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Abstract This paper deals with the problem of sharp observability inequality for the
1-D plate equation wtt + wxxxx + q(t, x)w = 0 with two types of boundary conditions
w = wxx = 0 or w = wx = 0, and q(t, x) being a suitable potential. The author shows that

the sharp observability constant is of order exp(C‖q‖
2
7∞) for ‖q‖∞ ≥ 1. The main tools to

derive the desired observability inequalities are the global Carleman inequalities, based on
a new point wise inequality for the fourth order plate operator.
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1 Introduction

Let T > 0 be given, Ω be a bounded domain (i.e., a bounded open interval) in R with
boundary Γ (i.e., the endpoints of the interval). Put Q = (0, T ) × Ω and Σ = (0, T ) × Γ.

We are interested in the following plate equation with a potential:⎧⎪⎪⎨
⎪⎪⎩

wtt + wxxxx + q1w = 0, in Q,

w = wxx = 0, on Σ,

w(0) = w0, wt(0) = w1, in Ω,

(1.1)

where q1 ∈ L∞(0, T ; W 1,∞(Ω)). Also, we shall consider the same plate equation but with
different boundary conditions⎧⎪⎪⎨

⎪⎪⎩
wtt + wxxxx + q2w = 0, in Q,

w = wx = 0, on Σ,

w(0) = w0, wt(0) = w1, in Ω,

(1.2)

where q2 ∈ L∞(0, T ; W 1,∞(Ω)). Set

W1
�
= {w ∈ H3(Ω) | w|Γ = wxx|Γ = 0}, W2

�
= {w ∈ H3(Ω) | w|Γ = wx|Γ = 0}.
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Based on the semigroup theory (see [12, Theorem 1.4, p. 185]), it is easy to show that system
(1.1) admits a unique weak solution w ∈ C([0, T ]; W1) ∩ C1([0, T ]; H1

0(Ω)), while system (1.2)
admits one and only one weak solution w ∈ C([0, T ]; W2) ∩ C1([0, T ]; H1

0 (Ω)).
In what follows, we shall denote by ‖ · ‖∞ and ‖ · ‖1,∞ the (usual) norms on L∞(Q) and

L∞(0, T ; W 1,∞(Ω)), respectively. Denote the energy of (1.1) by

E1(t) =
1
2
[‖wtx(t, ·)‖2

L2(Ω) + ‖wxxx(t, ·)‖2
L2(Ω) + ‖q1‖∞‖wx(t, ·)‖2

L2(Ω)] (1.3)

for the solution w to system (1.1). Next, we define an unbounded operator A in L2(Ω) as
follows:

A �
= ∂xxxx, D(A)

�
= H4(Ω) ∩ H2

0 (Ω). (1.4)

It is easy to see that A is a self-adjoint operator. Assume that {μj}∞j=1 are the eigenvalues of A
and the corresponding eigenvectors {ej}∞j=1 consist of the complete orthogonal basis in L2(Ω).
Then, we define A 1

4 , A 3
4 as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D(A 1
4 )

�
=

{
w =

∞∑
j=1

ajej

∣∣∣ aj ∈ R,

∞∑
j=1

a2
jμ

1
2
j < ∞

}
, A 1

4 w
�
=

∞∑
j=1

ajμ
1
4
j ej ∈ L2(Ω),

D(A 3
4 )

�
=

{
w =

∞∑
j=1

ajej

∣∣∣ aj ∈ R,

∞∑
j=1

a2
jμ

3
2
j < ∞

}
, A 3

4 w
�
=

∞∑
j=1

ajμ
3
2
j ej ∈ L2(Ω).

(1.5)

We claim that A 1
4 is also a self-adjoint operator on the domain D(A 1

4 ). More precisely, for any
w, ŵ ∈ D(A 1

4 ), there exist {aj}∞j=1, {bk}∞k=1 ⊂ R such that

w =
∞∑

j=1

ajej, ŵ =
∞∑

k=1

bkek.

Then, it is easy to see that (remember that {ej}∞j=1 consist of the complete orthogonal basis)

(A 1
4 w, ŵ)L2(Ω) =

( ∞∑
j=1

ajμ
1
4
j ej,

∞∑
k=1

bkek

)
L2(Ω)

=
( ∞∑

j=1

ajej,

∞∑
k=1

bkμ
1
4
k ek

)
L2(Ω)

= (w,A 1
4 ŵ)L2(Ω).

Now, for the solution w to (1.2), we define the energy as follows:

E2(t) =
1
2
[‖A 1

4 wt(t, ·)‖2
L2(Ω) + ‖A 3

4 w(t, ·)‖2
L2(Ω) + ‖q2‖∞‖A 1

4 w(t, ·)‖2
L2(Ω)]. (1.6)

The main purpose of this paper is to study the observability constant P (T ; q1) of system
(1.1), defined as the smallest (possibly infinite) constant such that the following observability
estimate for system (1.1) holds:

E1(0) ≤ P (T, q1)
∫ T

0

∫
ω

(w2
x + w2

tx + w2
xxx)dxdt, ∀ (w0, w1) ∈ W1 × H1

0 (Ω). (1.7)

Also, we shall study the observability constant P (T ; q2) of system (1.2) such that the
following observability estimate for system (1.2) holds:

E2(0) ≤ P (T, q2)
∫ T

0

∫
ω

(w2
x + w2

tx + w2
xxx)dxdt, ∀ (w0, w1) ∈ W2 × H1

0 (Ω). (1.8)
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In (1.7)–(1.8), ω is a nonempty open subset of Ω. These inequalities, the observability inequal-
ities, allow us to estimate the total energy of solutions in terms of the energy localized in the
observation subdomain ω.

