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Abstract By applying the fermionization approach, the inverse version of the bosoniza-

tion approach, to the Sharma-Tasso-Olver (STO) equation, three simple supersymmetric

extensions of the STO equation are obtained from the Painlevé analysis. Furthermore,

some types of special exact solutions to the supersymmetric extensions are obtained.
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1 Introduction

In the field of mathematical physics, the research of supersymmetric integrable systems

(see [1–5]) is a very important direction. In nonlinear science, some supersymmetric integrable

systems of the soliton equations have been given, such as the Korteweg-de Vries (KdV) equation

(see [6–9]), the modified Korteweg-de Vries (mKdV) equation (see [9]), the Sawada-Kotera (SK)

equation (see [10]), the sine-Gordon (sG) equation (see [11]) and the two-boson equation (see

[12]). Furthermore, many effective methods have been proposed and developed to solve the

supersymmetric equations.

On the other hand, because the existence of anticommutative fiermionic fields brought some

difficulties in dealing with supersymmetric equations, the bosonization approach (see [13]) of

supersymmetric systems was proposed, which changes a supersymmetric model to a system of

equations with respect to bosonic fields. That means the fermion systems can be solved via

boson systems. Therefore, a natural interesting question arises:

Can the inverse procedure of the bosonization (which may be called fermionization) be

developed to find integrable fermion systems (integrable coupled fermion systems and/or su-

persymmetric systems)?
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In the next section, we propose a simple method to find possible integrable fermion exten-

sions from a known boson system. In Section 3, taking the Sharma-Tasso-Olver (STO) equation

(see [14–19])

ut + 3αu2
x + 3αu2ux + 3αuuxx + αuxxx = 0 (1.1)

with the arbitrary constant α as a simple example, we find three types of supersymmetric STO

extensions. The last section is a short summary and discussion.

2 Fermionization Approach: General

In [13], the authors solved the supersymmetric KdV (SKdV) equation

Φt + Φxxx + 3(DΦx)Φ + 3(DΦ)Φx = 0, (2.1)

where

Φ(θ, x, t) = ξ(x, t) + θu(x, t),

θ is a Grassmann variable, and D = ∂θ + θ∂x is the supersymmetric covariant derivative, via

the bosonization approach such that the exact solutions to the SKdV equation with arbitrary

number of fermionic parameters can be obtained by only solving some suitable bosonic sys-

tems. Especially, by looking for the exact solutions to the SKdV equation with two fermionic

parameters {ξ1, ξ2}, it is enough to solve the following bosonic system with four bosonic fields

v1, v2, u0 and u1:

u0t + u0xxx + 6u0u0x = 0, (2.2)

v1t + v1xxx + 3u0v1x + 3u0xv1 = 0, (2.3)

v2t + v2xxx + 3u0v2x + 3u0xv2 = 0, (2.4)

u1t + u1xxx + 6u0u1x + 6u0xu1 = 3(v1v2xx − v2v1xx), (2.5)

while the corresponding solutions to the SKdV read

Φ(θ, x, t) = v1ξ1 + v2ξ2 + θ(u0 + u1ξ1ξ2). (2.6)

It is interesting that the boson system (2.2)–(2.5) possesses the following properties:

(i) The first equation for the field u0 is just the original KdV equation which is not coupled

with other boson fields.

(ii) All other equations are only linear equations.

(iii) If the fields v1 and v2 are proportional to u0, then the v1 and v2 equations are satisfied

identically.
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(iv) The homogeneous part of the u1 equation (2.5) is just the symmetry equation of the

usual KdV equation and the homogeneous part vanishes when v1 and v2 are proportional to

u0.

The above properties are similar in the exact solutions to the SKdV and other N = 1

supersymmetry systems with arbitrary fermionic parameters. For the higher N supersymmetric

models, the conclusion should be modified.

One of the important problems in soliton theory is how to extend an integrable boson system

to a supersymmetric one. The above bosonization procedure provides us with a new possible

way, the fermionization approach, i.e., the inverse procedure of the bosonization approach, to

find integrable supersymmetry extensions. The fermionization approach may be summarized

into the following three steps:

Step 1 For a given bosonic system

F (u, ux, ut, uxx, · · · ) ≡ F (u) = 0, (2.7)

construct a four-boson system

F (u0) = 0, (2.8)

F1(u0)v1 = 0, (2.9)

F1(u0)v2 = 0, (2.10)

F ′(u0)u1 = G(v1, v2, u0) (2.11)

with

F1(u0)u0 ≡ F (u0), G(u0, u0, u0) ≡ 0, F ′(u0)f ≡ d
dε

F (u0 + εf)
∣∣∣
ε=0

. (2.12)

Step 2 For a fixed operator F1(u0) and the function G(v1, v2, u0), find some possible

integrable bosonic systems under some different senses.

Step 3 Use the bosonic fields u0, v1, v2 and u1 to construct a superfield Φ(θ, x, t) via the

transformation (2.6).

In the next section, we take the STO equation as a simple example to construct some

possible N = 1 supersymmetric STO extensions.

