
Chin. Ann. Math.
33B(1), 2012, 127–142
DOI: 10.1007/s11401-011-0686-8

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2012

Backward Doubly Stochastic Differential Equations

with Jumps and Stochastic Partial
Differential-Integral Equations∗

Qingfeng ZHU1 Yufeng SHI2

Abstract Backward doubly stochastic differential equations driven by Brownian motions
and Poisson process (BDSDEP) with non-Lipschitz coefficients on random time interval
are studied. The probabilistic interpretation for the solutions to a class of quasilinear
stochastic partial differential-integral equations (SPDIEs) is treated with BDSDEP. Under
non-Lipschitz conditions, the existence and uniqueness results for measurable solutions
to BDSDEP are established via the smoothing technique. Then, the continuous depen-
dence for solutions to BDSDEP is derived. Finally, the probabilistic interpretation for the
solutions to a class of quasilinear SPDIEs is given.
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1 Introduction

Nonlinear backward stochastic differential equations with Brownian motions as noise sources
(BSDEs) were independently introduced by Pardoux and Peng [7] and Duffie and Epstein [4]. By
virtue of BSDEs, Peng [9] gave a probabilistic interpretation (nonlinear Feynman-Kac formula)
for the solutions to semilinear parabolic partial differential equations (PDEs). In [9], Peng
also gave an existence and uniqueness result of BSDEs with random terminal time. And then
Darling and Pardoux [3] proved an existence and uniqueness result for BSDEs with random
terminal time under different assumptions. They used their result to construct a continuous
viscosity solution to a class of semilinear elliptic PDEs.

A class of backward doubly stochastic differential equations (BDSDEs) was introduced by
Pardoux and Peng [8] in 1994, in order to provide a probabilistic interpretation for the solutions
to a class of semilinear stochastic partial differential equations (SPDEs). They proved the
existence and uniqueness of solutions to BDSDEs under uniformly Lipschitz conditions. Since
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then, Shi et al. [11] relaxed the Lipschitz assumptions to linear growth conditions. Bally and
Matoussi [1] gave a probabilistic interpretation of the solutions in Sobolev spaces to semilinear
parabolic SPDEs in terms of BDSDEs. Zhang and Zhao [16] proved the existence and uniqueness
of solution to BDSDEs on infinite horizons, and described the stationary solutions to SPDEs
by virtue of the solutions to BDSDEs on infinite horizons.

BSDEs driven by Brownian motions and Poisson process (BSDEP) were first discussed by
Tang and Li [14]. After then Situ [12] obtained an existence and uniqueness result for BSDEP
with non-Lipschitz coefficients, so as to give a probabilistic interpretation for solutions to par-
tial differential-integral equations (PDIEs). Barles et al. [2] and Yin and Mao [15] discussed
viscosity solutions to a system of PDIEs in terms of BSDEs with jumps. Recently BDSDEs
driven by Brownian motions and Poisson process (BDSDEP) with Lipschitzian coefficients on
a fixed time interval were discussed by Sun and Lu [15].

Because of their great significance to SPDEs, it is necessary to give an intensive investi-
gation to the theory of BDSDEs. In this paper, we study BDSDEP with non-Lipschitzian
coefficients on random time interval. Here the coefficients are assumed to be weaker than
linear growth, jointly continuous and to satisfy some weak “monotone” condition. BDSDEP
can provide more extensive frameworks for the probabilistic interpretations (so-called nonlinear
stochastic Feynman-Kac formula) for the solutions to a class of quasilinear stochastic partial
differential-integral equations (SPDIEs). First, we establish the existence and uniqueness re-
sults for measurable solutions to BDSDEP based on the smoothing technique. Then we discuss
the continuous dependence for solutions to BDSDEP. Finally, by virtue of BDSDEP, we show
the probabilistic interpretation for the solutions to a class of quasilinear SPDIEs.

The paper is organized as follows. In Section 2, the basic assumptions are given. In Section 3,
the existence and uniqueness of solutions to BDSDEP with non-Lipschitz coefficients on random
time interval is proved. In Section 4, the continuous dependence for solutions to BDSDEP is
discussed. Finally, in Section 5, the probabilistic interpretation for the solutions to a class of
quasilinear SPDIEs is given by virtue of this class of BDSDEP.

2 Setting of the Problem

Let (Ω,F , P ) be a complete probability space, and [0, T ] be an arbitrarily large fixed time
duration throughout this paper. We suppose that {Ft}t≥0 is generated by the following three
mutually independent processes:

(i) Let {Wt; 0 ≤ t ≤ T } and {Bt; 0 ≤ t ≤ T } be two standard Brownian motions defined on
(Ω,F , P ), with values respectively in R

d and in R
l.

(ii) Let N be a Poisson random measure, on R+ × Z, where Z ⊂ R
r is a nonempty open

set equipped with its Borel field B(Z), with compensator N̂(dzdt) = λ(dz)dt, such that Ñ(A×
[0, t]) = (N − N̂)(A × [0, t])t≥0 is a martingale for all A ∈ B(Z) satisfying λ(A) < ∞. λ is
assumed to be a σ-finite measure on (Z,B(Z)) and is called the characteristic measure.

Let N denote the class of P -null elements of F . For each t ∈ [0, T ], we define Ft
.=

FW
t ∨ FB

t,T ∨ FN
t , where for any process {ηt}, Fη

s,t = σ{ηr − ηs; s ≤ r ≤ t} ∨ N , Fη
t = Fη

0,t.
Note that the collection {Ft, t ∈ [0, T ]} is neither increasing nor decreasing, and it does not
constitute a classical filtration.

