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Abstract Let G be a permutation group on a set Ω with no fixed points in Ω, and m be a
positive integer. Then the movement of G is defined as move(G):=sup

Γ
{|Γg \Γ| | g ∈ G}. It

was shown by Praeger that if move(G) = m, then |Ω| � 3m + t− 1, where t is the number
of G-orbits on Ω. In this paper, all intransitive permutation groups with degree 3m+ t− 1
which have maximum bound are classified. Indeed, a positive answer to her question that
whether the upper bound |Ω| = 3m + t − 1 for |Ω| is sharp for every t > 1 is given.
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1 Introduction

Let G be a permutation group on a set Ω with no fixed points in Ω, and m be a positive
integer. If for a subset Γ of Ω the size |Γg − Γ| is bounded, for g ∈ G, we define the movement
of Γ as

move(Γ) := sup
g∈G

|Γg − Γ|.

If move(Γ) ≤ m for all Γ ⊆ Ω, then G is said to have bounded movement m and the movement
of G is defined as

move(G) := sup
Γ,g

|Γg − Γ|,

where Γ ranges over all subsets of Ω and g ranges over all elements of G.
This notion was introduced in [4, 7]. By [7, Theorem 1], if G has bounded movement m,

then Ω is finite. Moreover, both the number of G-orbits in Ω and the length of each G-orbit
are bounded above by linear functions of m. In particular, each G-orbit has length at most 3m,
t ≤ 2m− 1 and n := |Ω| ≤ 3m+ t− 1 ≤ 5m− 2, where t is the number of G-orbits on Ω. In [3],
it was shown that n = 5m − 2 if and only if n = 3 and G is transitive. But in [5], this bound
was refined further and it was shown that n ≤ 9m−3

2 . Moreover, if n = 9m−3
2 then either n = 3

and G = S3 or G is an elementary abelian 3-group and all its orbits have length 3. Also this
upper bound was improved to the bound n ≤ 4m − p in [1, 2], where p ≥ 5 is the least odd
prime dividing |G|.

Throughout this paper, m is a positive integer and G is an intransitive permutation group
on a set Ω of size n with movement m and t(≥ 2) orbits, such that n = 3m+ t−1. The purpose
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of this paper is to classify all intransitive permutation groups of degree n = 3m + t − 1 which
attains the upper bound n ≤ � 9m−3

2 � for the degree n, obtained in [5]. In [6], Praeger asked
in Question 1.5 that whether the upper bound of |Ω| by 3m + t − 1 is sharp for any value of
t greater than 1. In this paper, we give a positive answer to this question. We note that for
x ∈ R, �x� is the integer part of x.

Theorem 1.1 Let G be an intransitive permutation group on a set Ω with t (≥ 2) or-
bits which have no fixed points in Ω. Suppose further that m is a positive integer such that
move(G) = m and n = |Ω| = 3m + t − 1. Then n ≤ � 9m−3

2 �, where the equality holds if and
only if G is one of the following:

( i ) G is an elementary abelian 3-group and all its orbits have length 3.
(ii) G is the semidirect product of Z

2
2 by Z3 with normal subgroup Z

2
2.

The “if” part is verified and illustrated by Examples 2.1 and 2.2.

2 Examples and Preliminaries

Let 1 �= g ∈ G and suppose that g in its disjoint cycle representation has t (t is a positive
integer) nontrivial cycles of lengths l1, · · · , lt, say. We might represent g as

g = (a1a2 · · · al1)(b1b2 · · · bl2) · · · (z1z2 · · · zlt).

Let Γ(g) denote a subset of Ω consisting of � li
2 � points from the ith cycle, for each i, chosen in

such a way that Γ(g)g ∩ Γ(g) = ∅. For example, we could choose

Γ(g) = {a2, a4, · · · , ak1 , b2, b4, · · · , bk2 , · · · , z2, z4, · · · , zkt},

where ki = li − 1 if li is odd and ki = li if li is even. Note that Γ(g) is not uniquely determined
as it depends on the way each cycle is written. For any set Γ(g) of this kind, we say that Γ(g)
consists of every second point of every cycle of g. From the definition of Γ(g), we see that

|Γ(g)g\Γ(g)| = |Γ(g)| =
t∑

i=1

⌊ li
2

⌋
.

