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Abstract This paper deals with a coupled system of fourth-order parabolic inequalities
|u|t ≥ −Δ2u + |v|q , |v|t ≥ −Δ2v + |u|p in S = R

n × R
+ with p, q > 1, n ≥ 1. A Fujita-

Liouville type theorem is established that the inequality system does not admit nontrivial
nonnegative global solutions on S whenever n

4
≤ max( p+1

pq−1
, q+1

pq−1
). Since the general

maximum-comparison principle does not hold for the fourth-order problem, the authors
use the test function method to get the global non-existence of nontrivial solutions.
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1 Introduction

This paper deals with the Cauchy problem for the fourth-order semilinear parabolic inequal-
ities {|u|t ≥ −Δ2u+ |v|q,

|v|t ≥ −Δ2v + |u|p, (x, t) ∈ S = R
n × R

+, (1.1)

where p, q > 1, n ≥ 1. Higher-order nonlinear parabolic equations appear in numerous appli-
cations such as thin film theory, flame propagation, bi-stable phase transition and higher-order
diffusion (see [1]). Refer to [2–5] and the references therein for studies of higher-order heat
equations.

It is well-known that the Cauchy problem of heat equation with source

ut = Δu+ |u|p−1u, (x, t) ∈ S

does not admit nontrivial nonnegative global solutions whenever p ∈ (1, 1 + 2
n ], by Fujita [6],

Hayakawa [7], Weissler [8], etc.
The Cauchy problem for the higher-order semilinear diffusion equation{

ut = −(−Δ)mu+ |u|p, (x, t) ∈ S,
u(x, 0) = u0(x), x ∈ R

n (1.2)
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with m, p > 1 was considered by Galaktionov and Pohozaev [2]. Under u0 ∈ L1(Rn)∩L∞(Rn),
the Fujita exponent of (1.2) was determined as pc = 1 + 2m

n in [2]. The global nonexistence
result for the corresponding inequality problem with p ∈ (1, pc] was obtained as well under
u0 ∈ L1

loc(R
n),

∫
Rn u0(x)dx ≥ 0, without considering the initial traces (see [9]).

In this paper, we study the nonexistence of nontrivial global solutions for the coupled
fourth-order inequalities (1.1). We will establish a Fujita-Liouville type theorem that if n

4 ≤
max( p+1

pq−1 ,
q+1
pq−1 ), then (1.1) does not admit nontrivial solutions in S without considering their

traces on the hyperplane t = 0. Notice that the general maximum-comparison principle does
not hold for the fourth-order problem. The technique used in this paper is the “test function
method” (refer to, e.g., [3, 9–11]). As a simple consequence, the inequalities{

ut ≥ −Δ2u+ |v|q−1v,
vt ≥ −Δ2v + |u|p−1u,

(x, t) ∈ S (1.3)

have no nontrivial solutions if n
4 ≤ max( p+1

pq−1 ,
q+1
pq−1 ) without taking their traces on the hyper-

plane t = 0 into account.

To state the main result of the paper, we need the following definitions.

Definition 1.1 A pair of functions (u, v) with u ∈ Lp
loc(S) and v ∈ Lq

loc(S) is called a
solution to (1.1) if ∫

S

(−|u|φt + uΔ2φ)dxdt ≥
∫

S

|v|qφdxdt, (1.4)∫
S

(−|v|φt + vΔ2φ)dxdt ≥
∫

S

|u|pφdxdt (1.5)

for any positive function φ ∈ C∞
0 (S).

Definition 1.2 A pair of functions (u, v) with u ∈ Lp
loc(S) and v ∈ Lq

loc(S) is called a
solution to (1.3) if ∫

S

(−uφt + uΔ2φ)dxdt ≥
∫

S

|v|q−1vφdxdt, (1.6)∫
S

(−vφt + vΔ2φ)dxdt ≥
∫

S

|u|p−1uφdxdt (1.7)

for any positive function φ ∈ C∞
0 (S).

Definition 1.3 A pair of functions (u, v) with u ∈ Lp
loc(S) and v ∈ Lq

loc(S) is said to be
bounded below by a positive constant if there exists a constant C > 0 such that u, v ≥ C a.e. on
S.

Theorem 1.1 Let (u, v) be a nonnegative solution to (1.1) on S. Then u = v = 0 a.e. on
S if n

4 ≤ max( p+1
pq−1 ,

q+1
pq−1 ).

Since the nonnegative solutions to (1.3) do satisfy (1.1), Theorem 1.1 yields the following
corollary.

Corollary 1.1 Let (u, v) be a nonnegative solution to (1.3) on S. Then u = v = 0 a.e. on
S if n

4 ≤ max( p+1
pq−1 ,

q+1
pq−1 ).
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Moreover, for the problem (1.3), there is the non-existence result of the solutions bounded
below.

Theorem 1.2 Let p, q > 1. Then there are no solutions to (1.3) on S bounded below by a
positive constant.