Let τ = {τ(ω)} be an Ft-measurable time on [0, T ], that is, {ω; τ(ω) ≤ t} ∈ Ft, ∀t ∈ [0, T ],
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and let Fτ = {A ∈ FW
T ∨FB

T ∨FN
T : A ∩ {τ ≤ t} ∈ Ft, ∀t ∈ [0, T ]}. We introduce the following

notations:

S2([0, τ ]; Rn) =
{
vt, 0 ≤ t ≤ τ : vt is an R

n-valued, Ft-measurable process

such that E

(
sup

0≤t≤τ
|vt|2

)
< ∞

}
,

M2(0, τ ; Rn) =
{
vt, 0 ≤ t ≤ τ : vt is an R

n-valued, Ft-measurable process

such that E

∫ τ

0

|vt|2dt < ∞
}
,

F 2
N (0, τ ; Rn) =

{
kt, 0 ≤ t ≤ τ : kt is an R

n-valued, Ft-measurable process

such that E

∫ τ

0

∫
Z

|kt(z)|2λ(dz)dt < ∞
}

,

L2
λ( · )(R

n) =
{
k(z) : k(z) is an R

n-valued, B(Z)-measurable function

such that ‖k‖ =
( ∫

Z

|k(z)|2λ(dz)
) 1

2
< ∞

}
,

L2(Ω,Fτ , P ; Rn) = {ξ : ξ is an R
n-valued, Fτ -measurable random variable

such that E|ξ|2 < ∞}.

Consider the following BDSDEP:

Pt = ξ +
∫ τ

t∧τ

f(s, Ps, Qs, Ks)ds +
∫ τ

t∧τ

g(s, Ps, Qs, Ks)
←−
dBs

−
∫ τ

t∧τ

QsdWs −
∫ τ

t∧τ

∫
Z

Ks(z)Ñ(dzds), t ≥ 0, (2.1)

where

f : Ω × [0, T ]× R
n × R

n×d × L2
λ( · )(R

n) → R
n,

g : Ω × [0, T ]× R
n × R

n×d × L2
λ( · )(R

n) → R
n×l.

We note that the integral with respect to {Bt} is a “backward Itô integral” and the integral with
respect to {Wt} is a standard forward Itô integral. These two types of integrals are particular
cases of the Itô-Skorohod integral (see [8]). We use the usual inner product 〈 · , · 〉 and Euclidean
norm | · | in R

n, R
n×l and R

n×d. All the equalities and inequalities mentioned in this paper
are in the sense of dt × dP almost surely on [0, τ ] × Ω.

Definition 2.1 A solution to BDSDEP (2.1) is a triple of Ft-measurable stochastic pro-
cesses (P, Q, K) which belongs to the space S2([0, τ ]; Rn) × M2(0, τ ; Rn×d) × F 2

N (0, τ ; R
n) and

satisfies BDSDEP (2.1).

We assume that
(H1) ξ ∈ L2(Ω,Fτ , P ; Rn);
(H2) f(t, p, q, k), g(t, p, q, k) are continuous in (p, q, k) ∈ R

n × R
n×d × L2

λ( · )(R
n);

(H3) f = f1 + f2, fi = fi(t, p, q, k) : Ω × [0, T ] × R
n × R

n×d × L2
λ( · )(R

n) → R
n, i = 1, 2,

and g(t, p, q, k) are Ft-measurable processes, such that for all t ∈ [0, T ], p ∈ R
n, q ∈ R

n×d,
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k ∈ L2
λ( · )(R

n),

|f1(t, p, q, k)| ≤ μ(t),

|f2(t, p, q, k)| ≤ μ(t)(1 + |p| + |q| + ‖k‖),
|g(t, p, q, k)| ≤ μ(t),

where μ(t) ≥ 0 is a real and non-random function such that μ =
∫ T

0 μ2(t)dt < ∞;
(H4) for all t ∈ [0, T ], p, p1, p2 ∈ R

n, q, q1, q2 ∈ R
n×d, k, k1, k2 ∈ L2

λ( · )(R
n), such that

〈p1 − p2, f1(t, p1, q1, k1) − f1(t, p2, q2, k2)〉 ≤ μ(ρ(|p1 − p2|2) + |p1 − p2|(|q1 − q2| + ‖k1 − k2‖)),
|f1(t, p, q, k1) − f1(t, p, q, k2)| ≤ μ‖k1 − k2‖,

|f2(t, p1, q1, k1) − f2(t, p2, q2, k2)| ≤ μ(|p1 − p2| + |q1 − q2| + ‖k1 − k2‖),
|g(t, p1, q1, k1) − g(t, p2, q2, k2)|2 ≤ μ(|p1 − p2|2 + |p1 − p2|(|q1 − q2| + ‖k1 − k2‖)),

where μ > 0 is a constant, and ρ( · ) is a nondecreasing, continuous and concave function from
R+ to R+ such that ρ(0) = 0, ρ(u) > 0, as u > 0, and

∫
0+

du
ρ(u) = +∞.

Remark 2.1 Here the coefficients are assumed to be weaker than linear growth, jointly
continuous and to satisfy some weak “monotone” condition as follows:

(i) If μ(t) = μ > 0 is a constant, then (H3) implies that f is less than the linear growth
condition.

(ii) To see the generality of our result, let us give a few examples of the function ρ( · ). Let
K > 0, and let δ ∈ (0, 1) be sufficiently small. Define

ρ1(u) = Ku, u ≥ 0,

ρ2(u) =
{

u ln(u−1), 0 ≤ u ≤ δ,
δ ln(δ−1) + ρ′2(δ−)(u − δ), u > δ,

ρ3(u) =
{

u ln(u−1) ln ln(u−1), 0 ≤ u ≤ δ,
δ ln(δ−1) ln ln(δ−1) + ρ′3(δ−)(u − δ), u > δ.

They are all concave nondecreasing functions satisfying
∫
0+

du
ρi(u) = +∞. In particular, we see

clearly that if ρ(u) = Ku, then the condition of f1 in (H4) reduces to the monotone condition. In
other words, the condition of f1 in (H4) can be referred to as a weak “monotonicity condition”.

(iii) Since ρ is concave and ρ(0) = 0, one can find a pair of positive constants a and b such
that

ρ(u) ≤ a + bu for all u ≥ 0.

3 Existence and Uniqueness of Solutions to BDSDEP with
Non-Lipschitz Coefficients

In order to prove the existence and uniqueness results of solutions to BDSDEP with non-
Lipschitz coefficients on random time interval, we introduce the following lemmas and theorems.

