
Chin. Ann. Math.
33B(2), 2012, 191–206
DOI: 10.1007/s11401-012-0703-6

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2012

Relationship Between the Restricted AKNS Flows
and the Restricted KdV Flows∗

Ruguang ZHOU1

Abstract It is well-known that every member of the KdV hierarchy of equations can be

obtained from the AKNS hierarchy of equations by imposing a simple reduction. The

author finds that the reduction conditions of the potentials in the spectral problem can be

replaced by adding additional eigenfunction equations to the spectral problem, and then

shows that the restricted KdV flows, such as the Neumann system, the Garnier system

and the generalized multicomponent Hénon-Hieles system, are a kind of special reductions

of the restricted AKNS flows.
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1 Introduction

Over the past two decades, a large number of finite dimensional integrable Hamiltonian

systems called the restricted flows were obtained from (1+1)-dimensional soliton equations (see

[1–21]). In particular, the restricted AKNS flows and the restricted KdV flows including the

Neumann system, the Garnier system and the generalized multicomponent Hénon-Hieles system

were obtained or reobtained from the AKNS hierarchy and the KdV hierarchy, respectively

(see [2–12]). These restricted flows were applied to performing numerical analysis and graphic

presentations of solutions of soliton equations (see [22–24]).

On the other hand, it is well-known that most of physically interesting soliton equations

such as the KdV equation, the sine-Gordon equation, the mKdV equation, the NLS equation

and the DNLS equation are the reduced systems of large systems, and the reduction problem

was one of the central problems in the theory of integrable systems since its early days (see

[25–32]). Many systematic studies from various points of view were made. It is natural to ask

what the relations between the restricted flows of reduced systems and that of large systems

are.
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In the present work, we study the relationship between the restricted KdV flows and the

restricted AKNS flows. We first show that the reduction condition of potential in the spectral

problem of the KdV equation may be replaced by adding a pair of additional eigenfunction

equations. Then, based on this, we deduce that the nonlinearization of spectral problems

(NSPs) of the KdV hierarchy can be simply transplanted from that of the AKNS hierarchy.

Finally, we prove that the restricted KdV flows including the celebrated C. Neumann system

(G0-constraint KdV flow), the Garnier system (G2-constraint KdV flow) and the generalized

multicomponent Hénon-Hieles system (G4-constraint KdV flow) are a kind of special reductions

of the restricted AKNS flows.

2 The AKNS Hierarchy and the KdV Hierarchy

In this section, we review the construction of the AKNS hierarchy of equations and the KdV

hierarchy of equations following [21]. The AKNS hierarchy of equations consists of infinitely

many evolution equations, and the n-th equation reads
(

u
v

)

tn

= JGn, J =
(

0 −2
2 0

)
, Gn =

(
cn+1

bn+1

)
, n ≥ 1, (2.1)

where bj ’s, cj ’s are determined recursively from
(

cj+1

bj+1

)
=

1
2

(
∂ − 2v∂−1u 2v∂−1v
−2u∂−1u −∂ + 2u∂−1v

)(
cj

bj

)
, j ≥ 2 (2.2)

with initial conditions

b0 = c0 = 0, b1 = 2u, c1 = 2v,

where

∂ =
∂

∂x

is the differential operator with respect to variable x, and

∂−1 =
∫
·dx

is the integration operator with zero constant of integration.

