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Abstract The paper deals with the controllability of a heat equation. It is well-known
that the heat equation yt −Δy = uχE in (0, T )×Ω with homogeneous Dirichlet boundary
conditions is null controllable for any T > 0 and any open nonempty subset E of Ω. In
this note, the author studies the case that E is an arbitrary measurable set with positive
measure.
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1 Introduction

Let T > 0, Ω be a bounded, C∞ domain in Rn and E ⊂ Ω with |E| > 0 where | · | = meas( · )
denotes the Lebesgue measure. Consider the following system:⎧⎨

⎩
∂ty − Δy = uχE , in (0, T )× Ω,
y = 0, on (0, T )× ∂Ω,
y(x, 0) = y0, in Ω.

(1.1)

For any initial data y0 ∈ L2(Ω), we define y(· , · ;u, y0) the solution to system (1.1) with the
control u.

Then null controllability problem and approximate controllability may be addressed as fol-
lows.

Definition 1.1 System (1.1) is null controllable in time T if for every initial data y0 ∈
L2(Ω), there exists a control u ∈ L2((0, T ) × E) such that

y(T, x;u) = 0, a.e. x ∈ Ω.

Definition 1.2 System (1.1) is approximate controllable in time T if for every data y0, y1 ∈
L2(Ω) and any ε > 0, there exists a control u ∈ L2((0, T ) × E) such that

‖y(T, · ;u)− y1‖L2(Ω) < ε.
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The problems of null controllability are clearly of significant practical interest. It is well-
known that any initial data in L2(Ω) can be steered to 0 in an arbitrary time T by applying a
suitable control u ∈ L2((0, T )×E) if E is an open subset of Ω. Some classical references prior
to 1988 are Russell [9, 15]. This field did not develop so fast until Fursikov and Imanuvilov
introduced Carleman estimates to this subject in their note (see [4]). As Castro and Zuazua
indicating in their paper [2], Carleman estimates have been used systematically as the most
efficient tool to study controllability so that we can obtain many interesting results in this filed,
such as null controllability of heat equations in high dimensions (see [6] for more details), exact
controllability of wave equations under the GCC conditions (see [1]) and the relation between
wave equations and heat equations (see [10, 17]).

We know that the null controllability problem for system (1.1) is equivalent to the observ-
ability inequality ∫

Ω

ϕ2(x, 0)dx ≤ C

∫ T

0

∫
E

ϕ2(x, t)dxdt for all ϕT ∈ L2(Ω), (1.2)

where ϕ(x, t) is the solution to the following adjoint system:⎧⎨
⎩
∂tϕ+ Δϕ = 0, in Ω × (0, T ),
ϕ = 0, on ∂Ω × (0, T ),
ϕ(x, T ) = ϕT , in Ω.

(1.3)

By Carleman inequalities, (1.2) is valid when E is an open subset of Ω (see [4]). On the
other hand, Lebeau and Robbiano [7] proved the null controllability by using the following
inequality for all {ai} ∈ l2 and for all μ > 0,

C1e−C2
√

μ
∑
λi≤μ

|ai|2 ≤
∫

E

∣∣∣ ∑
λi≤μ

aiφi(x)
∣∣∣2dx,

where λi and φi are the eigenvalue and the corresponding eigenfunction of −Δ with Dirichlet
boundary conditions respectively. The proof of the above inequality is also based on Carleman
inequalities (see also [8]) and the assumption that E is open is necessary.

In order to prove (1.2), we usually have to choose a proper weight function. In detail, we
need to find a function of C2(Ω) satisfying

ψ > 0 in Ω, ψ = 0 on ∂Ω, (1.4)

|∇ψ| > 0, ∀x ∈ Ω\E (1.5)

(see [4]). Obviously, such functions do not always exist when E is an arbitrarily measurable
set.

Indeed, let Ω = (0, 1) ∈ R1, E = (0, 1)\Q. Then Ω\E = [0, 1]. By Rolle Theorem, there is
no f ∈ C2([0, 1]) satisfying (1.4) and (1.5).

