp(ζ(G)), then w(G) = ζ(G);
(2) If exp(G) > exp(ζ(G)) and o(gi) ≤ pm−k, then w(G) = ζ2(G) if and only if ζ2(G) ≤

NG(〈g1〉) ∩ CG(g2) ∩ · · · ∩ CG(gt);
(3) If G is a p-group of maximal class of order pn, then
(i) exp(G) ≤ p2;
(ii) If exp(G) = p, then w(G) = ζ(G);
(iii) If exp(G) = p2, then we may assume that o(g1) > o(g2) and w(G) = ζ2(G) if and only

if ζ2(G) ≤ NG(〈g1〉) ∩ CG(g2).

Proof (1) Choose g ∈ ζ(G) such that o(g) = exp(G). Then gw = g for any w ∈ w(G). It
follows from Lemma 3.3 that w(G) = ζ(G).

(2) Set ga
1 = gj

1, where a ∈ ζ2(G) and j is an integer. Since [g1, a] ∈ ζ(G) and exp(ζ(G)) = pk,
pm−k | (j − 1). So we may assume that j = 1 + spm−k. By Lemma 3.3, we get ga

i = gi. It
follows that ζ2(G) ≤ NG(〈g1〉) ∩ CG(g2) ∩ · · · ∩ CG(gt).

Conversely, by the above proof, we may assume that ga
1 = g1+spm−k

1 for any a ∈ ζ2(G). It is
clear that exp(G′) ≤ pm−k and therefore G is pm−k-abelian. For any gi1

1 gi2
2 · · · git

t c ∈ G and a ∈
ζ2(G), where c ∈ G′, we have (gi1

1 gi2
2 · · · git

t c)a = (gi1
1 )1+spm−k

gi2
2 · · · git

t c = gi1
1 gi2

2 · · · git
t cgi1spm−k

1

= (gi1
1 gi2

2 · · · git
t c)1+spm−k

. Thus w(G) = ζ2(G).
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(3) Since G is a regular p-group of maximal class, we may assume that G = 〈g1, g2〉,
o(g1) ≥ o(g2) and 〈g1〉 ∩ 〈g2〉 = 1.

(i) By Lemma 2.3, |G| ≤ pp. It follows from Lemma 2.2 that exp(G′) = p. So [gp
1 , g2] =

[g1, g2]p = 1 and therefore gp
1 ∈ ζ(G). Since |ζ(G)| = p, o(g1) ≤ p2. Using the same arguments,

we get o(g2) ≤ p2. Thus exp(G) ≤ p2.
(ii) By (1), we get the conclusion.
(iii) Suppose that o(g1) = o(g2) = p2. By the proof of (i), we get gp

1 , gp
2 ∈ ζ(G). Noticing

|ζ(G)| = p, we see that 〈g1〉 ∩ 〈g2〉 �= 1, a contradiction. Thus o(g1) = p2 and o(g2) = p. From
(2), we get the conclusion.

However, Theorem 3.3 is not true in general. Examples 3.1 and 3.2 show that the require-
ment that G is regular in Theorem 3.3 is necessary. Example 3.3 shows that the requirement
o(gi) ≤ pm−k is necessary.

Example 3.1 G = 〈a, b | a9 = b3 = c3 = 1, [a, b] = c, [c, a] = a3, [c, b] = 1〉. It is easy
to see that G is a p-group of maximal class of order 34 and ζ2(G) = G2 = 〈c, a3〉 by Theorem
2.1(5). Since (a2b−1)c = a5b−1 �∈ 〈a2b−1〉, c �∈ w(G) and therefore w(G) = ζ(G) by Theorem
3.1(2). However, ζ2(G) ≤ NG(〈a〉) ∩ CG(b).

Example 3.2 G ∼= Q2n = 〈a, b | a2n−1
= 1, b2 = a2n−2

, [a, b] = a−2〉, where n ≥ 4. It is
easy to see that G is a 2-group of maximal class of order 2n. By Theorem 3.2, w(G) = ζ2(G) =
〈a2n−3〉. However, a2n−3 �∈ CG(b).

Example 3.3 G = 〈a, b | ap3
= 1, bp2

= ap2
, [a, b] = ap〉, where p ≥ 5. It is clear that

G is regular. By calculation, we get that ζ(G) = 〈ap2〉 and ζ2(G) = 〈ap〉. Since bap

= b1−p2
,

ζ2(G) ≤ NG(〈b〉) ∩ CG(a). However, (ba−1)ap

= b1−p2
a−1 �∈ 〈ba−1〉. So w(G) �= ζ2(G).