It is well-known that, observability inequalities are relevant to the control problems (see
[13]). Several authors have already studied the problem of controllability for the plate equation.
We can mention among them [9, 13]. In 1988, J.-L. Lions introduced the so-called Hilbert
Uniqueness Method (HUM), which reduces the exact controllability problem for a large class
of partial differential equations to the obtention of suitable observability estimates for their
dual systems. After that, great progress on control problem of PDEs has been made (see
[6, 16] and the rich references therein). In this paper, we are interested in the problem of sharp
observability inequality for the plate equation with a potential. Similar observability problems
have been considered for the parabolic and hyperbolic equations in [2], and for the Schrödinger
equations in [11]. We refer to [5, 13] for observability of Euler-Bernoulli plate equation, and [14]
for observability of Kirchhoff plate systems. However, to the author’s best knowledge, there are
no references considering the sharp observability of system (1.2). Moreover, the observability

constant derived in [5, 14] is of order exp(C‖q‖ 2
6∞), q being the potential involved in the system.

We shall see later that the observability constant for one dimensional plate equation can be
improved to exp(C‖q‖ 2

7∞) for ‖q‖∞ ≥ 1. We refer to [8] for a related result for the observability
inequality of a one-dimensional fourth order parabolic equation with potential.

The rest of this paper is organized as follows. The main results are stated in Section 2. In
Section 3, we shall collect some preliminary results for the plate equation. In Section 4, we
establish a point wise inequality for the fourth order plate operator, via which in Section 5, we
show Carleman estimates for the plate equation with two types of boundary conditions. Section
6 is devoted to the proof of our main results.

2 Statement of the Main Results

For any fixed x0 ∈ R and δ > 0, we define⎧⎨
⎩

ω = Oδ(Γ0) ∩ Ω,

Γ0
�
= {x ∈ Γ | (x − x0) · ν(x) > 0},

(2.1)

where ν = ν(x) is the unit outward normal vector.
Throughout this paper, we shall use C = C(Ω, ω) to denote generic positive constants which

may vary from line to line. Our main results can be stated as the following theorem.

Theorem 2.1 Let Γ0 and ω be given by (2.1). Then there is a constant C > 0 such that
for any T > 0 and any q1 ∈ L∞(0, T ; W 1,∞(Ω)), the weak solution w to system (1.1) satisfies
estimate (1.7) with the same observability constant P (T, q1) > 0 verifying

P (T, q1) ≤ P1(T, q1)P2(T, q1)P3(T, q1), (2.2)

where

P1(T, q1) = exp
[
C

(
1 +

1
T

)]
, P2(T, q1) = exp(CT ‖q1‖1,∞),

P3(T, q1) = exp(C‖q1‖
2
7∞ + C‖q1‖−1

∞ ).
(2.3)

Also, we have the following observability estimate for system (1.2).
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Theorem 2.2 Let Γ0 and ω be given by (2.1). Then there is a constant C > 0 such that
for any T > 0 and any q2 ∈ L∞(0, T ; W 1,∞(Ω)), the weak solution w to system (1.2) satisfies
estimate (1.8) with observability constant P (T, q2) > 0 verifying

P (T, q2) ≤ P1(T, q2)P2(T, q2)P3(T, q2), (2.4)

where

P1(T, q2) = exp
[
C

(
1 +

1
T

)]
, P2(T, q2) = exp(CT ‖q2‖1,∞),

P3(T, q2) = exp(C‖q2‖
2
7∞ + C‖q2‖−1

∞ ).
(2.5)

Remark 2.1 For the multidimensional plate equations with zero Dirichlet boundary con-
dition w = Δw = 0, it was shown in [5] that the optimal observability constant P3 should be

exp(C‖q‖ 2
6∞) (q = q1, q2) in even dimensional space. For one space-dimensional case, Theorems

2.1–2.2 show that the observability constant P3(T, q) can be improved to be exp(C‖q‖ 2
7∞) for

‖q‖∞ ≥ 1. This phenomenon is similar to the observability estimate for the wave equation
with a potential q. Indeed, in even dimensional space, the corresponding optimal observability
constant P2(T, q) should be exp(C‖q‖ 2

3∞) (see [2]), while for the case of one-dimensional space,

the observability constant can be improved to exp(C‖q‖ 2
4∞) (see [15]).

Remark 2.2 It should be pointed out that the technique developed here to prove Theo-
rem 2.1 and Theorem 2.2 cannot be applied to multidimensional plate equations. Moreover,
according to [5], we know that the optimal observability constant P3(T, q) cannot arrive at this

level exp(C‖q‖ 2
7∞) for ‖q‖∞ ≥ 1.

3 Preliminaries

In this section, we shall collect some preliminary results that we need. First, by using the
usual energy estimate, one can easily obtain the following result.

Lemma 3.1 Let T > 0 and q1(·) ∈ L∞(0, T ; W 1,∞(Ω)). Then there exists a constant
C = C(Ω) > 0 such that

E1(t) ≤ CE1(s)eCT (1+‖q1‖1,∞), ∀t, s ∈ [0, T ]. (3.1)

Proof Multiplying both sides of the first equation in (1.1) by wtxx, integrating it on Ω,
using integration by parts, by Hölder inequality and Poincaré inequality, we obtain

dE1(t)
dt

= −
∫

Ω

(q1)xwwtxdx −
∫

Ω

q1wxwtxdx + ‖q1‖∞
∫

Ω

wxwtxdx

≤ C(1 + ‖q1‖1,∞)E1(t). (3.2)

Now, by (3.2) and noting the time reversibility of (1.1), one gets (3.1) immediately.