So, we cannot desire Carleman inequalities working in our case.
Recently, G. Wang [16] obtained null controllability of a heat equation with a control lo-

calized in ω × G, where G is a measurable set of (0, T ) and ω is an open subset of Ω. But
it is totally different from the case we will discuss because Lebeau-Robbiano inequality is still
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valid in Wang’s case. To our best knowledge, there is no results on null controllability of heat
equations with the control localized in a measurable set of Ω even in one dimension. Thus
controllability of heat equations on a measurable set is nontrivial.

2 Main Results

Miller [12] introduced a new idea called transmutation method to get the null controllability
of heat equations from the exact controllability of wave equations. By using this method, we
can obtain the null controllability of heat equations on a measurable set in one dimension.

In this paper, we firstly prove the exact controllability of wave equations with the control
localized in a measurable set in one dimension by using the Fourier expansion. More precisely,
we introduce the following results which can also be seen in [11].

Theorem 2.1 Let T ′ > 2, Ω = [−1, 1] ⊂ R1, and E ⊂ Ω with |E| > 0. The following
system ⎧⎨

⎩
∂ttw − Δw = χ(0,T ′)×Ef, in (0,∞) × Ω,
w = 0, on (0,∞) × ∂Ω,
w(0, x) = w0(x), wt(0, x) = w1(x), in Ω

(2.1)

is exact controllability, i.e., for any (w0, w1) ∈ H1
0 (Ω)×L2(Ω), there exists a control f ∈ L2(Ω)

such that
w(T ′, x) = 0 = wt(T ′, x).

Hence, the null controllability of wave equations on measurable sets holds in one dimension.
However, for the reason stated in Remark 3.1, we cannot draw the same conclusion for heat
equations by using the classical method in [10] or [17].

Fortunately, we can prove the null controllability of (1.1) in one dimension by the transmu-
tation method. Our first main result is stated as follows.

Theorem 2.2 Let Ω = [−1, 1] ⊂ R1, and E ⊂ Ω with |E| > 0. System (1.1) is null
controllable.

In the case of high dimensions our proof is not valid because Theorem 2.1 contradicts the
GCC condition in high dimensions.

Approximate controllability is weaker than null controllability and thus is easier to obtain
because approximate controllability is equivalent to the following general unique continuation
principle of (1.3):

ϕ|E×(0,T ) = 0 ⇒ ϕT = 0. (2.2)

When E is an open subset, (2.2) is just a consequence of Holmgren Uniqueness Theorem
(see [5]). However, it is different if E does not contain an analytical manifold. On the other
hand, Poon [13] showed that if ϕ solves (1.3) and ϕ vanishes of infinite order at (x0, t0) (i.e.,
ϕ(x, t) = O(|x − x0|2K + |t− t0|K) for all positive integers K), then u ≡ 0 in Ω.

As to null controllability, we can hardly obtain the observability inequality (1.2). But by
Harnack inequality of parabolic equations, we may obtain our second result as follows.
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Theorem 2.3 Assuming ϕT ∈ L2(Ω), ϕ(x, t) is the solution to (1.3). When ϕ ≥ 0 (or
ϕ ≤ 0), there exists a constant C only depending on T , E and Ω, such that

∫
Ω

ϕ2(x, 0)dx ≤ C

∫ T

0

∫
E

ϕ2(x, t)dxdt. (2.3)

This is an observability inequality with the observation over E, but the final data ϕT can
not be given arbitrary in L2(Ω).

Using Theorem 2.3, we can draw some results on controllability.

Theorem 2.4 Assume that E is a measurable subset of Ω with positive measure. For all
u0 ∈ L2(Ω), T > 0, there exist f1 and f2 ∈ L2(Ω × (0, T )), such that the solution to (1.1)
satisfies

u(·, T ; f1, u0) ≥ 0, in Ω,

u(·, T ; f2, u0) ≤ 0, in Ω.

Next, we show that if the initial data satisfies a certain conditions, the solution to (1.1) can
be controlled to zero. Define

L2
+(Ω) = {w ∈ L2(Ω) : w ≥ 0},
H+ = {φ(x, t) : ∃φT ∈ L2

+(Ω), s.t. φ is the solution to (1.3) with the final data φT }.

By the maximal principle of parabolic equations, for any φ ∈ H+, we have

φ ≥ 0, in Ω × (0, T ).