If G is a p-group of maximal class of odd order, then w(G) is an elementary abelian p-
group. Next we may prove that PAut(G) is also an elementary abelian p-group. Furthermore,
we can get that PAut(G) is an elementary abelian p-group if G is a non-abelian p-group with
elementary abelian ζ(G) ∩ �1(G).

Theorem 3.4 Let G be a non-abelian p-group.
(1) If ζ(G) ∩ �1(G) is elementary abelian, then
(i) for any α ∈ PAut(G) and g ∈ G, we have gα = g1+kpn−1

, where o(g) = pn, k is an
integer and 0 ≤ k ≤ p − 1;

(ii) PAut(G) is an elementary abelian p-group.
(2) If G is a p-group of maximal class, then PAut(G) is an elementary abelian p-group.
(3) If ζ(G) ∩ �1(G) ∩ G′ is elementary abelian, then w(G)/ζ(G) is elementary abelian.

Proof (1) (i) Set gα = gi, where i is an integer, (i, p) = 1 and 1 ≤ i ≤ pn − 1. By Lemma
2.4, i ≡ 1 (mod p). Since every power automorphism is central, gi−1 ∈ ζ(G) ∩ �1(G). Noticing
that exp(ζ(G) ∩ �1(G)) = p, we see that o(gi−1) ≤ p and therefore pn−1 | (i − 1). So we may
assume that i = 1 + kpn−1, where k is an integer and 0 ≤ k ≤ p − 1. Thus gα = g1+kpn−1

.
(ii) By Lemma 2.4, PAut(G) is an abelian p-group. So we may assume that PAut(G) =

〈α1〉 × 〈α2〉 × · · · × 〈αm〉. Since gαj = g1+kpn−1
by (i), g(αj)

p

= g(1+kpn−1)p

= g. It follows that
o(αj) ≤ p.

(2) Since G is a p-group of maximal class, |ζ(G)| = p. By (1), PAut(G) is elementary
abelian.

(3) If w(G) is non-abelian, then G ∼= Q8 ×Cn
2 . It is clear that w(G)/ζ(G) ∼= C2 ×C2. Now

assume that w(G) is abelian. For any w ∈ w(G), set gw = gi, where i is an integer, (i, p) = 1.
Using the same arguments as (1), we may get that gw = g1+kpm−1

, where o(g) = pm. Thus
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gwp

= g(1+kpm−1)p

= g. It follows that wp ∈ ζ(G) and therefore w(G)/ζ(G) is elementary
abelian.

Remark 3.2 We should notice that the converse of Theorem 3.4(1) is not true in general.
Let G = 〈a, b | a8 = b8 = 1, [a, b] = b4〉. It is clear that ζ(G) ∩ �1(G) ∼= C4 × C4. By [7,
Corollary 6.3.3], we get PAut(G) ∼= C2 × C2. In Section 4, we give two examples which show
that there exist non-abelian p-groups satisfying Theorem 3.4.

4 Examples

In this section, we give some examples. Example 4.1 and Example 4.2 show that Theorem
3.1 is not true in general. Example 4.3 and Example 4.4 show that there exist non-abelian
p-groups satisfying Theorem 3.4. Finally, we give some regular p-groups of maximal class
satisfying Theorem 3.3.

Example 4.1 Let G = 〈a, b, c | ap2
= bp2

= cp = 1, [b, a] = c, [c, a] = ap, [c, b] = bp〉,
where p ≥ 5. It is easy to see that ζ(G) = 〈ap, bp〉. So 〈bp〉 � G. Let G = G/〈bp〉 = 〈a, b, c |
ap2

= b
p

= cp = 1, [b, a] = c, [c, a] = ap〉. For any aib
j
ck ∈ G, we have (aib

j
ck)c = (ai)1−pb

j
ck =

(aib
j
ck)1−p. So c ∈ w(G) \ ζ(G) and therefore w(G) > ζ(G). So there exists a non-abelian

p-group with w(G/K) > ζ(G/K), where K � G and 1 < K < G.

Example 4.2 Let G = 〈a, b, c, d | a3n

= b3n

= d3n

= c3 = 1, [a, b] = d, [b, c] =
b−3n−1

, [c, a] = a3n−1
d−3n−1

, [d, c] = d3n−1
, [d, a] = [d, b] = 1〉, where n ≥ 2.

It is easy to see that ζ(G) = 〈d3〉. So G = G/ζ(G) = 〈a, b, c, d | a3n

= b
3n

= c3 = d
3

=

1, [a, b] = d, [b, c] = b
−3n−1

, [c, a] = a3n−1
, [d, c] = [d, a] = [d, b] = 1〉. It is clear that c(G) = 2.

Now we may prove that w(G) = ζ(G) and w2(G) > ζ2(G).