Remark 1.1 If p = q in (1.1), the coupled system (1.1) becomes the scalar inequality
problem corresponding to (1.2) with m = 2, for which Theorem 1.1 says that the inequality
problem does not admit global solutions when n

4 ≤ 1
p−1 , or equivalently, 1 < p ≤ pc = 1 + 4

n .
This agrees with that in [9].

2 Proof of Theorem 1.1

We will prove the Fujita-Liouville type theorem in this section by using the test function
method, inspired by [10].

Proof of Theorem 1.1 Let (u, v) be a solution to (1.1), p, q > 1. For 0 < τ < +∞,
0 < r < R < +∞, set η ∈ C∞ with η′ ≥ 0 and

{
η(t) = 1, if t ∈ [2τ,+∞),
η(t) = 0, if t ∈ [0, τ ]. (2.1)

Let ξ ∈ C∞(S) satisfy

{
ξ(x, t) = 1, if (x, t) ∈ P (r),
ξ(x, t) = 0, if (x, t) ∈ S \ P (R),

(2.2)

where P (r) := {(x, t) ∈ S : |x|4 + t < r}. Take φ(x, t) = ξs(x, t)η2(t) as a test function of (1.4),
(1.5), with s > 4 to be determined.

Substituting φ(x, t) into (1.4), we have

− s

∫
P (R)

|u|ξtξs−1η2dxdt+
∫

P (R)

uΔ2ξsη2dxdt

≥
∫

P (R)

|v|qξsη2dxdt+ 2
∫

P (R)

|u|ξsηη′dxdt. (2.3)

Since η′ ≥ 0 for all t > 0, the second integral in the right-hand side of (2.3) is nonnegative, and
consequently,

s

∫
P (R)

|u||ξt|ξs−1η2dxdt +
∫

P (R)

|u||Δ2ξs|η2dxdt ≥
∫

P (R)

|v|qξsη2dxdt. (2.4)

Due to

Δ2ξs = s(s− 1)(s− 2)(s− 3)ξs−4|∇xξ|4 + 6s(s− 1)(s− 2)ξs−3|∇xξ|2Δξ
+ 3s(s− 1)ξs−2|Δξ|2 + 4s(s− 1)ξs−2∇xξ · ∇x(Δξ) + sξs−1Δ2ξ,
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the inequality (2.4) implies

s

∫
P (R)

|u||ξt|ξs−1η2dxdt+ s(s− 1)(s− 2)(s− 3)
∫

P (R)

|u||∇xξ|4ξs−4η2dxdt

+ 6s(s− 1)(s− 2)
∫

P (R)

|u||∇xξ|2|Δξ|ξs−3η2dxdt

+ 3s(s− 1)
∫

P (R)

|u||Δξ|2ξs−2η2dxdt

+ 4s(s− 1)
∫

P (R)

|u||∇xξ||∇x(Δξ)|ξs−2η2dxdt+ s

∫
P (R)

|u||Δ2ξ|ξs−1η2dxdt

≥
∫

P (R)

|v|qξsη2dxdt. (2.5)

By Hölder inequality, we deduce from (2.5) that

(∫
P (R)\P (r)

|u|pξsη2dxdt
) 1

p
{( ∫

P (R)

|ξt|
p

p−1 ξs− p
p−1 η2dxdt

) p−1
p

+
(∫

P (R)

|∇xξ|
4p

p−1 ξs− 4p
p−1 η2dxdt

) p−1
p

+
( ∫

P (R)

(|∇xξ|2|Δξ|)
p

p−1 ξs− 3p
p−1 η2dxdt

) p−1
p

+
(∫

P (R)

|Δξ| 2p
p−1 ξs− 2p

p−1 η2dxdt
) p−1

p

+
(∫

P (R)

(|∇xξ||∇x(Δξ)|) p
p−1 ξs− 2p

p−1 η2dxdt
) p−1

p

+
(∫

P (R)

|Δ2ξ| p
p−1 ξs− p

p−1 η2dxdt
) p−1

p
}

≥ c1

∫
P (R)

|v|qξsη2dxdt, (2.6)

where and in the sequel of the paper ci = ci(n, p, s) (i = 1, · · · , 9) represent positive constants
independent of τ, r, R. Set ξ(x, t) = ψ( |x|

4+t
R ) in (2.6), where ψ : [0,+∞) → [0, 1] is a smooth

function satisfying {
ψ(y) = 1, if y ∈

[
0,

1
2

]
,

ψ(y) = 0, if y ∈ [1,+∞).
(2.7)

Direct computations show the following inequalities:

mes |P (R)| ≤ c2R
n+4
4 , |ξt| ≤ c2R

−1, |Δξ|2 ≤ c2R
−1,

|∇xξ|4 ≤ c2R
−1, |∇x(Δξ)| ≤ c2R

− 3
4 , |Δ2ξ| ≤ c2R

−1

for arbitrary R = 2r > 0 and (x, t) ∈ S. Since s > 4p
p−1 , it follows from (2.6) that