Lemma 3.1 (A Priori Estimate) Under the assumption (H3). If (Pt, Qt, Kt) is a solution
to BDSDEP (2.1), then

E

(
sup

0≤t≤τ
|Pt|2 +

∫ τ

0

|Qt|2dt +
∫ τ

0

‖Kt‖2dt
)
≤ CT < ∞,
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where CT ≥ 0 is a constant depending on T , μ(t) and E|ξ|2 only.

Proof From (H3), we easily have

〈p, f(t, p, q, k)〉 ≤ μ(t)(1 + 2|p|2 + |p|(|q| + ‖k‖)),

where μ(t) has the property stated in (H3). Applying Itô’s formula to |Pt|2, we have

E

(
|Pt∧τ |2 +

∫ τ

t∧τ

|Qs|2ds +
∫ τ

t∧τ

‖Ks‖2ds
)

= E|ξ|2 + 2E

∫ τ

t∧τ

〈Ps, f(s, Ps, Qs, Ks)〉ds + E

∫ τ

t∧τ

|g(s, Ps, Qs, Ks)|2ds

≤ E|ξ|2 + 2E

∫ τ

t∧τ

μ(s)(1 + 2|Ps|2 + |Ps|(|Qs| + ‖Ks‖))ds + μ.

We deduce

E

(
|Pt∧τ |2 +

1
2

∫ τ

t∧τ

|Qs|2ds +
1
2

∫ τ

t∧τ

‖Ks‖2ds
)

≤ E|ξ|2 + T + 2μ + E

∫ T

t∧τ

(4μ(s) + 2μ2(s))|Ps|2ds.

By Gronwall inequality, we have

E

(
|Pt∧τ |2 +

1
2

∫ τ

t∧τ

|Qs|2ds +
1
2

∫ τ

t∧τ

‖Ks‖2ds
)
≤ C̃T ,

where

C̃T = (E|ξ|2 + T + 2μ) exp
(∫ T

0

(4μ(s) + 2μ2(s))ds
)
.

In particular,

E

(
|P0|2 +

1
2

∫ τ

0

|Qs|2ds +
1
2

∫ τ

0

‖Ks‖2ds
)
≤ C̃T .

Applying Itô’s formula to |Pt|2 on [0, t ∧ τ ], we have

|Pt∧τ |2 = |P0|2 − 2
∫ t∧τ

0

〈Ps, f(s, Ps, Qs, Ks)〉ds − 2
∫ t∧τ

0

〈Ps, g(s, Ps, Qs, Ks)〉
←−
dBs

+ 2
∫ t∧τ

0

〈Ps, Qs〉dWs + 2
∫ t∧τ

0

∫
Z

〈Ps, Ks(z)〉Ñ(dzds)

−
∫ t∧τ

0

|g(s, Ps, Qs, Ks)|2ds +
∫ t∧τ

0

|Qs|2ds +
∫ t∧τ

0

‖Ks‖2ds.

Taking supremum and expectation, we get

E sup
t≤τ

|Pt∧τ |2 ≤ E|P0|2 + 2E

∫ τ

0

μ(s)(1 + 2|Ps|2 + |Ps|(|Qs| + ‖Ks‖))ds +
∫ T

0

μ2(s)ds

+ E

∫ τ

0

|Qs|2ds + E

∫ τ

0

‖Ks‖2ds + 2E sup
t≤τ

∣∣∣ ∫ t∧τ

0

〈Ps, g(s, Ps, Qs, Ks)〉
←−
dBs

∣∣∣
+ 2E sup

t≤τ

∣∣∣ ∫ t∧τ

0

〈Ps, Qs〉dWs

∣∣∣ + 2E sup
t≤τ

∣∣∣ ∫ t∧τ

0

∫
Z

〈Ps, Ks(z)〉Ñ(dzds)
∣∣∣.
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By Burkholder-Davis-Gundy’s inequality, we deduce

E

(
sup
t≤τ

∣∣∣ ∫ t∧τ

0

〈Ps, g(s, Ps, Qs, Ks)〉
←−
dBs

∣∣∣)

≤ cE
( ∫ τ

0

|Ps∧τ |2 · |g(s, Ps, Qs, Ks)|2ds
) 1

2

≤ cE
((

sup
t≤τ

|Pt∧τ |2
) 1

2
( ∫ τ

0

|g(s, Ps, Qs, Ks)|2ds
) 1

2
)

≤ 1
8

E sup
t≤τ

|Pt∧τ |2 + 2c2

∫ T

0

μ2(s)ds.

In the same way, we have

E sup
t≤τ

∣∣∣ ∫ t∧τ

0

〈Ps, Qs〉dWs

∣∣∣ ≤ 1
8

E sup
t≤τ

|Pt∧τ |2 + 2c2
E

∫ τ

0

|Qs|2ds,

E sup
t≤τ

∣∣∣ ∫ t∧τ

0

∫
Z

〈Ps, Ks(z)〉Ñ(dzds)
∣∣∣ ≤ 1

8
E sup

t≤τ
|Pt∧τ |2 + 2c2

E

∫ τ

0

‖Ks‖2ds.

Hence

E sup
t≤τ

|Pt∧τ |2 ≤ 4E|P0|2 + 4T + 8μ + 4E

∫ τ

0

(4μ(s) + 2μ2(s))|Ps∧τ |2ds

+ 4(1 + 2c2)E
∫ τ

0

(|Qs|2 + ‖Ks‖2)ds ≤ CT < ∞.

The proof of Lemma 3.1 is completed.

As a preparation for the study of BDSDEP (2.1), we first discuss a simpler BDSDEP as
follows:

Pt = ξ +
∫ τ

t∧τ

f(s)ds +
∫ τ

t∧τ

g(s)
←−
dBs −

∫ τ

t∧τ

QsdWs

−
∫ τ

t∧τ

∫
Z

Ks(z)Ñ(dzds), t ≥ 0. (3.1)

Lemma 3.2 Given ξ ∈ L2(Ω,Fτ , P ; Rn), f(t) ∈ M2(0, τ ; Rn) and g(t) ∈ M2(0, τ ; R
n×l),

then BDSDEP (3.1) has a unique solution in S2([0, τ ]; Rn) × M2(0, τ ; Rn×d) × F 2
N (0, τ ; Rn).