Gk is called as the Lenard gradient and will play an important role in nonlinearization of

spectral problems of the AKNS hierarchy. The first few Lenard gradients are as follows:

G0 = 2(v, u)T, G1 = (vx,−ux)T,

G2 =
1
2
(vxx − 2uv2, uxx − 2u2v)T,

G3 =
1
4
(vxxx − 6uvvx,−uxxx + 6uuxv)T,

G4 =
1
8

(
vxxxx − 4uxvvx − 6uv2

x − 8uvvxx − uxxv2 + 6u2v3

uxxxx − 4uuxvx − 6u2
xv − 8uvuxx − 2u2vxx + 6u3v2

)
.
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It is not difficult to check that (2.1) is equivalent to

Utn
− V (n)

x + [U, V (n)] = 0,

which is the compatible condition of the spectral problem

φx = U(u, v, λ)φ, U(u, v, λ) =
(−λ u

v λ

)
(2.3)

and the auxiliary spectral problem

φtn = V (n)(u, v, λ)φ, V (n)(u, v, λ) =
n∑

j=0

(
aj bj

cj −aj

)
λn−j , n ≥ 0, (2.4)

where λ is a spectral parameter and

a0 = −2, a1 = 0, aj = ∂−1(ucj − vbj), j ≥ 2.

The first equation in the AKNS hierarchy is a trivial one,

ut1 = 2ux, vt1 = 2vx.

The second equation is
{

ut2 + uxx − 2u2v = 0,

vt2 − vxx + 2uv2 = 0.
(2.5)

The third equation reads




ut3 −
1
2
uxxx + 3uuxv = 0,

vt3 −
1
2
vxxx + 3uvvx = 0,

(2.6)

which associates with spectral problem (2.3) and

φt = V (3)(u, v, λ)φ, (2.7)

where

V (3)(u, v, λ) =

(−2λ3 + uvλ− 1
2 (uxv − uvx) 2uλ2 − uxλ + 1

2 (uxx − 2u2v)

2vλ2 + vxλ + 1
2 (vxx − 2uv2) 2λ3 − uvλ + 1

2 (uxv − uvx)

)
.

Making use of the recursion relation (2.2), we can show that all the (2n + 1)-th (n ≥ 0)

AKNS equations allow the reduction v = 1, which gives rise to the KdV hierarchy (see [33]).

In particular, imposing reduction v = 1 to the third member yields the KdV equation

ut3 −
1
2
uxxx + 3uux = 0. (2.8)
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It is an already known fact that the associated spectral problems of the KdV hierarchy are just

that of the corresponding AKNS system imposing v = 1. For example, the KdV equation (2.8)

connects

φx = U(u, 1, λ)φ, U(u, 1, λ) =
(−λ u

1 λ

)
(2.9)

and

φt3 = V (3)(u, 1, λ)φ,

where

V (3)(u, 1, λ) =

(−2λ3 + uλ− 1
2ux 2uλ2 − uxλ + 1

2 (uxx − 2u2)

2λ2 − u 2λ3 − uλ + 1
2ux

)
.

3 The Restricted AKNS Flows

In this section, we collect and give some materials on the nonlinearizations of spectral

problems of the AKNS hierarchy (see [3, 17, 21]).

Take m distinct parameters λ1, λ2, · · · , λm, which are called the eigenvalue parameters, and

consider m copies of the AKNS spectral problem (2.3) as follows:
{

φ1j,x = −λjφ1j + uφ2j ,

φ2j,x = vφ1j + λjφ2j ,
1 ≤ j ≤ m, (3.1)

or in a compact form
{

Φ1,x = −AΦ1 + uΦ2,

Φ2,x = vΦ1 + AΦ2,
(3.2)

where

Φ1 = (φ11, · · · , φ1m)T,

Φ2 = (φ21, · · · , φ2m)T,

A = diag(λ1, · · · , λm).

The nonlinearization of spectral problem (3.2) is to couple a constraint between the eigen-

functions and the potentials to spectral problem (3.2), such that the resulting systems are

completely integrable Hamiltonian systems. A well-known constraint due to Cao [1, 3] is

Gk =
m∑

j=1

µj

(δλj

δu
,
δλj

δv

)T

, k ≥ 0, (3.3)

where Gk is the Lenard gradient defined by (2.1), µ1, µ2, · · · , µm are m arbitrary nonzero

constants, and ( δλj

δu ,
δλj

δv )T is the variational derivative of λj with respect to potential (u, v)T.