( ∫
P (R)\P (r)

|u|pξsη2dxdt
) 1

p

(R
n+4

4 − p
p−1 )

p−1
p ≥ c3

∫
P (R)

|v|qξsη2dxdt. (2.8)

In a similar way,

(∫
P (R)\P (r)

|v|qξsη2dxdt
) 1

q

(R
n+4

4 − q
q−1 )

q−1
q ≥ c3

∫
P (R)

|u|pξsη2dxdt. (2.9)
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Combining (2.8) and (2.9), we have

c4

∫
P (R)

|v|qξsη2dxdt ≤
( ∫

P (R)\P (r)

|v|qξsη2dxdt
) 1

pq

(R
n+4

4 − q
q−1 )

q−1
pq (R

n+4
4 − p

p−1 )
p−1

p

=
( ∫

P (R)\P (r)

|v|qξsη2dxdt
) 1

pq

R
n(pq−1)−4(1+q)

4pq , (2.10)

and also

c4

∫
P (R)

|u|pξsη2dxdt ≤
(∫

P (R)\P (r)

|u|pξsη2dxdt
) 1

pq

R
n(pq−1)−4(1+p)

4pq . (2.11)

It concludes from (2.10) and (2.11) that
∫

S
|u|pη2dxdt =

∫
S
|v|qη2dxdt = 0 whenever n

4 <

max( p+1
pq−1 ,

q+1
pq−1 ).

If n
4 = max( p+1

pq−1 ,
q+1
pq−1 ), e.g., n

4 = p+1
pq−1 , then

∫
S
|u|pη2dxdt ≤ c5, which implies

∫
P (2rk)\P (rk)

|u|pη2dxdt → 0 (2.12)

for any sequence rk → +∞ with R = 2rk, r = rk.
On the other hand, we have by (2.11) that

(∫
P (R)\P (r)

|u|pη2dxdt
) 1

pq

R
n(pq−1)−4(1+p)

4pq ≥ c4

∫
P (r)

|u|pη2dxdt. (2.13)

Combining (2.12) and (2.13) with n
4 = p+1

pq−1 , we obtain lim
rk→+∞

∫
P (rk)

|u|pη2dxdt = 0, and

hence
∫

S
|u|pη2dxdt = 0. Due to η(t) = 1 for t ∈ [2τ,+∞) and τ > 0 by (2.1), we get u = 0 a.e.

on S, and consequently, v = 0 a.e. on S by (2.8).

3 Proof of Theorem 1.2

We continue proving the non-existence of solutions bounded below by positive constants to
the coupled inequality system (1.3).

Proof of Theorem 1.2 Suppose for contradiction that system (1.3) admits a solution (u, v)
with u, v ≥ C > 0 on S. As in the proof of Theorem 1.1, for 0 < τ < +∞, 0 < r < R < +∞, take
η ∈ C∞ satisfying (2.1) with η′ ≥ 0, and ξ ∈ C∞(S) defined by (2.2). Set φ(x, t) = ξs(x, t)η2(t)
as a test function of (1.6), with s ≥ 4p

p−1 . We obtain

− s

∫
P (R)

uξtξ
s−1η2dxdt+

∫
P (R)

uΔ2ξsη2dxdt

≥
∫

P (R)

vqξsη2dxdt+ 2
∫

P (R)

uξsηη′dxdt. (3.1)

Since η′ ≥ 0 for t > 0, the second integral of right-hand side of (3.1) is nonnegative. So

s

∫
P (R)

u|ξt|ξs−1η2dxdt+
∫

P (R)

u|Δ2ξs|η2dxdt ≥
∫

P (R)

vqξsη2dxdt.
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Repeating the same procedures as (2.4)–(2.11) in the proof of Theorem 1.1, we can get

c4

∫
P (R)

vqξsη2dxdt ≤
(∫

P (R)\P (r)

vqξsη2dxdt
) 1

pq

R
n(pq−1)−4(1+q)

4pq , (3.2)

c4

∫
P (R)

upξsη2dxdt ≤
(∫

P (R)\P (r)

upξsη2dxdt
) 1

pq

R
n(pq−1)−4(1+p)

4pq . (3.3)

It follows from (3.2) and (3.3) that∫
P ( R

2 )

vqη2dxdt ≤ c6R
n(pq−1)−4(1+q)

4(pq−1) ,

∫
P ( R

2 )

upη2dxdt ≤ c6R
n(pq−1)−4(1+p)

4(pq−1) .

Passing to the limit as τ → 0, we obtain∫
P ( R

2 )

vqdxdt ≤ c7R
n
4 − 1+q

pq−1 ,

∫
P ( R

2 )

updxdt ≤ c7R
n
4 − 1+p

pq−1 . (3.4)

Since u, v ≥ C and mes |P (R
2 )| ≥ c8R

n+4
4 , we learn from (3.4) that c9R

n
4 − 1+q

pq−1 ≥ R
n+4
4 ,

c9R
n
4 − 1+p

pq−1 ≥ R
n+4
4 hold with p, q > 1 and R > 0. This yields a contradiction for R large

enough.
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