In a way similar to Lemma 3.1, we have the following energy estimate for system (1.2).

Lemma 3.2 Let T > 0 and q2(·) ∈ L∞(0, T ; W 1,∞(Ω)). Then there exists a constant
C = C(Ω) > 0 such that

E2(t) ≤ CE2(s)eCT (1+‖q2‖1,∞), ∀t, s ∈ [0, T ]. (3.3)
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Proof By the elementary calculus, and using Hölder inequality and Poincaré inequality,
we obtain

dE2(t)
dt

= (A 1
4 wt,A 1

4 wtt)L2(Ω) + (A 3
4 w,A 3

4 wt)L2(Ω) + ‖q2‖∞(A 1
4 w,A 1

4 wt)L2(Ω)

= −(A 1
2 wt, q2w)L2(Ω) + ‖q2‖∞(A 1

4 w,A 1
4 wt)L2(Ω)

= −(A 1
4 (q2w),A 1

4 wt)L2(Ω) + ‖q2‖∞(A 1
4 w,A 1

4 wt)L2(Ω)

≤ C(1 + ‖q2‖1,∞)E2(t). (3.4)

Now, by (3.4) and applying Gronwall’s inequality, we conclude the desired result.

Further, we recall the following boundary trace estimates for the plate equation (1.1).

Lemma 3.3 Let Γ0 and ω satisfy (2.1). Let T > 0, 0 ≤ s1 < s0 < s′0 < s′1 ≤ T and
q1 ∈ L∞(Q). Suppose that w(·) satisfies (1.1). Then

∫ s′
0

s0

∫
Γ0

(w2
x + w2

tx + w2
xxx)dxdt

≤ CT 2(1 + T 2)(1 + ‖q1‖∞)
(s0 − s1)2(s′1 − s′0)2

∫ s′
1

s1

∫
ω

(w2
x + w2

tx + w2
xxx)dxdt. (3.5)

Proof The proof is very close to that of [13, Lemma 4.4]. However, for the reader’s
convenience, we give some details here. We divide the proof into several steps.

Step 1 Fix δ1 such that 0 < δ1 < δ, where δ is given in assumption (2.1). Denote

ω1
�
= Oδ1(Γ0) ∩ Ω. (3.6)

Then it is easy to see that

ω1 ⊂ ω. (3.7)

Choose h1 = h1(x) ∈ C3(Ω; R) such that h1 = ν on Γ, and choose h2 = h2(x) ∈ C∞(Ω; [0, 1])
such that ⎧⎪⎪⎨

⎪⎪⎩
0 ≤ h2(x) ≤ 1, x ∈ Ω,

h2(x) ≡ 1, x ∈ ω1,

h2(x) ≡ 0, x ∈ Ω \ ω.

(3.8)

Put

h = h(t, x)
�
= (t − s1)2(s′1 − t)2h1(x)h2(x). (3.9)

By [13, Lemma 4.1], it is easy to see that

[hw2
xxx + hw2

tx − 2hwtwxxt + 2hxwtwtx − hxxw2
t ]x

= 2(wtt + wxxxx)hwxxx − 2(wthwxxx)t + hx(3w2
tx + w2

xxx) + 2wthtwxxx − hxxxw2
t . (3.10)
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Next, integrating (3.10) on (s1, s
′
1) × Ω, using integration by parts, by (1.1) and Poincaré

inequality, we have

∫ s′
1

s1

∫
Γ

h · ν(w2
xxx + w2

tx)dxdt

=
∫ s′

1

s1

∫
Ω

[−2q1hwwxxx + hx(3w2
tx + w2

xxx) + 2wthtwxxx − hxxxw2
t ]dxdt

≤ CT 2(1 + T 2)(1 + ‖q1‖∞)
∫ s′

1

s1

∫
ω

(w2
x + w2

tx + w2
xxx)dxdt. (3.11)

Step 2 Let us estimate the term
∫ s′

0
s0

∫
Γ0

w2
xdxdt.

Set
z = −iwt + wxx.

By (1.1), it is easy to see that⎧⎪⎪⎨
⎪⎪⎩
−iwt + wxx = z, in Q,

w = 0, on Σ,

w(0) = w0, in Ω.

(3.12)

Put

g = g(t, x)
�
= (t − s1)(s′1 − t)h1(x)h2

2(x). (3.13)

Using multiplier gwx as above (see [10]), for any x ∈ ω, we choose h2 such that |∂xh2| ≤ 1
2h2.

By using Poincaré inequality, one can obtain

∫ s′
0

s0

∫
Γ

g · νw2
xdxdt ≤ CT 2(1 + ‖q1‖∞)

∫ s′
1

s1

∫
ω

h2
2(|wt|2 + |wxx|2 + w2

x)dxdt

≤ CT 2(1 + ‖q1‖∞)
∫ s′

1

s1

∫
ω

[(h2wt)2x + (h2wxx)2x + w2
x]dxdt

≤ CT 2(1 + ‖q1‖∞)
∫ s′

1

s1

∫
ω

(w2
tx + w2

xxx + w2
x)dxdt, (3.14)

where the following fact is used:

∫ s′
1

s1

∫
ω

[(h2wt)2x + (h2wxx)2x]dxdt

≤ 2
∫ s′

1

s1

∫
ω

(∂xh2)2(w2
t + w2

xx)dxdt + 2
∫ s′

1

s1

∫
ω

h2
2(w

2
tx + w2

xxx)dxdt

≤ 1
2

∫ s′
1

s1

∫
ω

h2
2(w

2
t + w2

xx)dxdt + 2
∫ s′

1

s1

∫
ω

h2
2(w

2
tx + w2

xxx)dxdt.