Relationship Between the Restricted AKNS Flows and the Restricted KdV Flows 195

For spectral problem (3.2), it is easy to know, up to a constant,

δλj

δu
= −φ2

2j ,
δλj

δv
= φ2

1j , 1 ≤ j ≤ m. (3.4)

Hence, the k-th restricted AKNS flow or the Gk-constraint AKNS flow reads




Φ1,x = −AΦ1 + uΦ2,

Φ2,x = vΦ1 + AΦ2,

Gk = (−〈BΦ2,Φ2〉, 〈BΦ1,Φ1〉)T,

(3.5)

where

B = diag(µ1, µ2, · · · , µm)

and the diamond bracket denotes the Euclidean scalar product. In the following, we give some

restricted AKNS flows.

3.1 The G0-constraint AKNS flow

Noting G0 = (2v, 2u)T and (3.4), we have a G0-constaint

u = 〈BΦ1,Φ1〉, v = −〈BΦ2,Φ2〉. (3.6)

Here we have absorbed a factor 1
2 by taking advantage of the arbitrariness of µj ’s.

Substituting (3.6) into (3.2), we then get a G0-constraint AKNS flow,
{

Φ1,x = −AΦ1 + 〈BΦ1,Φ1〉Φ2,

Φ2,x = −〈BΦ2,Φ2〉Φ1 + AΦ2,
(3.7)

which can be written as a Hamiltonian form

Φ1,x = −B−1 ∂HG0

∂Φ2
, Φ2,x = B−1 ∂HG0

∂Φ1
, (3.8)

where

HG0 = 〈AΦ1, BΦ2〉 − 1
2
〈BΦ1,Φ1〉〈BΦ2,Φ2〉.

Furthermore, it allows Lax representation

d
dx

LG0(λ) = [ŨG0 , LG0(λ)]

with

LG0(λ) =
(

1 0
0 −1

)
+

m∑

j=1

µj

λ− λj

(
φ1jφ2j −φ2

1j

φ2
2j −φ1jφ2j

)
(3.9)

and

ŨG0 =
( −λ 〈BΦ1,Φ1〉
−〈BΦ2,Φ2〉 λ

)
.
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Moreover, it can be easily checked that Lax matrix (3.9) satisfies an r-matrix relation. Hence,

detLG0(λ) = −1 +
m∑

j=1

Fj

λ− λj
(3.10)

gives rise to m functionally independent and conserved integrals in involution

Fj = −2µjφ1jφ2j +
m∑

k=1
k 6=j

µjµk(φ1jφ2k − φ1kφ2j)2

λj − λk
, 1 ≤ j ≤ m.

Therefore, (3.7) is a completely integrable Hamiltonian system.

3.2 The G2-constraint AKNS flow

A G2-constraint is

vxx − 2uv2 = −〈BΦ2,Φ2〉, uxx − 2u2v = 〈BΦ1,Φ1〉. (3.11)

Coupling it with system (3.2) yields a G2-constraint AKNS flow




Φ1,x = −AΦ1 + uΦ2,

Φ2,x = vΦ1 + AΦ2,

vxx − 2uv2 = −〈BΦ2,Φ2〉,
uxx − 2u2v = 〈BΦ1,Φ1〉.

(3.12)

Introduce four new variables

φN+1 = u, φN+2 = v, ψN+1 = vx, ψN+2 = ux

and define a symplectic form by

N∑

j=1

µjdφ2j ∧ dφ1j +
1
2
dψN+1 ∧ dφN+1 +

1
2
dψN+2 ∧ dφN+2

over R2m+4. Then (3.12) can be written in the following Hamiltonian form:

Φ1,x = −B−1 ∂HG2

∂Φ2
, Φ2,x = B−1 ∂HG2

∂Φ1
,

φN+1,x = −2
∂HG2

∂ψN+1
, ψN+1,x = 2

∂HG2

∂φN+1
,

φN+2,x = −2
∂HG2

∂ψN+2
, ψN+2,x = 2

∂HG2

∂φN+2
,

where

HG2 = 〈BΦ1, AΦ2〉 − 1
2
φN+1〈BΦ2,Φ2〉+

1
2
φN+2〈BΦ1,Φ1〉

+
1
2
φ2

N+1φ
2
N+2 −

1
2
ψN+1ψN+2.
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A straightforward verification shows that (3.12) allows the following Lax representation:

d
dx

LG2(λ) = [U(u, v, λ), LG2(λ)],

where

LG2(λ) = 2
(−2λ2 + uv 2λu− ux

2λv + vx 2λ2 − uv

)
+

m∑

j=1

µj

λ− λj

(
φ1jφ2j −φ2

1j

φ2
2j −φ1jφ2j

)

and

U(u, v, λ) =
(−λ u

v λ

)
.

Again Lax matrix LG2(λ) satisfies an r-matrix relation, the required m + 2 conserved inte-

grals to support the integrability of (3.12) can be generated from detLG2(λ), and (3.12) is a

completely integrable system.

3.3 The G4-constraint AKNS flow

The G4-constraint reads




1
4

(1
2
vxxxx − 2uxvvx − 3uv2

x − 4uvvxx − uxxv2 + 3u2v3
)

= −〈BΦ2,Φ2〉,
1
4

(1
2
uxxxx − 2uuxvx − 3u2

xv − 4uvuxx − u2vxx + 3u3v2
)

= 〈BΦ1,Φ1〉.
(3.13)

Absorbing a factor − 1
8 , we get a G4-constraint





1
2
vxxxx − 2uxvvx − 3uv2

x − 4uvvxx − uxxv2 + 3u2v3 =
1
2
〈BΦ2,Φ2〉,

1
2
uxxxx − 2uuxvx − 3u2

xv − 4uvuxx − u2vxx + 3u3v2 = −1
2
〈BΦ1,Φ1〉.

(3.14)

Coupling it to system (3.2) yields a G4-constraint AKNS flow




Φ1,x = −AΦ1 + uΦ2,

Φ2,x = vΦ1 + AΦ2,

1
2
vxxxx − 2uxvvx − 3uv2

x − 4uvvxx − uxxv2 + 3u2v3 =
1
2
〈BΦ2,Φ2〉,

1
2
uxxxx − 2uuxvx − 3u2

xv − 4uvuxx − u2vxx + 3u3v2 = −1
2
〈BΦ1,Φ1〉.

(3.15)

This is a Hamiltonian system. To end this, we introduce eight new variables

q11 = u, q12 = v, q21 = ux, q22 = vx, p11 = −1
2
vxxx + uxv2 + 4uvvx,

p12 = −1
2
uxxx + u2vx + 4uuxv, p21 =

1
2
vxx, p22 =

1
2
uxx,

and define a symplectic form by

N∑

j=1

µjdφ2j ∧ dφ1j +
2∑

k=1

2∑

j=1

dpkj ∧ dqkj
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over R2m+8. Then (3.15) can be written in the following Hamiltonian form:

Φ1,x = −B−1 ∂HG4

∂Φ2
, Φ2,x = B−1 ∂HG4

∂Φ1
,

q11,x = −∂HG4

∂p11
, p11,x =

∂HG4

∂q11
,

q12,x = −∂HG4

∂p12
, p12,x =

∂HG4

∂q12
,

q21,x = −∂HG4

∂p21
, p21,x =

∂HG4

∂q21
,

q22,x = −∂HG4

∂p22
, p22,x =

∂HG4

∂q22
,

where

HG4 = 〈AΦ1, BΦ2〉 − 1
2
q11〈BΦ2,Φ2〉+

1
2
q12〈BΦ1,Φ1〉

− (q21p11 + q22p12) + 2p22p21 +
1
2
q2
21q

2
12 − q3

11q
3
12 +

1
2
q2
11q

2
22 + 4q11q12q21q22.