We continue defining

U+ = {u0 ∈ L2(Ω) : ∀ε, ∃fε ∈ H+, s.t. ‖u(x, T ; fε, u0)‖L2(Ω) < ε}.

Then we have the following theorem.

Theorem 2.5 System (1.1) is null controllable if the initial data u0 ∈ U+ and there exists
a constant C, such that for any ε > 0, it holds that

∫ T

0

∫
E

|fε|2dxdt+
∫

Ω

fε(x, 0)u0dx < C. (2.4)

The remaining part of this paper is organized as follows. In Section 3, we prove the null con-
trollability in one dimension. In Section 4, we study the case in multiple dimensions. Through-
out the paper, C stands for a generic constant and its value may vary from line to line.

3 Null Controllability in One Dimension

This section is devoted to prove Theorems 2.1 and 2.2. In this section, we assume Ω =
[−1, 1] ⊂ R1, and E ⊂ Ω with |E| > 0.
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First of all we consider the following dual system:⎧⎨
⎩
∂ttz − Δz = 0, in (0, T ′) × Ω,
z = 0, on (0, T ′) × ∂Ω,
z(T ′, x) = z0, zt(T ′, x) = z1, in Ω.

(3.1)

The observability of system (3.1) is as follows.

Lemma 3.1 For any (z0, z1) ∈ L2(Ω) ×H−1(Ω) and z solution to (3.1), it holds that

‖(z0, z1)‖2
L2(Ω)×H−1(Ω) ≤ C

∫ T ′

0

∫
E

|z(t, x)|2dxdt.

Proof We choose {sin(nπx)}∞n=1 as an orthogonal basis of L2(Ω). Then we can assume

z0 =
∞∑

n=1

an sin(nπx), in L2(Ω),

where
∞∑

n=1
|an|2 <∞ and

z1 =
∞∑

n=1

bn sin(nπx), in H−1(Ω),

where
∞∑

n=1

|bn|2
n2 <∞.

Then the solution to (3.1) can be represented as

z(t, x) =
∞∑

n=1

[
an cos(nπ(t− T ′)) +

bn sin(nπ(t− T ′))
nπ

]
sin(nπx), in H−1(Ω).

Noticing that

‖(z0, z1)‖2
L2(Ω)×H−1(Ω) =

∞∑
n=1

(
|an|2 +

|bn|2
n2π2

)

and T ′ > 2, one has

∫ T ′

0

∫
E

|z|2dxdt ≥
∫ 2

0

∫
E

|z|2dxdt

=
∫ 2

0

∫
E

∣∣∣ ∞∑
n=1

([
an cos(nπ(t− 2)) +

bn sin(nπ(t− 2))
nπ

]
sin(nπx)

)∣∣∣2dxdt
=

∞∑
n=1

(∫ 2

0

[
an cos(nπ(t− 2)) +

bn sin(nπ(t− 2))
nπ

]2

dt
∫

E

sin2(nπx)dx
)

=
∞∑

n=1

[(
|an|2 +

|bn|2
n2π2

)∫
E

sin2(nπx)dx
]
. (3.2)
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If we denote bn =
∫

E sin2(nπx)dx, then

B = inf
n∈Z+

bn > 0. (3.3)

Indeed,

bn =
|E|
2

−
∫

J

cos(2nπx)
2

dx ≥ |E|
2

− 1
2nπ

.

Since 1
2nπ tends to zero when n tends to infinity, there exists an n0 > 0 such that

bn ≥ |E|
2

− 1
2nπ

≥ |E|
4

> 0

for any n > n0. It follows that
B1 = inf

n≥n0
bn > 0

and B > 0 since bn > 0 for all n.
It completes the proof of Lemma 3.1.

Due to the relation between null controllability and observability, Theorem 2.1 follows by
Lemma 3.1 immediately.

Next, we prove Theorem 2.2.
Firstly, we introduce the following lemma.

Lemma 3.2 For all T, T ′ > 0, Ω′ = (−T ′, T ′), there is a function v ∈ C((0, T ), H1
0 (Ω′))

satisfying

∂tv − Δv = 0, in (0, T )× Ω′, (3.4)

v(0, · ) = δ and v(T, · ) = 0, (3.5)

where δ is the Dirac delta function.