Combining (3.11) and (3.14), we get the desired result.

Finally, we need the following boundary trace estimates for the plate equation (1.2).
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Lemma 3.4 Let Γ0 and ω satisfy (2.1). Let T > 0, 0 ≤ s1 < s0 < s′0 < s′1 ≤ T and
q2 ∈ L∞(Q). Suppose that w(·) satisfies (1.2). Then∫ s′

0

s0

∫
Γ0

(w2
xx + w2

xxx)dxdt

≤ CT 2(1 + T 2)(1 + ‖q2‖∞)
(s0 − s1)2(s′1 − s′0)2

∫ s′
1

s1

∫
ω

(w2
x + w2

tx + w2
xxx)dxdt. (3.15)

Proof Integrating (3.10) on (s1, s
′
1)×Ω, using integration by parts, by (1.2) and Poincaré

inequality, we have∫ s′
1

s1

∫
Γ

h · νw2
xxxdxdt ≤ CT 2(1 + T 2)(1 + ‖q2‖∞)

∫ s′
1

s1

∫
ω

(w2
xxx + w2

tx)dxdt. (3.16)

On the other hand, by elementary calculus, we have

2hwx(wtt + wxxxx) = (2hwxwt)t − (hw2
t )x + hxw2

t − 2htwxwt + (2hwxwxxx − hw2
xx)x

− 2hxwxwxxx + hxw2
xxw2

xxx + hxxw2
xx. (3.17)

Integrating (3.17) on (s1, s
′
1)×Ω, using integration by parts, by (1.2) and Poincaré inequality,

we have∫ s′
0

s0

∫
Γ

h · νw2
xxdxdt ≤ CT 2(1 + T 2)(1 + ‖q2‖∞)

∫ s′
1

s1

∫
ω

(w2
x + w2

tx + w2
xxx)dxdt. (3.18)

Combining (3.16) and (3.18), we get the desired result.

4 A Point-Wise Identity for the Plate Operator

In this section, we shall establish a point wise weighted identity for 1-D plate operator,
which will play an important role in the sequel. We have the following point wise inequality.

Theorem 4.1 Let w ∈ C4(R2), � ∈ C2(R2) and Ψ ∈ C2(R). For any fixed x0 ∈ R and
λ, c > 0, set ⎧⎨

⎩
�(t, x) =

1
2

[
(x − x0)2 − c

(
t − T

2

)2]
,

θ(t, x) = e�(t,x), z(t, x) = θ(t, x)w(t, x).
(4.1)

Then

θ(wtt + wxxxx)I1 + Mt + Vx

= |I1|2 + Bz2 + Ez2
x + 6�xxz2

tx + 2�xxz2
xxx + 24�t�xztzx + Ψxzxzxx − Ψxzzxxx

+ [�tt + 6�2
xx + Ψ + 18�xx�2

x]z2
xx + [�tt + 6�2

xx − Ψ − 6�xx�2
x]z2

t , (4.2)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1
�
= ztt + zxxxx + 6(�2

x − �xx)zxx + Az,

M
�
= �t[z2

t + Az2 + z2
xx − 6(�2

x − �xx)z2
x] + 4�xzxxxzt + 4(�2

x − 3�xx)�xzxzt − Ψzzt,

V
�
= Ṽ + 2(5�2

x − 3�xx)�xz2
xx + 2�xz2

xxx + 4�x(�2
x − 3�xx)zxxxzx + 2�xz2

tx

+2�x[6(�2
x − 3�xx)(�2

x − �xx) + 6�2
xx − A]z2

x

+2�tztxzxx + Ψzxzxx − 12�xx(�2
x − �xx)zxxzx

(4.3)
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and

Ṽ
�
= 2[�tzxxx + 6(�2

x − �xx)�tzx − 2�xzxxt + 2�xxzxt − �x(�2
x − 3�xx)zt]zt

+ [4A�xzxx − 4(A�x)xzx + 2(A�x)xx + 2A�x(�2
x − 3�xx)z

+ 3(Ψ�2
x − Ψ�xx)xz − 6Ψ(�2

x − �xx)zx − Ψzxxx]z, (4.4)

and moreover,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A
�
= �2

t − �tt + (�2
x − �xx)2 − 4�xx�2

x + 2�2
xx − Ψ,

B
�
= (A�t)t + 2(A�x)xxx + 2[A�x(�2

x − 3�xx)]x + AΨ + 3(Ψ�2
x − Ψ�xx)xx,

E
�
= −6�tt(�2

x − �xx) − 6(A�x)x + 12�3
xx − 6Ψ(�2

x − �xx)

+12[�x(�2
x − 3�xx)(�2

x − �xx)]x.

(4.5)

Remark 4.1 If we assume that w = wxx = 0 or w = wx = 0 on the boundary, noting that
z = θw, then we have

∫
Γ

Ṽxdxdt =
∫
Γ

Ṽ · νdxdt = 0.

Remark 4.2 Unlike [13], we do not divide the plate operator into two Schrödinger opera-
tors. Here, we establish the point wise estimate for the fourth order plate operator directly.

Remark 4.3 Equation (4.2) can be regarded as a weighted identity. The main idea of (4.2)
is to establish a point wise identity (and/or estimate) on the principal operator wtt + wxxxx in
terms of the sum of “divergence” terms Mt +Vx, “energy” terms z2(·)+z2

x(·)+z2
tx(·)+z2

xxx(·)+
z2

xx(·) + z2
t (·) and lower order terms.