Proof Uniqueness Let (P 1, Q1) and (P 2, Q2) be two solutions to (3.1). Applying Itô’s
formula to |P 1

t − P 2
t |2, we have

E|P 1
t∧τ − P 2

t∧τ |2 + E

∫ τ

t∧τ

|Q1
s − Q2

s|2ds + E

∫ τ

t∧τ

‖K1
s − K2

s‖2ds = 0.

Then

E|P 1
t∧τ − P 2

t∧τ |2 = 0, E

∫ τ

t∧τ

|Q1
s − Q2

s|2ds = 0

and

E

∫ τ

t∧τ

‖K1
s − K2

s‖2ds = 0, 0 ≤ t ≤ T.
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Hence P 1
t = P 2

t , Q1
t = Q2

t and K1
t = K2

t a.s. The uniqueness is obtained.
Existence We define the filtration (Gt)0≤t≤T by

Gt = FW
t ∨ FB

T ∨ FN
t

and the Gt-square integrable martingale

Mt = E

[(
ξ +

∫ τ

0

f(s)ds +
∫ τ

0

g(s)
←−
dBs

)∣∣∣Gt

]
.

An obvious extension of Itô’s martingale representation theorem (see [6]) yields the existence
of Gt-progressively measurable process (Qt, Kt) such that

Mt = M0 +
∫ t

0

QsdWs +
∫ t

0

∫
Z

Ks(z)Ñ(dzds)

and

E

∫ T

0

(|Qs|2 + ‖Ks‖2)ds < ∞.

Hence

Mτ = Mt∧τ +
∫ τ

t∧τ

QsdWs +
∫ τ

t∧τ

∫
Z

Ks(z)Ñ(dzds).

Replacing Mτ and Mt∧τ by their defining formulas and subtracting
∫ t∧τ

0
f(s)ds+

∫ t∧τ

0
g(s)

←−
dBs

from both sides of the equality yields

Pt∧τ = ξ +
∫ τ

t∧τ

f(s)ds +
∫ τ

t∧τ

g(s)
←−
dBs −

∫ τ

t∧τ

QsdWs −
∫ τ

t∧τ

∫
Z

Ks(z)Ñ(dzds),

where

Pt∧τ = E

[(
ξ +

∫ τ

t∧τ

f(s)ds +
∫ τ

t∧τ

g(s)
←−
dBs

)∣∣∣Gt∧τ

]
.

This implies that (Pt, Qt, Kt) solves (3.1).
By the similar arguments as Proposition 1.2 in [8], we show that {Pt}, {Qt} and {Kt} are

Ft-measurable. For Pt, this is obvious since for each t,

Pt∧τ = E

[(
ξ +

∫ τ

t∧τ

f(s)ds +
∫ τ

t∧τ

g(s)
←−
dBs

)∣∣∣Gt∧τ

]
= E(Θ|Ft∧τ ∨ FB

t∧τ ),

where Θ = ξ +
∫ τ

t∧τ
f(s)ds +

∫ τ

t∧τ
g(s)

←−
dBs is FW

τ ∨ FB
t∧τ,T ∨ FN

τ -measurable. Hence, FB
t∧τ is

independent of Ft∧τ ∨ σ(Θ), and

Pt∧τ = E(Θ|Ft∧τ ).

Now∫ τ

t∧τ

QsdWs +
∫ τ

t∧τ

∫
Z

Ks(z)Ñ(dzds) = ξ +
∫ τ

t∧τ

f(s)ds +
∫ τ

t∧τ

g(s)
←−
dBs −Pt∧τ ,
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and the right-hand side is FW
τ ∨FB

t∧τ,T ∨FN
τ -measurable. Hence from Itô’s martingale represen-

tation theorem, {(Qs, Ks) : t∧τ < s < τ} is FW
s ∨FB

t∧τ,T ∨FN
s -adapted. Consequently, (Qs, Ks)

is FW
s ∨ FB

t∧τ,T ∨ FN
s -measurable for any t ∧ τ < s < T , so it is FW

s ∨ FB
s,T ∨ FN

s -measurable,
that is, (Qt, Kt) is Ft-measurable. The proof of Lemma 3.2 is completed.

In the following of this section, we derive the existence and uniqueness results for solutions
to BDSDEP on random time interval with Lipschitzian and non-Lipschitzian coefficients. The
first one, that is Theorem 3.1, deals with the case where f is Lipschitz continuous.

Theorem 3.1 Under the assumptions (H1)– (H4), if f1 = 0, BDSDEP (2.1) has a unique
solution (Pt, Qt, Kt) in S2([0, τ ]; Rn) × M2(0, τ ; R

n×d) × F 2
N (0, τ ; Rn).

Proof We define recursively a sequence {(P i
t , Q

i
t, K

i
t)}i=0,1,··· as follows. Let P 0

t = 0, Q0
t =

0, K0
t = 0. By Lemma 3.2, for any (P i

t , Q
i
t, K

i
t) ∈ S2([0, τ ]; Rn)×M2(0, τ ; R

n×d)×F 2
N (0, τ ; Rn),

i = 0, 1, · · · , there exists a unique (P i+1
t , Qi+1

t , Ki+1
t ), satisfying

P i+1
t = ξ +

∫ τ

t∧τ

f(s, P i
s , Q

i
s, K

i
s)ds +

∫ τ

t∧τ

g(s, P i
s , Q

i
s, K

i
s)
←−
dBs

−
∫ τ

t∧τ

Qi+1
s dWs −

∫ τ

t∧τ

∫
Z

Ki+1
s (z)Ñ(dzds), t ≥ 0.

Moreover, by Lemma 3.2, (P i+1
t , Qi+1

t , Ki+1
t ) ∈ S2([0, τ ]; Rn)×M2(0, τ ; Rn×d)× F 2

N (0, τ ; R
n).