A straightforward verification shows that (3.15) allows the following Lax representation:

d
dx

LG4(λ) = [U(u, v, λ), LG4(λ)],

where

LG4(λ) =
(

A4 B4

C4 −A4

)
+

m∑

j=1

µj

λ− λj

(
φ1jφ2j −φ2

1j

φ2
2j −φ1jφ2j

)

and

U(u, v, λ) =
(−λ u

v λ

)
,

where

A4 = −2λ4 + uvλ3 − 1
2
(uvx − uxv)λ +

1
4
(uvxx + uxxv − uxvx − 3u2v2),

B4 = 2uλ3 − uxλ2 +
1
2
(uxx − 2u2v)λ− 1

4
uxxx +

3
2
uuxv,

C4 = 2vλ3 + λ2vx +
1
2
(vxx − 2uv2)λ +

1
4
vxxx − 3

2
uvvx.

Again Lax matrix LG4(λ) satisfies an r-matrix relation, the required m + 4 conserved inte-

grals to support the integrability of (3.15) can be generated from detLG4(λ), and (3.15) is a

completely integrable system.

4 From the Restricted AKNS Flows to the Restricted KdV Flows

In this section, we want to establish relations between the restricted KdV flows and the

restricted AKNS flows. For this purpose, we adapt the usual procedure of NSP to directly

construct the restricted KdV flows from the restricted AKNS flows.
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As mentioned before, the KdV hierarchy can be obtained from the odd members in the

AKNS hierarchy by imposing the reduction condition v = 1. A simple calculation shows that:

if v = 1 and (φ1, φ2)T solves (2.3) with eigenvalue λ, then (φ1 + 2λφ2, φ2)T solves (2.3) with

eigenvalue −λ. This implies that the reduction condition v = 1 leads to that the eigenvalues

come in pair: λ and −λ.

We remark that, for N eigenparameters: λ1, λ2, · · · , λN (λi 6= ±λj , 1 ≤ i, j ≤ N), N copies

of the spectral problems of the KdV hierarchy




Φ1,x = −AΦ1 + uΦ2,

Φ2,x = vΦ1 + AΦ2,

v = 1

(4.1)

is equivalent to the following system:




Φ1,x = −AΦ1 + uΦ2,

Φ2,x = vΦ1 + AΦ2,

(Φ1 + 2AΦ2)x = A(Φ1 + 2AΦ2) + uΦ2,

Φ2,x = v(Φ1 + 2AΦ2)−AΦ2.

(4.2)

Here and after,

Φ1 = (φ11, · · · , φ1N )T,

Φ2 = (φ21, · · · , φ2N )T,

A = diag(λ1, · · · , λN ).

Actually, the last two equations in (4.2) are equivalent to v = 1 by applying a straightforward

computation to the first two equations.

Therefore, to perform the NSP of the KdV hierarchy, we only need to consider system (4.2)

instead of (4.1). This is very important for us to get the restricted KdV flows from the restricted

AKNS flows because (4.2) is just a special system of 2N copies of the AKNS spectral problems

in terms of eigenfunctions

(φ̃1j , φ̃2j)T = (φ1j , φ2j)T, (φ̃1,N+j , φ̃2,N+j)T = (φ1j + 2λjφ2j , φ2j)T, 1 ≤ j ≤ N

and corresponding eigenvalues

λj ,−λj , 1 ≤ j ≤ N.

To make this precise, we introduce the notion

Ã = diag(λ1, · · · , λN ,−λ1, · · · ,−λN ), (4.3)

Φ̃1 =
(

Φ1

Φ1 + 2AΦ2

)
, Φ̃2 =

(
Φ2

Φ2

)
. (4.4)
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Then (4.2) can be written in the following form of 2N copies of the AKNS spectral problems:
{

Φ̃1,x = −ÃΦ̃1 + uΦ̃2,

Φ̃2,x = vΦ̃1 + ÃΦ̃2.
(4.5)

This enables us to get the restricted KdV flows from the restricted AKNS flows just through a

simple substitution: m by 2N , Φ1 by Φ̃1 and Φ2 by Φ̃2. This implies that the restricted KdV

flows are a kind of special reductions of the restricted AKNS flows. In the following, we exhibit

the first three restricted KdV flows.