Proof The proof is long, so we divided it into several steps.
Step 1 Note that θ = e�, z = θw, it is easy to check that⎧⎪⎪⎨

⎪⎪⎩
θwt = zt − �tz, θwx = zx − �xz,

θwtt = ztt − 2�tzt + (�2
t − �tt)z,

θwxx = zxx − 2�xzx + (�2
x − �xx)z.

(4.6)

Next, recalling (4.1) for the definition of �(t, x) and noting that Ψ only depends on x, it is easy
to see that

�xxx = �xxxx = �tx = Ψt = 0. (4.7)

By (4.6)–(4.7) and recalling the definition of A in (4.5), we have

θwxxxx = [zxx − 2�xzx + (�2
x − �xx)z]xx − 2�x[zxx − 2�xzx + (�2

x − �xx)z]x
+ (�2

x − �xx)[zxx − 2�xzx + (�2
x − �xx)z]

= zxxxx − 4�xzxxx + 6(�2
x − �xx)zxx − 4�x(�2

x − 3�xx)zx

+ [(�2
x − �xx)2 − 4�xx�2

x + 2�2
xx]z. (4.8)

Combining (4.6) and (4.8), recalling the definition of I1 in (4.3), we get

θ(wtt + wxxxx) = I1 + I2 + I3, (4.9)

where

I2
�
= −2�tzt − 4�xzxxx, I3

�
= −4�x(�2

x − 3�xx)zx + Ψz. (4.10)
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By (4.9), it is easy to see that

θ(wtt + wxxxx)I1 = |I1|2 + I1I2 + I1I3. (4.11)

Step 2 Let us compute I1I2. First, by (4.10), we have

I1I2 = −2�tzt(ztt + Az) − 2�tztzxxxx − 12�t(�2
x − �xx)zxxzt

− 4�xzxxx(ztt + Az) − 4�xzxxxzxxxx − 24�x(�2
x − �xx)zxxzxxx. (4.12)

However,

−2�tzt(ztt + Az) = −(�tz
2
t )t + �ttz

2
t − (A�tz

2)t + (A�t)tz
2. (4.13)

Next, by (4.7), we have

−2�tztzxxxx = −2(�tztzxxx − �tztxzxx)x − (�tz
2
xx)t + �ttz

2
xx (4.14)

and

−12�t(�2
x − �xx)zxxzt = −12[�t(�2

x − �xx)ztzx]x + 24�t�xztzx

+ 6[�t(�2
x − �xx)z2

x]t − 6�tt(�2
x − �xx)z2

x. (4.15)

On the other hand, by (4.7), we have

− 4�xzxxx(ztt + Az)

= −4(�xzxxxzt)t + 4(�xzxxtzt)x − 4(�xxzxtzt)x − 2(�xz2
tx)x + 6�xxz2

tx

− 4(A�xzxxz)x + 4[(A�x)xzzx]x − 2[(A�x)xxz2]x
+ 2(A�xz2

x)x − 6(A�x)xz2
x + 2(A�x)xxxz2. (4.16)

Further, it is easy to see that

− 4�xzxxxzxxxx − 24�x(�2
x − �xx)zxxzxxx

= −2(�xz2
xxx)x + 2�xxz2

xxx − 12[�x(�2
x − �xx)z2

xx]x + 12�xx(3�2
x − �xx)z2

xx. (4.17)

Step 3 Let us compute I1I3. By (4.10), we have

I1I3 = −4�x(�2
x − 3�xx)zx(ztt + Az) − 24�x(�2

x − 3�xx)(�2
x − �xx)zxzxx

− 4�x(�2
x − 3�xx)zxzxxxx + Ψz(ztt + Az) + 6Ψ(�2

x − �xx)zzxx + Ψzzxxxx. (4.18)

First, by using (4.7) again, we have

− 4�x(�2
x − 3�xx)zx(ztt + Az)

= −4[�x(�2
x − 3�xx)zxzt]t + 2[�x(�2

x − 3�xx)z2
t ]x − 6�xx(�2

x − �xx)z2
t

− 2[A�x(�2
x − 3�xx)z2]x + 2[A�x(�2

x − 3�xx)]xz2. (4.19)

Next, it is easy to see that

− 24�x(�2
x − 3�xx)(�2

x − �xx)zxzxx

= −12[�x(�2
x − 3�xx)(�2

x − �xx)z2
x]x + 12[�x(�2

x − 3�xx)(�2
x − �xx)]xz2

x. (4.20)
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Furthermore, by (4.7), we have

− 4�x(�2
x − 3�xx)zxzxxxx

= −4[�x(�2
x − 3�xx)zxzxxx]x + 12[�xx(�2

x − �xx)zxzxx]x − 12(�x�2
xxz2

x)x

+ 12�3
xxz2

x + 2[�x(�2
x − 3�xx)z2

xx]x − 18�xx(�2
x − �xx)z2

xx. (4.21)

On the other hand, noting Ψt = 0, we have

Ψz(ztt + Az) = (Ψzzt)t − Ψz2
t + AΨz. (4.22)

Next,

6Ψ(�2
x − �xx)zzxx = [6Ψ(�2

x − �xx)zzx]x − 3[(Ψ�2
x − Ψ�xx)xz2]x

+ 3(Ψ�2
x − Ψ�xx)xxz2 − 6Ψ(�2

x − �xx)z2
x. (4.23)

Finally,

Ψzzxxxx = (Ψzzxxx)x − (Ψzxzxx)x + Ψxzxzxx + Ψz2
xx − Ψxzzxxx. (4.24)

Step 4 By (4.12)–(4.24), combining all “ ∂
∂t -terms”, all “ ∂

∂x -terms” and (4.11), we arrive
at the desired identity (4.2).