Proof We denote v(x, t; z) as the solution to⎧⎪⎪⎨
⎪⎪⎩
∂tv − Δv = 0, in (0, T )× Ω′,
v(t, T ′) = z, in (0, T ),
v(t,−T ′) = 0, in (0, T ),
v(0, · ) = δ, in Ω′.

(3.6)

We set z = 0 for t ≤ εT , where 0 < ε < 1. Note that v0 = v(εT, x) is just the Dirac mass at the
origin smoothed out by the homogeneous heat semigroup during a time εT , so that v0 ∈ L2(Ω′).

Hence, by the boundary null controllability of heat equation, we can find h ∈ L2(εT, T )
such that v(T, x) = 0.

Then Lemma 3.2 follows when we choose

z =
{

0, in (0, εT ),
h, in (εT, T ). (3.7)

Proof of Theorem 2.2 Applying Lemma 3.2 with w0 = y0 ∈ H1
0 (Ω) and w1 = 0 ∈ L2(Ω),

one can find f ∈ L2((0,∞) × Ω), such that

w(T, · ; f) = wt(T, · ; f) = 0.
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Next, we expand v as follows:

v =
{
v, in (0, T )× (−T ′, T ′),
0, else. (3.8)

We also define w ∈ L2(R×Ω) and f ∈ L2(R×Ω) as the extensions of w and f by reflection to
s = 0, i.e., w(s, x) = w(s, x) = w(−s, x) and f(s, x) = f(s, x) = f(−s, x).

Then defining

y(t, x) =
∫

R1
v(t, s)w(s, x)ds,

u(t, x) =
∫

R1
v(t, s)f(s, x)ds,

we have

yt − Δy =
∫

R1
vt(t, s)w(s, x)ds −

∫
R1
v(t, s)Δxw(s, x)ds

=
∫

(−T ′,T ′)
vss(t, s)w(s, x)ds −

∫
(−T ′,T ′)

v(t, s)Δxw(s, x)ds

=
∫

(−T ′,T ′)
v(t, s)wss(s, x)ds −

∫
(−T ′,T ′)

v(t, s)Δxw(s, x)ds

=
∫

(−T ′,T ′)
v(t, s)(wss(s, x) − Δxw(s, x))ds

=
∫

(−T ′,T ′)
v(t, s)χ(−T, T )×Efds

= χE

∫
(−T ′,T ′)

v(t, s)fds,

= χEu. (3.9)

Noticing (3.5), it follows that

y(t, x) = 0, on (0, T )× ∂Ω

and

y(0, x) =
∫

R1
v(0, s)w(s, x)ds = y0(x),

which satisfy (1.1).

Furthermore, we also have

y(T, x) =
∫

R1
v(T, s)w(s, x)ds = 0.

Now we have proved Theorem 2.2 when y0 ∈ H1
0 (Ω). However, due to the regularizing effect

of the heat equation, as soon as we let the heat equation evolve freely (without control) during
an arbitrarily short time interval, even if the initial data lie in L2(Ω), the solution enters H1

0 (Ω),
and then the above result applies. This completes the proof of Theorem 2.2.
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Remark 3.1 In [10, 17], the authors showed that the null controllability of heat equations
may be obtained as a singular limit of the exact controllability properties of singularly perturbed
damped wave equations. But both of their methods depend on the Lebeau-Rabbiano inequality,
i.e., for all {ai} ∈ l2 and for all μ > 0,

C1e−C2
√

μ
∑
λi≤μ

|ai|2 ≤
∫

E

∣∣∣ ∑
λi≤μ

aiφi(x)
∣∣∣2dx, (3.10)

where λi and φi are the eigenvalue and the corresponding eigenfunction of −Δ with Dirichlet
boundary conditions respectively. Since the inequality (3.10) only holds when the controller E
is an open subset of Ω, we cannot use this method to prove our result.

4 Case for High Dimensions

We first prove Theorem 2.3. To achieve it, we need some preparations.
By Lebesgue Lemma, almost all the points of a measurable set are Lebesgue points. Using

this idea, we can easily prove the following lemma.

Lemma 4.1 For a measurable subset E, |E| > 0 and δ ∈ (0, 1), there must exist I, a
rectangular subdomain of Ω, such that

|E ∩ I|
|I| > 1 − δ. (4.1)

The proof of this lemma can be found in any books on real analysis, for example in [14].
Next we introduce the following lemma called Harnack inequality of parabolic equations.