4.1 The G0-constraint KdV flow

In contrast with (3.6), the G0 constraint for the KdV hierarchy is

u = 〈B̃Φ̃1, Φ̃1〉, v = −〈B̃Φ̃2, Φ̃2〉, (4.6)

where

B̃ = diag(µ1, · · · , µ2N )

and µ1, · · · , µ2N are 2N arbitrary nonzero constants. For the sake of simplicity, we choose

B̃ = −1
2
I2N ,

and finally arrive at an explicit expression of the G0-constraint




u = −1
2
〈Φ̃1, Φ̃1〉 ≡ −1

2
〈Φ1,Φ1〉 − 1

2
〈Φ1 + 2AΦ2,Φ1 + 2AΦ2〉,

v =
1
2
〈Φ̃2, Φ̃2〉 ≡ 〈Φ2,Φ2〉.

(4.7)

Substituting (4.7) into (4.5), we then get the following finite-dimensional system:




Φ̃1,x = −ÃΦ̃1 + uΦ̃2,

Φ̃2,x = vΦ̃1 + ÃΦ̃2,

u = −1
2
〈Φ̃1, Φ̃1〉,

v =
1
2
〈Φ̃2, Φ̃2〉

(4.8)

or equivalently




Φ1,x = −AΦ1 − 1
2
〈Φ1,Φ1〉Φ2 − 1

2
〈Φ1 + 2AΦ2,Φ1 + 2AΦ2〉Φ2,

Φ2,x = Φ1 + AΦ2,

〈Φ2,Φ2〉 = 1.

(4.9)

Differentiating the last equation, we obtain

〈Φ1,Φ2〉+ 〈AΦ2,Φ2〉 = 0.
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Finally the G0-constraint KdV flow is written as





Φ1,x = −AΦ1 − 1
2
〈Φ1,Φ1〉Φ2 − 1

2
〈Φ1 + 2AΦ2,Φ1 + 2AΦ2〉Φ2,

Φ2,x = Φ1 + AΦ2,

〈Φ2,Φ2〉 = 1,

〈Φ1,Φ2〉+ 〈AΦ2,Φ2〉 = 0.

(4.10)

To identify system (4.10), we make a transformation

{
pj = φ1j + λjφ2j ,

qj = φ2j ,
1 ≤ j ≤ N (4.11)

for (4.10) and get





px = −A2q + (〈A2q,q〉 − 〈p,p〉)q,
qx = p,

〈q,q〉 = 1,

〈q,p〉 = 0,

(4.12)

where

q = (q1, q2, · · · , qN )T, p = (p1, p2, · · · , pN )T.

Obviously, this is nothing but the well-known C. Neumann system. It is a remarkable fact that

the first restricted KdV flow is the C. Neumann system (see [3]). Here we show that the C.

Neumann system is a special G0-constraint AKNS flow. In addition, we would like to point out

that the integrable properties of the restricted KdV flows such as the Lax representation and

the conversed integrals can be directly obtained from those of the restricted AKNS flows. For

example, we can get the Lax representation of (4.10) directly from that of the G0-constraint

AKNS flow as follows:

LK0,x = [ŨK0 , LK0 ],

where

LK0(λ) =
(

1 0
0 −1

)
− 1

2

N∑

j=1

1
λ− λj

(
φ1jφ2j −φ2

1j

φ2
2j −φ1jφ2j

)

− 1
2

N∑

j=1

1
λ + λj

(
φ1jφ2j + 2λjφ

2
2j −(φ1j + 2λjφ2j)2

φ2
2j −φ1jφ2j − 2λjφ

2
2j

)
,

ŨK0(λ) =
(−λ − 1

2 〈Φ1,Φ1〉 − 1
2 〈Φ1 + 2AΦ2,Φ1 + 2AΦ2〉

1 λ

)
.