5 Carleman Estimate for the Plate Equation

Based on the point wise estimate (4.2) in Theorem 4.1, in this section, we shall establish
the global Carleman estimate for the 1-D plate equation. For given 0 ≤ T1 < T ′

1 ≤ T , denote
Q1 = (T1, T

′
1) × Ω. We have the following result.

Theorem 5.1 Let T > 0 and q1 ∈ L∞(0, T ; W 1,∞(Ω)), and let Γ0 be given by (2.1). Then

there is a constant λ0 = λ0( 1
T , ‖q1‖

2
7∞) > 1 such that for any λ > λ0 and for all weak solutions

to (1.1), it holds that

λ

∫
Q

θ2(λ6w2 + λ4w2
x + λ2w2

xx + λ2w2
t + w2

xxx + w2
tx)dtdx

≤ C
[
λ7T (1 + ‖q1‖−1

∞ )eCT (1+‖q1‖1,∞)E1(0) + λeCλ

∫ T ′
1

T1

∫
Γ0

(w2
xxx + w2

tx + λ4w2
x)dxdt

]
. (5.1)

Also, we have the following global Carleman estimate for system (1.2).

Theorem 5.2 Let T > 0 and q2 ∈ L∞(0, T ; W 1,∞(Ω)), and let Γ0 be given by (2.1). Then
there exists a constant λ0 = λ0( 1

T , ‖q2‖
2
7∞) > 1 such that for any λ > λ0 and for all weak

solutions to (1.2), it holds that

λ

∫
Q

θ2(λ6w2 + λ4w2
x + λ2w2

xx + λ2w2
t + w2

xxx + w2
tx)dtdx

≤ C
[
λ7T (1 + ‖q1‖−1

∞ )eCT (1+‖q2‖1,∞)E2(0) + λeCλ

∫ T ′
1

T1

∫
Γ0

(λ2w2
xx + w2

xxx)dxdt
]
. (5.2)

Remark 5.1 If we divide the plate operator into two Schrödinger operators, we can just
get the coefficient of order λ6 before w2 (see inequality (3.7) in [5]).
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Proof of Theorem 5.1 We borrow some ideas from [13]. The proof is long, so we divide
it into several steps.

Step 1 (Choice of weight functions) For simplicity, we assume x0 ∈ R \ Ω. For the case
x0 ∈ Ω, using the argument in [7], one can prove Theorem 5.1 similarly. Denote

R1
�
= max

x∈Ω
|x − x0| > R0

�
= min

x∈Ω
|x − x0|(> 0). (5.3)

Next, we choose the constant c in � defined by (4.1) as

c =
9R2

1

2T 2
. (5.4)

From (4.1) and (5.4), for any λ ≥ 1, it is easy to see that

�(0, x) = �(T, x) ≤ λ

2

(
R2

1 −
cT 2

4

)
= −λR2

1

16
< 0, ∀x ∈ Ω. (5.5)

Therefore, there exists an ε1 ∈ (0, 1
2 ) independent of T , close to 1

2 , and a constant r0 = λR2
1

32 (> 0)
such that

�(t, x) ≤ −r0 < 0, ∀ (t, x) ∈ ((0, T1) ∪ (T ′
1, T )) × Ω, (5.6)

where
T1 =

T

2
− ε1T, T ′

1 =
T

2
+ ε1T.

Step 2 (Estimate of the “energy” terms) First, take

Ψ(t, x) = 9λ3|x − x0|2. (5.7)

Recalling (4.5) for the definition of A and by using (4.1), it is easy to check that

A = λ4|x − x0|4 + O(λ3). (5.8)

Then, by (4.1), (5.7)–(5.8) and (4.5), we have

B = 14λ7|x − x0|6 + O(λ6), E = 60λ5|x − x0|4 + O(λ4). (5.9)

Similarly, by (4.1) and (5.7), it is easy to check that

[�tt + 6�2
xx + Ψ + 18�xx�2

x]z2
xx + [�tt + 6�2

xx − Ψ − 6�xx�2
x]z2

t

= [9λ3|x − x0|2 + O(λ2)]z2
xx + [3λ3|x − x0|2 + O(λ2)]z2

t . (5.10)

Next, by using (4.1) again, there exists a constant c0 > 0, such that

24�t�xztzx + Ψxzxzxx − Ψxzzxxx

≥ −c0λ
2TR1(z2

t + z2
x) − c0λ

4z2
x − c0λ

2z2
xx − c0λ

6z2 − c0z
2
xxx. (5.11)

Noting that the lower order terms with respect to the power of λ in (5.9)–(5.11) depend on
c, therefore, one can find a λ1( 1

T ) > 1 such that for any λ ≥ λ1, there exists a constant c1 > 0,
such that

Left-hand side of (4.2) ≥ c1[λ7z2 + λ5z3
x + λ3z2

xx + λ3z2
t + λz2

xxx + λz2
xt]. (5.12)
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Step 3 (Estimate of the boundary terms) Integrating (4.2) on Q1, using integration by
parts, by (5.9)–(5.10), it holds

λ

∫
Q1

(λ6z2 + λ4z2
x + λ2z2

xx + λ2z2
t + z2

xxx + z2
tx)dtdx

≤ C
[
‖θ(wtt + wxxxx)‖2

L2(Q) +
∫

Ω

M(t, x)dx
∣∣∣T ′

1

T1

+
∫ T ′

1

T1

∫
Ω

Vxdxdt
]
. (5.13)

Next, recalling (4.3) for the definition of M , noting z = θw, by (5.6), (5.8) and Poincaré
inequality, we have∫