The next lemma shows that this quantity is an upper bound for |Γg\Γ| for an arbitrary subset
Γ of Ω.

Lemma 2.1 (see [4, Lemma 2.1]) Let G be a permutation group on a set Ω and suppose

that Γ ⊆ Ω. Then for each g ∈ G, |Γg\Γ| ≤
t∑

i=1

� li
2 �, where li is the length of the ith cycle of

g and t is the number of nontrivial cycles of g in its disjoint cycle representation. This upper
bound is attained for Γ = Γ(g) defined above.

This immediately implies the following formula for move(G) for a finite group G acting on
a finite set Ω:

move(G) := move
Ω

(G) = max
g∈G

move
Ω

(g) = max
g∈G

n∑
l=1

⌊ l

2

⌋
tl(g),

where tl(g) denotes the number of l-cycles in the disjoint cycle representation of g.
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Now we show that there certainly is an infinite family of 3-groups for which the maximum
bound mentioned in Theorem 1.1 holds.

Example 2.1 Let d be a positive integer, G := Z
d
3, t := 3d−1

2 , and let H1, · · · , Ht be all
subgroups of index 3 in G. Define Ωi to be the right coset space {Hig | g ∈ G} of Hi and
Ω := Ω1 ∪ · · · ∪ Ωt. Consider G as a permutation group on Ω by the right multiplication, that
is, x ∈ G is identified with the composite of permutation Hig �→ Higx (i = 1, · · · , t) on Ωi

for i = 1, · · · , t. If g ∈ G − {1}, then g lies in 3d−1−1
2 groups Hi and therefore acts on Ω as a

permutation with 3(3d−1−1)
2 fixed points and 3d−1 orbits of length 3. Taking every second point

from each of these 3-cycles to form a set Γ, we see that move(g) = m ≥ 3d−1 and it is not hard
to prove that in fact move(g) = m = 3d−1. It is easy to see that n = 9m−3

2 = 3m + t − 1.

The above example is one of the family of groups meeting the upper bound of size n =
3m + t − 1 with t = 3m−1

2 and this is a partial answer to Question 1.5 in [6].

Remark 2.1 Let g be an element of a permutation group G on a set Ω. Assume that the
set Ω is the disjoint union of G-invariant sets Ω1 and Ω2. Then every subset Γ of Ω is a disjoint
union of subsets Γi = Γ ∩ Ωi for i = 1, 2. Let gi be the permutation on Ωi induced by g for
i = 1, 2. Since |Γg − Γ| = |Γg1

1 − Γ1| + |Γg2
2 − Γ2|, we have

move
Ω

(g) =
2∑

i=1

max{|Γgi

i \ Γi| | Γi ⊆ Ωi} = move
Ω1

(g1) + move
Ω2

(g2).

We start with constructing families of groups having movement m which attain the maxi-
mum bound n = � 9m−3

2 �. We see later that these families are the only examples meeting the
bound. The second example is as follows. We note that H � K is a semi-direct product of H

by K with normal subgroup H .

Example 2.2 Let G be a permutation group on a set Ω := Ω1 ∪ Ω2 of size 7, such that
Ω1 = {1, 2, 3, 4} and Ω2 = {1′, 2′, 3′}. Moreover, suppose that GΩ1 ∼= Z

2
2 is an elementary

abelian group of order 4 acting regularly on Ω1 but fixing every point of Ω2 and GΩ2 ∼= Z3,
where Z3

∼= 〈(123)(1′2′3′)〉. Then the semidirect product G = Z
2
2 �Z3 with normal subgroup Z

2
2

has t = 2 orbits, and since each non-identity element of G is the product of two cycles of length
2 or two cycles of length 3, so m = move(G) = 2. It follows that |Ω| = 3m+t−1 = � 9m−3

2 � = 7,
which meets the upper bound in Theorem 1.1.