From detLK0(λ), we can generate N − 1 functionally independent and conserved integrals

in involution of (4.10), and (4.10) is completely integrable.
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4.2 The G2-constraint KdV flow

Taking B̃ = 1
2I2N , we obtain a G2-constraint of the KdV hierarchy as follows:





uxx − 2u2v = −1
2
〈Φ̃1, Φ̃1〉 ≡ −〈Φ1,Φ1〉 − 2〈Φ1,Φ2〉 − 2〈A2Φ2,Φ2〉,

vxx − 2v2u =
1
2
〈Φ̃2, Φ̃2〉 ≡ 〈Φ2,Φ2〉.

(4.13)

Coupling (4.13) to (4.5), we get the following system:





Φ̃1,x = −ÃΦ̃1 + uΦ̃2,

Φ̃2,x = vΦ̃1 + ÃΦ̃2,

uxx − 2u2v = −1
2
〈Φ̃1, Φ̃1〉,

vxx − 2v2u =
1
2
〈Φ̃2, Φ̃2〉,

(4.14)

namely,





Φ1,x = −AΦ1 + uΦ2,

Φ2,x = vΦ1 + AΦ2,

v = 1,

uxx − 2u2v = −〈Φ1,Φ1〉 − 2〈Φ1,Φ2〉 − 2〈A2Φ2,Φ2〉,
vxx − 2v2u = 〈Φ2,Φ2〉.

(4.15)

Substituting v = 1 into the last equation in (4.15) yields

u =
1
2
〈Φ2,Φ2〉. (4.16)

Furthermore, we find that the fourth equation of (4.15) is an identity. Hence, the G2-constraint

KdV flow (4.15) is simplified to





Φ1,x = −AΦ1 − 1
2
〈Φ2,Φ2〉Φ2,

Φ2,x = Φ1 + AΦ2.

(4.17)

It is easy to verify that, under transform (4.11), (4.17) becomes

{
qx = p,

px = A2q − 1
2 〈q, q〉q,

(4.18)

which is nothing but the Garnier system. Therefore, the Garnier is also a special reduction of

the G2-constraint AKNS flow.

Moreover, applying the previously established result of the G2-constraint AKNS flow, we
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know that (4.17) is a completely integrable system and has Lax pair

LK2(λ) =

(
−λ2 + 1

4 〈Φ2,Φ2〉 1
2λ〈Φ2,Φ2〉 − 1

2 〈Φ1,Φ2〉 − 1
2 〈AΦ2,Φ2〉

1 λ2 + 1
4 〈Φ2,Φ2〉

)

+
1
8

N∑

j=1

1
λ− λj

(
φ1jφ2j −φ2

1j

φ2
2j −φ1jφ2j

)

+
1
8

N∑

j=1

1
λ + λj

(
φ1jφ2j + 2λjφ

2
2j −(φ1j + 2λjφ2j)2

φ2
2j −φ1jφ2j − 2λjφ

2
2j

)
.

4.3 The G4-constraint KdV flow

We take B̃ = 1
4I2N and thus obtain a G4-constraint of the KdV hierarchy as follows:





1
2
vxxxx − 2uxvvx − 3uv2

x − 4uvvxx − uxxv2 + 3u2v3 =
1
4
〈Φ̃2, Φ̃2〉 ≡ 1

2
〈Φ2,Φ2〉,

1
2
uxxxx − 2uuxvx − 3u2

xv − 4uvuxx − u2vxx + 3u3v2

= −1
4
〈Φ̃1, Φ̃1〉 ≡ −1

2
(〈Φ1,Φ1〉+ 2〈AΦ1,Φ2〉+ 2〈A2Φ2,Φ2〉).