Ω

M(t, x)dx
∣∣∣T ′

1

T1

≤ C

∫
Ω

(z2
t + z2

xx + λ4z2 + λ5z2
x + λz2

xxx)dx
∣∣∣T ′

1

T1

≤ Cλ7

∫
Ω

θ2(w2
t + w2

xx + w2 + w2
x + w2

xxx)dx
∣∣∣T ′

1

T1

≤ Cλ7e−2λr0

∫
Ω

(w2
x + w2

tx + w2
xxx)dx

∣∣∣T ′
1

T1

≤ Cλ7(1 + ‖q1‖−1
∞ )[E1(T1) + E1(T ′

1)]. (5.14)

Recalling (4.3) for the definition of V , by Remark 4.1, we arrive at∫ T ′
1

T1

∫
Ω

Vxdxdt

=
∫ T ′

1

T1

∫
Γ

�x · ν[2(5�2
x − 3�xx)z2

xx + 2z2
xxx + 4(�2

x − 3�xx)zxxxzx + 2z2
tx]dxdt

+ 2
∫ T ′

1

T1

∫
Γ

�x · ν[6(�2
x − 3�xx)(�2

x − �xx) + 6�2
xx − A]z2

xdxdt

+
∫ T ′

1

T1

∫
Γ

[2�tztxzxx + Ψzxzxx − 12�xx(�2
x − �xx)zxxzx] · νdxdt. (5.15)

However, by (4.1) and (5.8), we have

4(�2
x − 3�xx)zxxxzx + 2[6(�2

x − 3�xx)(�2
x − �xx) + 6�2

xx − A]z2
x

= |zxxx − 2(�2
x − 3�xx)zx|2 − z2

xxx + [6λ4|x − x0|4 + O(λ3)]z2
x. (5.16)

Further, noting that w = wxx = 0 on boundary and z = θw = e�w, it is easy to see that

z = zt = 0, zx = θwx, zxx = 2θ�xwx, on boundary. (5.17)

Thus, by (4.1) and (5.7), we have∫ T ′
1

T1

∫
Γ

[2�tztxzxx + Ψzxzxx − 12�xx(�2
x − �xx)zxxzx] · νdxdt

=
∫ T ′

1

T1

∫
Γ

�x · ν[4θ�twxztx + 2Ψθ2w2
x − 24�xx(�2

x − �xx)θ2w2
x]dxdt

=
∫ T ′

1

T1

∫
Γ

�x · ν[(ztx + 2�tzx)2 − z2
tx + 2(−2�2

t + Ψ − 12�xx�2
x + 12�2

xx)z2
x]dxdt

=
∫ T ′

1

T1

∫
Γ

�x · ν[(ztx + 2�tzx)2 − z2
tx − 6λ3|x − x0|2z2

x + O(λ2)z2
x]dxdt. (5.18)
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Now, combining (5.15)–(5.18), one can find a λ2( 1
T ) > 0 such that for all λ ≥ max{λ1, λ2},

and by (2.1), we have

∫ T ′
1

T1

∫
Ω

Vxdxdt ≤ C

∫ T ′
1

T1

∫
Γ0

(λz2
xxx + λz2

tx + λ5z2
x)dtdx. (5.19)

Combining (5.13)–(5.15) and (1.1), noting z = θw, we end up with

λ

∫ T ′
1

T1

∫
Ω

θ2(λ6w2 + λ4w2
x + λ2w2

xx + λ2w2
t + w2

xxx + w2
tx)dtdx

≤ C
{
‖θq1w‖2

L2(Q) + λ7(1 + ‖q1‖−1
∞ )[E1(T1) + E1(T ′

1)]

+ λ

∫ T ′
1

T1

∫
Γ0

θ2(w2
xxx + w2

xt + λ4w2
x)dtdx

}
. (5.20)

Step 4 (End of the proof) By (5.6) and noting that θ = e�, we get

λ

∫ T ′
1

T1

∫
Ω

θ2(λ6w2 + λ4w2
x + λ2w2

xx + λ2w2
t + w2

xxx + w2
tx)dtdx

≥ λ

∫
Q

θ2(λ6w2 + λ4w2
x + λ2w2

xx + λ2w2
t + w2

xxx + w2
tx)dtdx

− λ
[ ∫ T1

0

+
∫ T

T ′
1

] ∫
Ω

(λ6w2 + λ4w2
x + λ2w2

xx + λ2w2
t + w2

xxx + w2
tx)dtdx. (5.21)

Combining (5.20)–(5.21), for all λ ≥ max{λ1, λ2}, by Lemma 3.1, we get for some C1 > 0
that

λ

∫
Q

θ2(λ6w2 + λ4w2
x + λ2w2

xx + λ2w2
t + w2

xxx + w2
tx)dtdx

≤ C1

{
‖q1‖2

∞‖θw‖2
L2(Q) + λ7(1 + ‖q1‖−1

∞ )T eCT (1+‖q1‖1,∞)E1(0)

+ λeCλ

∫ T ′
1

T1

∫
Γ0

(w2
xxx + w2

tx + λ4w2
x)dtdx

}
. (5.22)

Define

λ3
�
= 1 + C

1
7
1 ‖q1‖

2
7∞, λ0

�
= max{λ1, λ2, λ3} = λ0

( 1
T

, ‖q1‖
2
7∞

)
. (5.23)

Then, for any λ ≥ λ0, we obtain

λ

∫
Q

θ2(λ6w2 + λ4w2
x + λ2w2

xx + λ2w2
t + w2

xxx + w2
tx)dtdx

≤ C
{
λ7T (1 + ‖q1‖−1

∞ )eCT (1+‖q1‖1,∞)E1(0)

+ λeCλ

∫ T ′
1

T1

∫
Γ0

(w2
xxx + w2

tx + λ4w2
x)dtdx

}
. (5.24)

This gives the proof of Theorem 5.1.