3 Proof of Theorem 1.1

To prove Theorem 1.1, we introduce the following notation:

r3 := number of G-orbits of length 3 on which G acts as Z3;

r′3 := number of G-orbits of length 3 on which G acts as Sym(3)

and

r2 := number of G-orbits of length 2;

r4 := number of G-orbits of length 4;

s := number of G-orbits of length ≥ 5.
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The orbits are labelled accordingly: Ω1, · · · , Ωr3 are those of length 3 on which G acts as Z3;
Ωr3+1, · · · , Ωr3+r′

3
are those of length 3 on which G acts as Sym(3); Ωr3+r′

3+1, · · · , Ωr3+r′
3+r2

are those of length 2, etc. Define t := r3 + r′3 + r2 + r4 + s, t0 := r3 + r′3 + r2, Σ4 :=
t0+r4⋃

i=t0+1

Ωi,

and Σ5 :=
t⋃

i=t0+r4+1

Ωi and so |Ω| = n = 3r3 + 3r′3 + 2r2 + 4r4 + |Σ5|.
With the above notation by [5, Lemma 3], we have

n <
9
2
m −

(3
4
r′3 +

1
4
r2 +

5
4
r4 +

1
2
(|Σ5| − 3s)

)
. (3.1)

With some simple calculations, inequality (3.1) can be simplified as n ≤ � 9m−3
2 �. Now we

suppose that the equality holds. We define η := 9m − 2n. Clearly η is a positive integer and
from inequality (3.1) we have

2η > 3r′3 + r2 + 5r4 + 2(|Σ5| − 3s) ≥ 0. (3.2)

It is not hard to see that η = 3 or 4.
To prove the theorem, we suppose that η = 3 or 4 and seek to discover what configurations

may occur. Then 2η = 6 or 8. Since certainly |Σ5| ≥ 5s, from inequality (3.2), it follows that
there are only the following possibilities:

(a) 3r′3 + r2 + 5r4 < 8, s = |Σ5| = 0,

(b) 3r′3 + 5r4 + 2(|Σ5| − 3s) < 8, r2 = 0,

(c) 3r′3 + r2 + 2(|Σ5|) − 3s < 8, r4 = 0,

(d) r2 + 5r4 + 2(|Σ5| − 3s) < 8, r′3 = 0.

It follows easily from the maximum value of t (which is attained in Example 2.1) and the
equality 9m − 2n = 3 or 4, and also with arithmetical reasons that the three following cases
will be remained:

( I ) r′3 = r2 = |Σ5| = s = 0, r4 = 1,

( II ) r′3 = r4 = 0, r2 = s = 1, |Σ5| = 5.

(III) 3r′3 + r2 ≤ 5, r4 = |Σ5| = s = 0.

For example, in Case (a) and for η = 4 we have 3r′3+r2+5r4 < 8, s = |Σ5| = 0, 9m−2n = 4
and n = 3r3 + 3r′3 + 2r2 + 4r4. So there are only the following subcases:

(1) r′3 = 1, r2 = 1, r4 = 0,

(2) r′3 = 1, r2 = r4 = 0,

(3) r′3 = 0, r2 = 1 = r4 = 1,

(4) r′3 = 0, r2 = 1, r4 = 0,

(5) r′3 = 0, r2 = 0, r4 = 1.

It is obvious that the subcases (1), (2) and (4) belong to Case (III) and the subcase (5)
belongs to Case (I). In the subcase (3), n must be of the form 3r3 + 6, and therefore with
respect to the equality 9m − 2n = 4, the integer m must be of the form 6r3+16

9 which is not
possible because m is an integer number. With similar reasons, it can be shown that only the
three cases (I), (II) and (III) will be remained.

We first consider the case when η = 3. With simple calculations as above cases (I) and (II)
cannot arise. Also by [5] and intransitivity of G, we can see that Case (III) arises if and only
if G is an elementary abelian 3-group and all of its orbits have length 3.



Movement of Intransitive Permutation Groups Having Maximum Degree 147

We now assume that η = 4. Then the group in Example 2.2 satisfies in Case (I) and we
also will show that it is the only example satisfying in Case (I). Suppose that Case (I) holds.
Set Δ := Σ4. Then the permutation group X := GΔ induced on a set Δ of length 4 is a
subgroup of S4 which is transitive on Δ. As |S4| = 23 · 3 , we have |X | = 2a or 2a · 3 for some
a = 0, · · · , 3. By transitivity on Δ, we have a = 2 and so X is isomorphic to Z

2
2 or Z4 or Alt(4).