Lemma 4.2 ∀ 0 ≤ t1 < t2 < T, I ⊂⊂ Ω, ϕ ≥ 0 solves (1.2) and

sup
x∈I

ϕ(x, t2) ≤ C inf
x∈I

ϕ(x, t1), (4.2)

where C only depends on I, t1 and t2.

We refer to [4, p. 370] for the proof.

Remark 4.1 From the proof of Lemma 4.2, we can see C only depends on I and |t1 − t2|.
So for all t ∈ (0, T ) and δ > 0 satisfying t+ δ < T , (4.2) can be rewritten as

sup
x∈I

ϕ(x, t + δ) ≤ C(I, δ) inf
x∈I

ϕ(x, t). (4.3)

Define

P (Ω) := {ϕT : the solution to (1.2) ϕ ≥ 0}.

Proof of Theorem 2.3 We only prove the theorem when ϕT ∈ P (Ω). By (4.3) and under
the conditions of Lemma 4.2, we can easily get

sup
x∈I

ϕ2(x, t + δ) ≤ C(I, δ) inf
x∈I

ϕ2(x, t). (4.4)
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Integrating t from 0 to T − δ, one has∫ T−δ

0

sup
x∈I

ϕ2(x, t+ δ)dt ≤ C2(I, δ)
∫ T−δ

0

inf
x∈I

ϕ2(x, t)dt.

Choosing I ⊂⊂ Ω satisfying (4.1) and then multiplying |I| by each side and paying attention
to Lemma 4.1, we find

|I|
∫ T

δ

sup
x∈I

ϕ2(x, t)dt ≤ |I|C2(I, δ)
∫ T

0

inf
x∈I

ϕ2(x, t)dt

=
|I|

|E ∩ I|C
2(I, δ)

∫
E∩I

dx
∫ T

0

inf
x∈I

ϕ2(x, t)dt

≤ (1 − δ)−1C2(I, δ)
∫ T

0

∫
E∩I

ϕ2(x, t)dxdt

≤ C(I, δ)
∫ T

0

∫
E

ϕ2(x, t)dxdt. (4.5)

On the other side,

|I|
∫ T

δ

sup
x∈I

ϕ2(x, t)dt ≥
∫ T

δ

∫
I

ϕ2(x, t)dxdt. (4.6)

By (4.5) and (4.6), we obtain∫ T

δ

∫
I

ϕ2(x, t)dxdt ≤ C

∫ T

0

∫
E

ϕ2(x, t)dxdt. (4.7)

Because I is a rectangular region, we have the observability inequality (see [4, 6, 7] for the
proof) ∫

Ω

ϕ2(x, 0)dx ≤ C

∫ T

0

∫
I

ϕ2(x, t)dxdt. (4.8)

We also have the energy inequality∫
Ω

ϕ2(x, t1)dx ≤
∫

Ω

ϕ2(x, t2)dx, ∀ 0 ≤ t1 ≤ t2 ≤ T. (4.9)

According to (4.7)–(4.9), one has∫ T

0

∫
I

ϕ2dxdt ≤
∫ δ

0

∫
Ω

ϕ2dxdt+
∫ T

δ

∫
I

ϕ2dxdt

≤ δ

∫
Ω

ϕ2(x, δ)dxdt +
∫ T

δ

∫
I

ϕ2dxdt

≤ δC

∫ T

δ

∫
I

ϕ2dxdt+
∫ T

δ

∫
I

ϕ2dxdt

≤ (1 + δC)
∫ T

δ

∫
I

ϕ2dxdt. (4.10)

Combining (4.7)–(4.8) and (4.10), we have∫
Ω

ϕ2(x, 0)dx ≤ C(I, T )
∫ T

0

∫
E

ϕ2(x, t)dxdt,
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as desired.

Next, let us recall the following fundamental result in the Calculus of Variations which is a
consequence of the so-called Direct Method of the Calculus of Variations.

Lemma 4.3 Let X be a reflexive Banach space, K a closed convex subset of X and ϕ:
K → R a function with the following properties:

(1) ϕ is convex;
(2) ϕ is lower semi-continuous;
(3) If K is unbounded, then ϕ is coercive, i.e.,

lim
‖x‖→∞

ϕ(x) = ∞.