Applying the Itô’s formula to |P i+1
t − P i

t |2e−βt, we have

E|P i+1
t∧τ − P i

t∧τ |2e−βt + βE

∫ τ

t∧τ

|P i+1
s − P i

s |2e−βsds

+ E

∫ τ

t∧τ

|Qi+1
s − Qi

s|2e−βsds + E

∫ τ

t∧τ

‖Ki+1
s − Ki

s‖2e−βsds

= 2E

∫ τ

t∧τ

〈P i+1
s − P i

s , f(s, P i
s , Q

i
s, K

i
s) − f(s, P i−1

s , Qi−1
s , Ki−1

s )〉e−βsds

+ E

∫ τ

t∧τ

|g(s, P i
s , Qi

s, K
i
s) − g(s, P i−1

s , Qi−1
s , Ki−1

s )|2e−βsds

≤ 2μE

∫ τ

t∧τ

|P i+1
s − P i

s |(|P i
s − P i−1

s | + |Qi
s − Qi−1

s | + ‖Ki
s − Ki−1

s ‖)e−βsds

+ μE

∫ τ

t∧τ

(|P i
s − P i−1

s |2 + |P i
s − P i−1

s |(|Qi
s − Qi−1

s | + ‖Ki
s − Ki−1

s ‖))e−βsds

≤ 1
4

E

∫ τ

t∧τ

(|P i
s − P i−1

s |2 + |Qi
s − Qi−1

s |2 + ‖Ki
s − Ki−1

s ‖2)e−βsds

+ 12μE

∫ τ

t∧τ

|P i+1
s − P i

s |2e−βsds + 3μE

∫ τ

t∧τ

|P i
s − P i−1

s |2e−βsds

+
1
4

E

∫ τ

t∧τ

(|Qi
s − Qi−1

s |2 + ‖Ki
s − Ki−1

s ‖2)e−βsds,

we deduce

E|P i+1
t∧τ − P i

t∧τ |2e−βt + (β − 12μ)E
∫ τ

t∧τ

|P i+1
s − P i

s |2e−βsds

+ E

∫ τ

t∧τ

|Qi+1
s − Qi

s|2e−βsds + E

∫ τ

t∧τ

‖Ki+1
s − Ki

s‖2e−βsds
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≤ 1
2

E

∫ τ

t∧τ

(|Qi
s − Qi−1

s |2 + ‖Ki
s − Ki−1

s ‖2)e−βsds

+
(1

4
+ 3μ

)
E

∫ τ

t∧τ

|P i
s − P i−1

s |2e−βsds.

Now choose β = 12μ + 1+12μ
2 , and define c = 1+12μ

2 .

E|P i+1
t∧τ − P i

t∧τ |2e−βt + E

∫ τ

t∧τ

(c|P i+1
s − P i

s |2 + |Qi+1
s − Qi

s|2 + ‖Ki+1
s − Ki

s‖2)e−βsds

≤ 1
2

E

∫ τ

t∧τ

(c|P i
s − P i−1

s |2 + |Qi
s − Qi−1

s |2 + ‖Ki
s − Ki−1

s ‖2)e−βsds.

It follows immediately that

E

∫ τ

t∧τ

(c|P i+1
s − P i

s |2 + |Qi+1
s − Qi

s|2 + ‖Ki+1
s − Ki

s‖2)e−βsds

≤ 1
2

E

∫ τ

t∧τ

(c|P i
s − P i−1

s |2 + |Qi
s − Qi−1

s |2 + ‖Ki
s − Ki−1

s ‖2)e−βsds,

and {(P i
t , Qi

t, K
i
t)}i=0,1,··· is a Cauchy sequence in S2([0, τ ]; Rn)×M2(0, τ ; R

n×d)×F 2
N (0, τ ; Rn),

and that

{(Pt, Qt, Kt)} = lim
i→∞

{(P i
t , Q

i
t, K

i
t)}

solves (2.1). The proof of Theorem 3.1 is completed.

The next theorem is the main result of this section, which generalizes the result of Theorem
3.1 to the case where f is continuous but not Lipschitz continuous.

Theorem 3.2 Under the assumptions (H1)–(H4), BDSDEP (2.1) has a unique solution
(Pt, Qt, Kt).

Proof Uniqueness Let (P 1
s , Q1

s, K
1
s ) and (P 2

s , Q2
s, K

2
s ) be two solutions to (2.1). Applying

Itô’s formula to |P 1
s − P 2

s |2, we obtain

E

(
|P 1

t∧τ − P 2
t∧τ |2 +

∫ τ

t∧τ

|Q1
s − Q2

s|2ds +
∫ τ

t∧τ

‖K1
s − K2

s‖2ds
)

= 2E

∫ τ

t∧τ

〈P 1
s − P 2

s , f(s, P 1
s , Q1

s, K
1
s ) − f(s, P 2

s , Q2
s, K

2
s )〉ds

+ E

∫ τ

t∧τ

|g(s, P 1
s , Q1

s, K
1
s ) − g(s, P 2

s , Q2
s, K

2
s )|2ds

≤ 2μE

∫ τ

t∧τ

(ρ(|P 1
s − P 2

s |2) + |P 1
s − P 2

s |(|Q1
s − Q2

s| + ‖K1
s − K2

s‖))ds

+ μE

∫ τ

t∧τ

(|P 1
s − P 2

s |2 + |P 1
s − P 2

s |(|Q1
s − Q2

s| + ‖K1
s − K2

s‖))ds.

From (H4), we have

Xt = E

(
|P 1

t∧τ − P 2
t∧τ |2 +

1
2

∫ τ

t∧τ

|Q1
s − Q2

s|2ds +
1
2

∫ τ

t∧τ

‖K1
s − K2

s‖2ds
)

≤ μE

∫ τ

t∧τ

(2ρ(|P 1
s − P 2

s |2) + 11|P 1
s − P 2

s |2)ds

≤ 11μ

∫ T

t

ρ1(Xs)ds,
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where ρ1(u) = 2ρ(u) + 16u.

By the Bahari’s inequality, we obtain

E

(
|P 1

t∧τ − P 2
t∧τ |2 +

∫ τ

t∧τ

|Q1
s − Q2

s|2ds +
∫ τ

t∧τ

‖K1
s − K2

s‖2ds
)

= 0

for all t ∈ [0, T ].
It implies that for all t ∈ [0, T ],

E|P 1
t∧τ − P 2

t∧τ |2 = 0, E

∫ τ

0

|Q1
s − Q2

s|2ds = 0, E

∫ τ

0

‖K1
s − K2

s‖2ds = 0.