We show that the latter two cases do not occur. By similar argument used in Example 2.2, we
conclude that the movement m in each case will be equal to 2 +3d−1 (for some positive integer
d), and so n = 4 + 3d+1−3

2 = 3d+1+5
2 , and t = 1 + 3d−1

2 = 3d+1
2 . Thus the number m satisfies in

n = 3m + t − 4 which is a contradiction to the equality n = 3m + t − 1 = � 9m−3
2 �). Now let G

be the semidirect product of G1 by G2 which is a permutation group on Ω1 ∪Ω2 with |Ω1| = 4
with the following properties:

The normal subgroup G1 is an elementary abelian group of order 4 acting regularly on Ω1

but fixing every point of Ω2. The group G2 acts nontrivially on Ω1 and it induces on Ω2 the
permutation group H in Example 2.1. We show that the permutation group G satisfies in Case
(I) if and only if d = 1.

We now consider that the centralizer K of G1 in G2, which is a subgroup of index 3 in G2, as
G2

∼= H is an elementary abelian 3-group of order 3d which normalizes the elementary abelian
group G1 of order 4. As K is a 3-subgroup, it fixes a point of Ω1. Since G1 is transitive on
Ω1, the group K commuting with G1 fixes all points of Ω1. Thus if d ≥ 2, there is a nontrivial
element g2 of K, and the element g = g1g2 for every nontrivial element g1 of G1 is of order
6. This element g induces two 2-cycles on Ω1, while induces 3d−1 3-cycles on Ω2. Hence, the
movement of g on Ω := Ω1 ∪ Ω2 is

move
Ω

(g) = move
Ω1

(g1) + move
Ω2

(g2) = 2 + 3d−1.

The other nontrivial elements of G1 � G2 are involutions in G1 (with movement 2), elements of
order 3 in G2 (with movement 3d−1) and elements of order 3 of form g1g2 with 1 �= g1 ∈ G1 and
g2 ∈ G2 − K (with movement 1 + 3d−1, as g1g2 induces a 3-cycle on Ω1). Hence we conclude
m := move

Ω
(G1 � G2) = 2 + 3d−1. As n := |Ω| = |Ω1| + |Ω2| = 4 + 3d+1−3

2 = 3d+1+5
2 , and

t = 1 + 3d−1
2 = 3d+1

2 , the number m satisfies in n = 3m + t − 4, but not n = 3m + t − 1 which
is a contradiction. Therefore the group in Example 2.2 is the only group satisfying in Case (I).

It is easy to see that Case (III) for arithmetical reasons cannot arise.
Finally, we show that Case (II) cannot arise. Suppose therefore that r′3 = r4 = 0. Since in

this case |Ω| = n = 3r3 + 7 and m = 6r3+18
9 , it follows that r3 must be a multiple of 3. Let

k be a positive integer such that r3 = 3k. Therefore we have m = 2k + 2, t = 3k + 2 and

n = 9k + 7. Define Σ1 :=
r3⋃

i=1

Ωi, the union of the orbits of length 3 on which G acts as Z3, and

Σ2 :=
t⋃

i=r3+1

Ωi, the union of those orbits of length 5 and those of length 2. Then define K1 to be

the kernel of the action of G on Σ1 and K2 the kernel of its action on Σ2. Clearly, K1∩K2 = {1}
since G acts faithfully on Ω. Now let H be the subgroup of G generated by its 2-elements. Then
GΣ2 = HΣ2 , that is, G = HK2. But H � K1 and therefore G = K1K2, that is, G = K1 × K2.
It follows easily that if m1:=move(GΣ1) and m2:=move(GΣ2) then m = m1 + m2. Defining
n1 := |Σ1| and n2 := |Σ2|, we have from Example 2.2 that n1 ≤ 9m1−3

2 . Since n1 = 3r3 = 9k
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and n2 = 7, therefore m1 ≥ 2k + 1 and m2 > 1 and so m = m1 + m2 > 2k + 2 which is a
contradiction. Now the proof of Theorem 1.1 is completed.
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