Then ϕ attains its minimum in K, i.e., there exists an x0 in K such that

ϕ(x0) = min
x∈K

ϕ(x).

Proof of Theorem 2.4 We only prove the first inequality.
Assuming u0 ∈ L2(Ω) for all ε > 0, we define

Jε(ϕT ) =
1
2

∫ T

0

∫
E

ϕ2(x, t)dxdt +
∫

Ω

ϕ(x, 0)u0(x)dx + ε‖ϕT ‖L2 (4.11)

over L2
+(Ω).

Due to Lemmas 3.2 and 4.3, we know that Jε has a minimizer in L2
+. Indeed, L2

+ is closed
and it is easy to check that Jε is continuous and strictly convex. Lemma 3.2 guarantees the
coercivity of Jε (see the proof in [16]). Hence by Lemma 4.3, the above conclusion follows.

For all ε > 0, we suppose that Jε attains its minimum value at ϕ̂ε
T ∈ L2

+. Then, using a
standard variational method, we have∫ T

0

∫
E

ϕ̂ε(x, t)ϕ(x, t)dxdt +
∫

Ω

ϕ(x, 0)u0(x)dx ≥ −ε‖ϕT‖ (4.12)

for any ϕT ∈ L2
+(Ω).

Set the control
fε = ϕ̂ε, in Ω × (0, T ).

By the fine regularity of the solution to the heat equation, we know

fε ∈ L2(Ω × (0, T )).

Multiplying (1.1) with the solution to (1.3) associated the final data ϕT and then integrating
by parts, one has∫ T

0

∫
E

ϕ̂ε(x, t)ϕ(x, t)dxdt +
∫

Ω

ϕ(x, 0)u0(x)dx =
∫

Ω

ϕT (x)uε(x, T )dx for all ϕT ∈ L2
+.

Noticing (4.12), we deduce∫
Ω

ϕT (x)uε(x, T )dx ≥ −ε‖ϕT ‖ for all ϕT ∈ L2
+. (4.13)
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In order to see that the controls fε are uniformly bounded, we have to use their structures.
At the minimizer ϕ̂ε

T , we have Jε(ϕ̂ε
T ) ≤ Jε(0) = 0. This implies that∫ T

0

∫
E

|ϕ̂ε|2dxdt ≤ 2‖u0‖L2Ω‖ϕ̂ε(x, 0)‖L2(Ω).

By Theorem 2.3, we have∫ T

0

∫
E

|fε|2dxdt =
∫ T

0

∫
E

|ϕ̂ε|2dxdt ≤ C‖u0‖2
L2(Ω).

Hence, {fε}ε>0 is uniformly bounded in L2(E × (0, T )). By extracting subsequences, we
have fε ⇀ f1 in L2(E × (0, T )). Using the continuous dependence of the solutions to the heat
equation, we can show that uε(x, T ) converges to u(x, T ) weakly in L2(Ω). In view of (4.13),
this implies that ∫

Ω

ϕT (x)u(x, T )dx ≥ 0 for all ϕT ∈ L2
+.

Then we deduce u( · , T ; f1) ≥ 0 in Ω.

Proof of Theorem 2.5 Suppose that u0 satisfies the conditions of the theorem. Then for
all ε > 0, there exists an approximate control fε ≥ 0, such that the solution uε to (1.1) satisfies
the condition

‖uε‖L2(Ω) ≤ ε. (4.14)

By Theorem 2.3 and condition (2.4), we know that the approximate controls {fε}ε are
uniform bounded. Using the same argument in the above proof, we can show uε(x, T ) converges
to u(x, T ) weakly in L2(Ω). Then (4.14) implies∣∣∣ ∫

Ω

uε(x, T )ψ(x)dx
∣∣∣ ≤ ‖uε‖L2(Ω)‖ψ‖L2(Ω) ≤ ε‖ψ‖L2(Ω) for any ψ ∈ L2(Ω).

It means ∫
Ω

u(x, T )ψ(x)dx = 0 for any ψ ∈ L2(Ω).

This completes the proof of Theorem 2.5.
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