Existence For simplicity, we assume that f2 = 0. (In the case f2 �= 0, we can just smooth
out f1 and proceed as follows.) Let us smooth out f to get fm, i.e., let

fm(t, P, Q, K) =
∫

Rn+n×l

f(t, P − m−1P , Q − m−1Q, K)J(P , Q)dPdQ,

where J(P, Q) = J1(P )J2(Q) and J1(P ) is defined for all P ∈ R
n,

J1(P ) =
{

c0 exp(−(1 − |P |2)−1), as |P | < 1,
0, otherwise,

such that the constant c0 satisfies
∫

Rn J1(x)dx = 1. J2(Q) is similarly defined for any Q ∈ R
n×d.

It is easy to check that

|fm(t, , P1, Q1, K1) − fm(t, P2, Q2, K2)| ≤ Cmμ(|P1 − P2| + |Q1 − Q2| + ‖K1 − K2‖),

as (Pi, Qi, Ki) ∈ R
n×R

n×d×L2
λ( · )(R

n), i = 1, 2. Hence by Theorem 3.1, for each m = 1, 2, · · · ,

there exists a unique solution (Pm
t , Qm

t , Km
t ) to solve the following BDSDEP:

Pm
t∧τ = ξ +

∫ τ

t∧τ

fm(s, Pm
s , Qm

s , Km
s )ds +

∫ τ

t∧τ

g(s, Pm
s , Qm

s , Km
s )

←−
dBs

−
∫ τ

t∧τ

Qm
s dWs −

∫ τ

t∧τ

∫
Z

Km
s (z)Ñ(dzds). (3.2)

Applying Itô’s formula to |Pm
t − P j

t |2, we have

|Pm
t∧τ − P j

t∧τ |2 +
∫ τ

t∧τ

|Qm
s − Qj

s|2ds +
∫ τ

t∧τ

‖Km
s − Kj

s‖2ds

= 2
∫ τ

t∧τ

〈Pm
s − P j

s , fm(s, Pm
s , Qm

s , Km
s ) − f j(s, P j

s , Qj
s, K

j
s)〉ds

+
∫ τ

t∧τ

|g(s, Pm
s , Qm

s , Km
s ) − g(s, P j

s , Qj
s, K

j
s)|2ds − 2

∫ τ

t∧τ

〈Pm
s − P j

s , Qm
s − Qj

s〉dWs

+ 2
∫ τ

t∧τ

〈Pm
s − P j

s , g(s, Pm
s , Qm

s , Km
s ) − g(s, P j

s , Qj
s, K

j
s)〉

←−
dBs

− 2
∫ τ

t∧τ

∫
Z

〈Pm
s − P j

s , Km
s − Kj

s〉Ñ(dzds)

=
5∑

i=1

Ii.
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Note that

I1 = 2
∫ τ

t∧τ

〈
Pm

s − P j
s ,

∫
Rn+n×l

(f(s, Pm
s − m−1P , Qm

s − m−1Q, Km
s )

− f(s, P j
s − j−1P , Qj

s − j−1Q, Kj
s))J(P , Q)dPdQ

〉
ds

≤ μ

∫ τ

t∧τ

∫
Rn+n×l

((ρ(|Pm
s − P j

s − (m−1 − j−1)P |2)

+ |Pm
s − P j

s − (m−1 − j−1)P | × (|Qm
s − Qj

s − (m−1 − j−1)Q|
+ ‖Km

s − Kj
s‖))μ(s) + |m−1 − j−1||P |2μ(s))J(P , Q)dPdQds.

Since by Lemma 3.1 for all m,

E

(
sup
t≤τ

|Pm
t |2 +

∫ τ

0

|Qm
t |2dt +

∫ τ

0

‖Km
t ‖2dt

)
≤ CT < ∞.

Hence

E

(
|Pm

t∧τ − P j
t∧τ |2 +

∫ τ

t∧τ

|Qm
s − Qj

s|2ds +
∫ τ

t∧τ

‖Km
s − Kj

s‖2ds
)

≤ CT (μ2 + μ)
∫ T

t

∫
Rn+n×l

(ρ(E|Pm
s∧τ − P j

s∧τ − (m−1 − j−1)P |2)

+ E|Pm
s∧τ − P j

s∧τ |2)J(P , Q)dPdQds + CT (m−1 + j−1).

Note that

ρ(2E|Pm
s∧τ − P j

s∧τ |2 + 2(m−1 − j−1)2|P |2) ≤ ρ(4CT + 2|P |2).

But by the assumption, it yields that∫
ρ(4CT + 2|P |2)J(P , Q)dPdQ ≤ ρ(4CT + 2) < ∞.

Hence by Lemma 3.1 and by the Fatou lemma, it is easy to see that

lim sup
m,j→∞

E|Pm
t∧τ − P j

t∧τ |2 + lim sup
m,j→∞

E

∫ τ

t∧τ

(|Qm
s − Qj

s|2 + ‖Km
s − Kj

s‖2)ds

≤ ĈT (μ2 + μ)
∫ T

t

ρ1

(
lim sup
m,j→∞

2E|Pm
s∧τ − P j

s∧τ |2
)
ds,

where ρ1(u) = ρ(u) + u. By the Bahari’s inequality, we obtain

lim sup
m,j→∞

E|Pm
t∧τ − P j

t∧τ |2 = 0 for all t ∈ [0, T ]

and

lim sup
m,j→∞

E

∫ τ

0

(|Qm
s − Qj

s|2 + ‖Km
s − Kj

s‖2)ds = 0.

These, together with the Burkholder-Davis-Gundy’s inequality, yield

lim
m,j→∞

E sup
0≤t≤τ

|Pm
t − P j

t |2 = 0.
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By the completeness of Banach space, we know that there exists a unique (P, Q, K) ∈ S2([0, τ ];
R

n) × M2(0, τ ; Rn×d) × F 2
N (0, τ ; Rn), such that as m → ∞,

E sup
0≤t≤τ

|Pm
t − Pt|2 → 0, E

∫ τ

0

|Qm
s − Qs|2ds → 0, E

∫ τ

0

‖Km
s − Ks‖2ds → 0.