Next, we shall give a brief proof of Theorem 5.2.
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Proof of Theorem 5.2 In a way similar to Theorem 5.1, we choose the same weight
functions, where the only different terms are the boundary terms. Noting that w = wx = 0 on
boundary, by recalling (4.3) for the definition of V , combining Remark 4.1 and noting z = θw,
we arrive at ∫ T ′

1

T1

∫
Ω

Vxdxdt ≤ Cλ

∫ T ′
1

T1

∫
Γ0

(λ2z2
xx + z2

xxx)dtdx. (5.25)

Proceeding exactly as in Theorem 5.1, we obtain the desired result immediately.

6 Proof of Theorems 2.1 and 2.2

In this section, we shall prove the sharp observability inequalities for the 1-D plate equation.

Proof of Theorem 2.1 Recalling (4.1) and (5.3) for the definition of � and R0, respectively,
we see that

�
(T

2
, x

)
≥ λ

2
R2

0, ∀x ∈ Ω.

Then, one can find an ε0 ∈ (0, 1
2 ) independent of T , close to 0, such that

�(t, x) ≥ λR2
0

4
, ∀ (t, x) ∈ Q0 = (T0, T

′
0) × Ω, (6.1)

where

T0
�
=

T

2
− ε0T, T ′

0
�
=

T

2
+ ε0T. (6.2)

By (6.1)–(6.2) and Lemma 3.1, taking C1 > 1 in (5.23), for any λ ≥ λ0 ≥ λ3, we have∫
Q

θ2(λ6w2 + λ4w2
x + λ2w2

xx + λ2w2
t + w2

xxx + w2
tx)dtdx

≥ e
R2

0
2 λ

∫
Q0

(λ6w2 + λ4w2
x + λ2w2

xx + λ2w2
t + w2

xxx + w2
tx)dtdx

≥ e
R2

0
2 λ

∫
Q0

(λ4
0w

2
x + w2

tx + w2
xxx)dtdx

≥ e
R2

0
2 λ

∫
Q0

[(1 + ‖q1‖
2
7∞)4w2

x + w2
tx + w2

xxx]dtdx

≥ e
R2

0
2 λ

∫ T ′
0

T0

E1(t)dt

≥ e
R2

0
2 λ

∫ T ′
0

T0

E1(0)e
−CT(1+‖q1‖1,∞)

C dt

=
2ε0T

C
e

R2
0

2 λ−CT (1+‖q1‖1,∞)E1(0). (6.3)

By (5.1) and (6.3), for any λ ≥ λ0, we get for some C2 > 0 that

eC2T (1+‖q1‖1,∞)
[
e

R2
0

2 λ−2C2T (1+‖q1‖1,∞) − (1 + ‖q1‖−1
∞ )

C2λ
6

2ε0

]
E1(0)

≤ 2C2ε
−1
0 T−1eC2λ

∫ T ′
1

T1

∫
Γ0

(w2
xxx + w2

tx + w2
x)dtdx. (6.4)
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Now, let λ4 be such that

R2
0λ4

4
≥ 2C2T (1 + ‖q1‖1,∞). (6.5)

On the other hand, it is easy to see that

e
R2

0
4 λ − (1 + ‖q1‖−1

∞ )
C2λ

6

2ε0
≥ (R2

0
4 λ)7

7!
− 2(1 + ‖q1‖−1

∞ )
C2λ

6

2ε0
.

Put

λ5 = C
(
1 +

1
T

+ ‖q1‖
2
7∞ + T ‖q1‖1,∞ + ‖q1‖−1

∞
)
. (6.6)

By (6.4), for any λ ≥ λ5, we obtain

E1(0) ≤ P (T, q1)
∫ T ′

1

T1

∫
Γ0

(w2
x + w2

tx + w2
xxx)dtdx. (6.7)

Finally, combining (6.7) and Lemma 3.3, we get the desired result.

Proof of Theorem 2.2 In a way similar to (6.3), by (6.1)–(6.2), we have
∫

Q

θ2(λ6w2 + λ4w2
x + λ2w2

xx + λ2w2
t + w2

xxx + w2
tx)dtdx

≥ 2ε0T

C
e

R2
0
2 λ−CT (1+‖q2‖1,∞)E2(0). (6.8)

Now, by (5.2) and (6.8), for any λ ≥ max{λ0, λ1, λ2}, we get

eC2T (1+‖q2‖1,∞)
[
e

R2
0

2 λ−2C2T (1+‖q2‖1,∞) − (1 + ‖q1‖−1
∞ )

C2λ
6

2ε0

]
E2(0)

≤ 2C2ε
−1
0 T−1eC2λ

∫ T ′

T1

∫
Γ0

(w2
xxx + w2

xx)dxdt. (6.9)

Now, one can find a λ4 such that for any λ ≥ λ4,

R2
0λ

4
≥ 2C2T (1 + ‖q2‖1,∞) and

(R2
0

4 λ)7

7!
≥ 2(1 + ‖q1‖−1

∞ )
C2λ

6

2ε0
. (6.10)

Put

λ5
�
= max {λ0, λ4} = C

(
1 +

1
T

+ ‖q2‖
2
7∞ + T ‖q2‖1,∞ + ‖q1‖−1

∞
)
. (6.11)

By (6.4), for any λ ≥ λ5, we obtain

E2(0) ≤ P (T, q2)
∫ T ′

1

T1

∫
Γ0

(w2
xx + w2

xxx)dtdx. (6.12)

Finally, combining (6.12) and Lemma 3.4, we get the desired result.
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