(4.19)

Coupling it to (4.5), we get the following system:




Φ̃1,x = −ÃΦ̃1 + uΦ̃2,

Φ̃2,x = vΦ̃1 + ÃΦ̃2,

1
2
vxxxx − 2uxvvx − 3uv2

x − 4uvvxx − uxxv2 + 3u2v3 =
1
4
〈Φ̃2, Φ̃2〉,

1
2
uxxxx − 2uuxvx − 3u2

xv − 4uvuxx − u2vxx + 3u3v2 = −1
4
〈Φ̃1, Φ̃1〉

(4.20)

or equivalently




Φ1,x = −AΦ1 + uΦ2,

Φ2,x = Φ1 + AΦ2,

−uxx + 3u2 =
1
2
〈Φ2,Φ2〉,

1
2
uxxxx − 3u2

x − 4uuxx + 3u3 = −1
2
(〈Φ1,Φ1〉+ 2〈AΦ1,Φ2〉+ 2〈A2Φ2,Φ2〉).

(4.21)

Making use of the first three equations in (4.21), we find that the last equation is an identity.

Hence, (4.21) can be simplified to





Φ1,x = −AΦ1 + uΦ2,

Φ2,x = Φ1 + AΦ2,

uxx − 3u2 = −1
2
〈Φ2,Φ2〉.

(4.22)

Introducing new variables

Q = u, P = ux,
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we can write (4.22) as a Hamiltonian form

Φ1,x =
∂HK4

∂Φ2
, Φ2,x = −∂HK4

∂Φ1
, Qx =

∂HK4

∂P
, Px = −∂HK4

∂Q
,

where

HK4 = −〈AΦ1,Φ2〉+
1
2
Q〈Φ2,Φ2〉 − 1

2
〈Φ1,Φ1〉+

1
2
P 2 −Q3. (4.23)

Under transform (4.11), (4.23) becomes

HK4 =
1
2
P 2 −Q3 +

1
2
Q〈q, q〉 − 1

2
〈p, p〉+

1
2
〈A2q, q〉. (4.24)

In comparison with the Hénon-Hieles system (R2,dp1 ∧ dq1 + dp2 ∧ dq2,HHH) with

HHH =
1
2
p2
1 +

1
2
w1q

2
1 + aq1q

2
2 −

1
3
bq3

1 +
1
2
p2
2 +

1
2
w2q

2
2 ,

where w1, w2, a, b are constants (see [34–35]), we may regard (4.24) as a generalized multicom-

ponent Hénon-Hieles system and we show that it is a reduction of the G4-constraint AKNS

flow. Moreover, applying the previous result on the G4-constraint AKNS flow, we know that

(4.22) is a completely integrable system and has Lax pair

LK4(λ) =

(
AK4 2uλ3 − uxλ2 + 1

2 (uxx − 2u2)λ− 1
4uxxx + 3

2uux

2λ3 − uλ −AK4

)

+
1
8

N∑

j=1

1
λ− λj

(
φ1jφ2j −φ2

1j

φ2
2j −φ1jφ2j

)

+
1
8

N∑

j=1

1
λ + λj

(
φ1jφ2j + 2λjφ

2
2j −(φ1j + 2λjφ2j)2

φ2
2j −φ1jφ2j − 2λjφ

2
2j

)
,

where

AK4 = −2λ4 + uλ3 − 1
2
uxλ +

1
4
uxx − 3

4
u2.

5 Conclusions

We have shown that the restricted KdV flows including the Neumann system, the Garnier

system and the generalized multicomponent Hénon-Hieles system are a kind of special reduc-

tions of the restricted AKNS flows. We have already shown that the reduction conditions of

potentials in the spectral problem may be replaced by adding additional eigenfunction equa-

tions to the spectral problem, and the NSPs of reduced systems can be simply transplanted

from those of the large system. We believe that the idea is rather general and could be applied

to other soliton equations.
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