Therefore, we can take a subsequence {mk} of {m}, denote it by {m} again such that almost
surely for (t, ω) ∈ [0, T ]× Ω,

(Pm
t , Qm

t , Km
t ) → (Pt, Qt, Kt), in R

n × R
n×l × Lλ( · )(Rn).

Hence, by the continuity of f in (P, Q, K), (H3), Lemma 3.1 and the Lebesgue domination
convergence theorem, we have that

E

∫ τ

0

|fm(s, Pm
s , Qm

s , Km
s ) − f(s, Ps, Qs, Ks)|ds → 0, m → ∞.

It is easy to check that (P, Q, K) is a solution to (2.1) by taking the limit on both sides of (3.2).
The proof of Theorem 3.2 is completed.

4 Continuous Dependence for Solutions of BDSDEP

In this section, we discuss the continuous dependence for solutions to BDSDEP (2.1). By
the similar method in the proof of Theorems 3.1 and 3.2, we have the following theorem.

Theorem 4.1 For m = 0, 1, 2, · · · , we have
(i) fm = fm(t, p, q, k) : [0, T ]× R

n × R
n×d × L2

λ( · )(R
n) → R

n are Ft-measurable, such that
P-a.s.

〈p, fm(t, p, q, k)〉 ≤ μ(t)(1 + |p|2 + |p|(|q| + ‖k‖)),

where μ(t) has the property stated in (H3);
(ii) for all p1, p2 ∈ R

n, q1, q2 ∈ R
n×d, k1, k2 ∈ L2

λ( · )(R
n), such that P-a.s.

〈p1 − p2, f
0(t, p1, q1, k1) − f0(t, p2, q2, k2)〉

≤ μ(t)(ρ(|p1 − p2|2) + |p1 − p2|(|q1 − q2| + ‖k1 − k2‖)),

where ρ( · ) has the property stated in (H4);
(iii) gm = gm(t, p, q, k) : [0, T ] × R

n × R
n×d × L2

λ( · )(R
n) → R

n×l are Ft-measurable, such
that P-a.s.

|gm(t, p, q, k)| ≤ μ(t),

|gm(t, p1, q1, k1) − gm(t, p2, q2, k2)|2 ≤ μ(t)(|p1 − p2|2 + |p1 − p2|(|q1 − q2| + ‖k1 − k2‖)),

where μ(t) has the property stated in (H3);
(iv) lim

m→∞ sup
p∈R

n

q∈R
n×d

k∈L2
λ( · )(R

n)

∫ T

0
|fm(t, p, q, k) − f0(t, p, q, k)|2dt = 0,
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lim
m→∞ sup

p∈R
n

q∈R
n×d

k∈L2
λ( · )(R

n)

∫ T

0
|gm(t, p, q, k) − g0(t, p, q, k)|2dt = 0;

(v) ξm is Fτ -measurable and

E|ξm − ξ0|2 → 0, as m → ∞, E|ξm|2 < ∞.

If (Pm
t , Qm

t , Km
t ) are solutions to the following BDSDEP: as 0 ≤ s ≤ T ,

Pm
s∧τ = ξm +

∫ T∧τ

s∧τ

fm(r, Pm
r , Qm

r , Km
r )dr +

∫ T∧τ

s∧τ

gm(r, Pm
r , Qm

r , Km
r )

←−
dBr

−
∫ T∧τ

s∧τ

Qm
r dWr −

∫ T∧τ

s∧τ

∫
Z

Km
r (z)Ñ(dzdr), m = 0, 1, 2, · · · ,

then for all 0 ≤ s ≤ T ,

lim
m→∞E

(
sup

s≤r≤T
|Pm

r∧τ − P 0
r∧τ |2 +

∫ T∧τ

s∧τ

(|Qm
r − Q0

r|2 + ‖Km
r − K0

r‖2)dr
)

= 0.

We also have other useful continuous dependence for solutions to BDSDEP as follows.

Theorem 4.2 For m = 0, 1, 2, · · · , we have
(i) fm(t, p, q, k) are Ft-measurable, such that P-a.s.

|fm(t, p, q, k)| ≤ C0(1 + |p| + |q| + ‖k‖),

where C0 ≤ 0 is a constant;
(ii) ∀p1, p2 ∈ R

n, q1, q2 ∈ R
n×l, k1, k2 ∈ L2

λ( · )(R
n), such that

〈p1 − p2, f
m(t, p1, q1, k1) − fm(t, p2, q2, k2)〉

≤ μ(t)ρ(|p1 − p2|2) + |p1 − p2|(|q1 − q2| + ‖k1 − k2‖),

where μ(t) has the property stated in (H3) and ρ( · ) has the property stated in (H4);
(iii) the same as (iii) in Theorem 4.1;
(iv) lim

m→∞ fm(t, p, q, k) = f0(t, p, q, k), P-a.s., lim
m→∞ gm(t, p, q, k) = g0(t, p, q, k), P-a.s.;

(v) the same as (v) in Theorem 4.1.
Then the conclusion of Theorem 4.1 still holds.

5 The Probabilistic Interpretation of SPDIEs

The connection of BDSDEs and systems of second-order quasilinear SPDEs was observed
by Pardoux and Peng [8]. This can be regarded as a stochastic version of the well-known
Feynman-Kac formula which gives a probabilistic interpretation for second-order SPDEs of
parabolic types. Thereafter, this subject has attracted many mathematicians (refer to [1, 5, 10,
16]). In [5], the authors got a probabilistic interpretation for the solution to a semilinear SPDIE,
via BDSDEs with Lévy process for a fixed terminal time under the Lipschitzian assumption.
This section can be viewed as a continuation of such a theme, and will exploit the above theory
of BDSDEP with non-Lipschitzian coefficients and random terminal time in order to provide a
probabilistic formula for the solution to a quasilinear SPDIE.
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Let D be a bounded domain in R
m with the boundary ∂D = S, Dc = R

m \ D.
First, consider the following forward SDE with Poisson jumps in R

m for any given (t, x) ∈
[0, T ]× D,

Xs = x +
∫ s

t

b(r, Xr)dr +
∫ s

t

σ(r, Xr)dWr

+
∫ s

t

∫
Z

h(r−, Xr− , z)Ñ(dzdr), t ≤ s ≤ T, (5.1)

where

b : [0, T ]× R
m → R

m, σ : [0, T ]× R
m → R

m×d, h : [0, T ]× R
m × Z → R

m.