It is clear that ζ2(G) = 〈a3, b3, d〉. Since w(G) ≤ ζ2(G), w can be written as w = a3ib3jdl

for any w ∈ w(G), where i, j and l are non-negative integers. Now assume that w = a3ib3jdl

is an element of w(G). Then aa3ib3jdl

= a[a, b]3j = ad3j ∈ 〈a〉. Noticing that 〈a〉 ∩ 〈d〉 = 1, we
see that 3n−1 | j. By using the same arguments, we may prove that 3n−1 | i and 3 | l. Hence
w ∈ ζ(G). It follows that ζ(G) = w(G).

For any g ∈ G, g can be written as aib
j
ckd

l
, where i, j, k, l are non-negative integers.

Then gc = (aib
j
ckd

l
)c = (ac)i(b

c
)jckd

l
= (a1−3n−1

)i(b
1−3n−1

)jckd
l
= aib

j
ckd

l
a−i3n−1

b
−j3n−1

=
(aib

j
ckd

l
)1−3n−1

. Hence c ∈ w(G) \ ζ(G) and therefore ζ(G) < w(G). Since w2(G)/ζ(G) =
w2(G)/w(G) = w(G/w(G)) = w(G/ζ(G)) > ζ(G/ζ(G)) = ζ2(G)/ζ(G), we get w2(G) > ζ2(G).

Example 4.3 (see [10, Example (2.3 b)]) Let A = 〈a〉 × 〈b〉 × 〈c〉 × 〈z〉 be an elementary
abelian 3-group of order 34. Then A has an elementary abelian group of automorphisms 〈y, x, t〉
of order 33, where

ay = a, by = bz2, cy : = cz2, zy:= z;

ax = az2, bx = bz2, cx = cz, zx = z;

at = a, bt = b, ct = cz2, zt = z.

If we extend A successively by y, x and t, putting y3 = x3 = t3 = z, and [y, x] = a, [y, t] = c,
[x, t] = b2, we get an extension G of order 37 and class 3, and the power automorphism group
PAut(G) is elementary abelian of order 33, generated by the automorphisms induced by the
elements a, a2b and abc2. It is clear that ζ(G) ∩ �1(G) = 〈z〉.
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Example 4.4 (see [10, Example (2.2)]) Let A = 〈a1〉 × 〈a2〉 × · · · × 〈ap−1〉, where a1 is of
order pn+1 and ai is of order pn, if 2 ≤ i ≤ p− 1. Then an endomorphism T of A is defined by

aT
i = aiai+1 for 1 ≤ i ≤ p − 2, aT

p−1 = ap−1a
p
1, a1+T+T 2+···+T p−1

1 = 1.

Obviously, T is an automorphism of A of order p. The extension G of A by T , where T p = apn

1 , is
a p-group of maximal class, and the power automorphism group PAut(G) is elementary abelian
of rank 2; two linearly independent elements α, β ∈ PAut(G) are given by aα

1 = a1, T α = T 1+p

and aβ
1 = a1+pn

1 , T β = T .

Example 4.5 Let G = 〈a, b, c, d, e | ap = bp = cp = dp = ep = 1, [b, a] = c, [c, a] = d,
[c, b] = [d, a] = e, [c, d] = [d, b] = [e, a] = [e, b] = [e, c] = [e, d] = 1〉, where p ≥ 5. It is clear that
|G| = p5 and c(G) = 4. So G is a regular p-group of maximal class. Noticing that exp(G) = p,
we see that w(G) = ζ(G) by Theorem 3.3(3).

Example 4.6 Let G = 〈a, b, c, d | ap2
= bp = cp = dp = 1, [b, a] = c, [c, a] = d, [c, b] = ap,

[d, a] = ap, [d, b] = 1〉, where p ≥ 5 and p ≡ 3 (mod 4). It is clear that |G| = p5, c(G) = 4 and
exp(G) = p2. So G is a regular p-group of maximal class and therefore ζ2(G) = G3 = 〈d, ap〉.
It is easy to see that ζ2(G) ≤ NG(〈a〉) ∩ CG(b). By Theorem 3.3(3), we have w(G) = ζ2(G).

Example 4.7 Let G = 〈a, b, c, d | ap2
= bp = cp = dp = 1, [b, a] = c, [c, a] = ap, [c, b] = d,

[d, a] = 1, [d, b] = ap〉, where p ≥ 5 and p ≡ 2 (mod 3). It is clear that |G| = p5, c(G) = 4 and
exp(G) = p2. So G is a regular p-group of maximal class and therefore ζ2(G) = G3 = 〈d, ap〉.
Since d �∈ CG(b), we have w(G) = ζ(G) by Theorem 3.3(3).
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