It is known that, if the coefficients are less than linear increasing, and satisfy the Lipschitz
condition, then SDE (5.1) has a unique solution (see [12]).

Now for any (t, x) ∈ [0, T ]× D, let

τ = τx = inf{s > t : Xt,x
s /∈ D} and τ = τx = T for inf{φ}.

Consider the following BDSDEP (for simplicity, denote Xs = Xt,x
s ):

Ps = Φ(Xτ ) +
∫ τ

s∧τ

f(r, Xr, Pr, Qr, Kr)dr +
∫ τ

s∧τ

g(r, Xr, Pr, Qr, Kr)
←−
dBr

+
∫ τ

s∧τ

QrdWr +
∫ τ

s∧τ

∫
Z

Kr−(z)Ñ(dzdr), t ≤ s ≤ T, (5.2)

where

f : [0, T ]× R
m × R

n × R
n×d × L2

λ( · )(R
n) → R

n,

g : [0, T ]× R
m × R

n × R
n×d × L2

λ( · )(R
n) → R

n×l,

Φ : R
m → R

n.

Suppose that f(t, x, · , · , · ) and g(t, x, · , · , · ) satisfy the conditions in Theorem 3.2 uniformly
for t and x, and suppose that E|Φ(Xτ )|2 < ∞, then by Theorem 3.2, BDSDEP (5.2) has a
unique solution (Pt, Qt, Kt) ∈ S2([0, τ ]; Rn) × M2(0, τ ; Rn×d) ×F 2

N (0, τ ; Rn).
We now relate BDSDEP (5.2) to the following system of quasilinear second-order parabolic

SPDIE: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Lu(t, x)dt
= f(t, x, u(t, x),∇u(t, x)σ(t, x), u(t, x + h(t, x, · )) − u(t, x))dt

+g(t, x, u(t, x),∇u(t, x)σ(t, x), u(t, x + h(t, x, · )) − u(t, x))
←−
dBt,

∀(t, x) ∈ [0, T ]× D,
u(T, x) = Φ(x), ∀x ∈ D,
u(t, x)|Dc = Ψ(t, x), Ψ(T, x) = Φ(x)|Dc ,

(5.3)

where u : R+ × R
m → R

n,

Lu =

⎛
⎜⎝

Lu1

...
Lun

⎞
⎟⎠
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with

Luk(t, x)

=
∂uk

∂t
(t, x) +

n∑
i=1

bi(t, x)
∂uk

∂xi
(t, x) +

1
2

n∑
i,j=1

(σσ∗)ij(t, x)
∂2uk

∂xi∂xj
(t, x)

+
∫

Z

(
uk(t, x + h(t, x, z)) − uk(t, x) −

n∑
i=1

hi(t, x, z)
∂uk

∂xi
(t, x)

)
λ(dz), k = 1, · · · , n.

Now assume that σ is uniformly non-degenerate, i.e., there exists a constant β > 0, such that

1
2

n∑
i,j=1

(σσ∗)ij(t, x)ξiξj ≥ β|ξ|2 for all ξ ∈ R
m and (t, x) ∈ [0, T ]× D,

where D = the closure of D. Hence, SPDIE (5.3) is a true quasilinear type equation.
We can assert that

Theorem 5.1 Under the above related conditions, b, σ, h, f and g are of class C3, and Φ is
of class C2. Suppose that SPDIE (5.3) has a unique solution u(t, x) ∈ C1,2(Ω× [0, T ]×R

m; Rn).
Then, for any given (t, x), u(t, x) has the following interpretation:

u(t, x) = Pt, (5.4)

where Pt is determined uniquely by (5.1) and (5.2).

Proof Applying Itô’s formula to u(t, Xt) (see [12, Theorem 6]) on [s ∧ τ, τ ], we obtain

u(τ, Xτ ) − u(s ∧ τ, Xs∧τ )

=
∫ τ

s∧τ

∂u

∂r
(r, Xr)dr +

∫ τ

s∧τ

m∑
i=1

bi(r, Xr)
∂u

∂xi
(r, Xr)dr

+
∫ τ

s∧τ

∇u(r, Xr)σ(r, Xr)dWr +
∫ τ

s∧τ

1
2

m∑
i,j=1

(σσ∗)ij(r, Xr)
∂2u

∂xi∂xj
(r, Xr)dr

+
∫ τ

s∧τ

∫
Z

(u(r, Xr + h(r, Xr, z)) − u(r, Xr))Ñ(dzdr)

+
∫ τ

s∧τ

∫
Z

(
u(r, Xr + h(r, Xr, z)) − u(r, Xr) −

m∑
i=1

hi(r, Xr, z)
∂u

∂xi
(r, Xr)

)
λ(dz)dr.

Because u(t, x) satisfies SPDIE (5.3), it holds that

Φ(Xτ ) − u(s ∧ τ, Xs∧τ )

=
∫ τ

s∧τ

f(r, Xr, u(r, Xr),∇u(r, Xr)σ(r, Xr , u(r, Xr)), u(r, Xr + h(r, Xr, · )) − u(r, Xr))dr

+
∫ τ

s∧τ

g(r, Xr, u(r, Xr),∇u(r, Xr)σ(r, Xr, u(r, Xr)),

u(r, Xr + h(r, Xr, · )) − u(r, Xr))
←−
dBr

+
∫ τ

s∧τ

∇u(r, Xr)g(r, Xr)dWr

+
∫ τ

s∧τ

∫
Z

(u(r, Xr + h(r, Xr, z)) − u(r, Xr))Ñ (dzdr).
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It is easy to check that (u(t, Xt),∇u(t, Xt)σ(t, Xt), u(t, Xt + h(t, Xt, · )) − u(t, Xt)) coincides
with the unique solution of BDSDEP (5.2). It follows that

u(t, x) = Pt.

The proof of Theorem 5.1 is completed.

Remark 5.1 (5.4) can be called as a stochastic Feynman-Kac formula for SPDIE (5.3),
which is a useful tool in the study of SPDIEs.
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