3 Fermionization Approach: STO System

Step 1 According to the steps of the fermionization procedure described in the previous

section, for the STO equation (1.1), we select the following four-boson system as a starting
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point:

u0t + 3αu2
0x + 3αu2

0u0x + 3αu0u0xx + αu0xxx = 0, (3.1)

v1t + 3αu0xv1x + α[au2
0v1x + (3− a)u0u0xv1]

+ α[bu0xxv1 + (3− b)u0v1xx] + αv1xxx = 0, (3.2)

v2t + 3αu0xv2x + α[au2
0v2x + (3− a)u0u0xv2]

+ α[bu0xxv2 + (3− b)u0v2xx] + αv2xxx = 0, (3.3)

u1t + 6αu0xu1x + 3αu2
0u1x + 6αu0u0xu1 + 3αu1u0xx + 3αu0u1xx

+ αu1xxx + αc[(v1xv2 − v2xv1)u0]x + αd(v1xxv2 − v2xxv1)x = 0. (3.4)

It is clear that the conditions shown in (2.12) are valid for a and b being arbitrary functions

of u0 and c and d being arbitrary functions of u0, v1 and v2. However, for later simplicity, we

only consider the special case with

a = const., b = const., c = 3− a, d = b. (3.5)

Step 2 Now we use the well-known Painlevé analysis to select out some possible Painlevé

integrable models from (3.1)–(3.4). Let φ(x, t) = 0 be the singularity manifold of the system

(3.1)–(3.4) and

u0 =
∞∑

i=0

u0iφ
i+β1 , v1 =

∞∑

i=0

v1iφ
i+β2 ,

v2 =
∞∑

i=0

v1iφ
i+β3 , u1 =

∞∑

i=0

u1iφ
i+β4 ,

(3.6)

where

u00 6= 0, v10 6= 0, v20 6= 0, u10 6= 0.

The leading singularities are determined by substituting

u0 = u00φ
β1 , v1 = v10φ

β2 , v2 = v20φ
β3 , u1 = u10φ

β4

into the system (3.1)–(3.4). This gives

β1 = −1, β2 = −1, β3 = −1, β4 = −2

and two branches: (i) u00 = φx, (ii) u00 = 2φx.

Branch (i) u00 = φx. Substituting (3.5) into system (3.1)–(3.4), we can obtain the recursion

relations to determine the functions u0j , u1j , v1j and v2j


P1(j)φ3
x 0 0 0

P4(j)φ2
xv10 P2(j)φ3

x 0 0

P4(j)φ2
xv20 0 P2(j)φ3

x 0

P5(j)φ2
xu10 P6(j)φ3

xv20 P6(j)φ3
xv10 P3(j)φ3

x







u0j

v1j

v2j

u1j


 =




F1j

F2j

F3j

F4j


 , (3.7)
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where

P1(j) = (j + 1)(j − 1)(j − 3),

P2(j) = j[j2 − (b + 3)j + a + 3b− 1],

P3(j) = j(j − 2)(j − 4),

P4(j), P5(j), P6(j) are polynomials in j, and F1j , F2j , F3j , F4j are functions of

{u01, u02, · · · , u0,j−1, v10, v11, · · · , v1,j−1, v20, v21, · · · , v2,j−1, u10, u11, · · · , u1,j−1}.

It is clear that, the resonances, i.e., values of j for the recursion formula are not defined,

occur when

det

∣∣∣∣∣∣∣∣∣∣∣

P1(j)φ3
x 0 0 0

P4(j)φ2
xv10 P2(j)φ3

x 0 0

P4(j)φ2
xv20 0 P2(j)φ3

x 0

P5(j)φ2
xu10 P6(j)φ3

xv20 P6(j)φ3
xv10 P3(j)φ3

x

∣∣∣∣∣∣∣∣∣∣∣

= P1(j)P 2
2 (j)P3(j)φ12

x = 0. (3.8)

In order for the system (3.1)–(3.4) to pass the Painlevé test (possibly under some conditions

on the parameters a and b), it is necessary that P2(j) should be written under the form j(j −
j1)(j − j2) for some integer values of j1, j2. The implicit expressions for these numbers are

j1 + j2 = b + 3, j1j2 = a + 3b− 1. (3.9)

Therefore, a case by case analysis for resonance conditions yields in the following cases for j1,

j2 ≤ 7:

Case A j1 = 1, j2 = 2 → a = 3, b = 0,

Case B j1 = 2, j2 = 4 → a = 0, b = 3,

Case C j1 = 4, j2 = 5 → a = 3, b = 6.

(3.10)

Branch (ii) u00 = 2φx. For this auxiliary branch, the Painlevé analysis requires checking

additional resonance conditions in Case A, B and C, respectively.

In Case A, the resonances occur at j = −2, −1, −1, −1, −1, 0, 0, 0, 1, 1, 3, 4.

In Case B, the resonances occur at j = −2, −1, −1, 0, 0, 0, 1, 1, 3, 4, 5, 5.

In Case C, the resonances occur at j = −2, −1, −1, 0, 0, 0, 3, 4, 5, 5, 7, 7.

The detailed calculation shows that all the resonance conditions are satisfied and then all

the three cases possess the Painlevé property.
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Step 3 Finally, it is not difficult to verify that the above three cases lead to three super-

symmetric STO (SSTO) equations

Φt + 3αΦxDΦx + 3α(DΦ)2Φx + 3α(DΦ)Φxx + αΨxxx = 0, (3.11)

Φt + 3αΦxDΦx + 3αΦDΦDΦx + 3αΦDΦxx + αΨxxx = 0, (3.12)

Φt + 3αΦxDΦx + 3α(DΦ)2Φx + 6αΦDΦxx − 3αDΦΦxx + αΨxxx = 0 (3.13)

with Φ being given by (2.6).

The direct Painlevé tests for these three cases show that they are all Painlevé integrable.

4 Special Solutions

To obtain special solutions to these SSTO equations, we just study traveling wave solutions

of the system (3.1)–(3.4).

Introducing the traveling wave variable

X = x− ct + X0,

where c and X0 are constants, the system (3.1)–(3.4) can be changed to the ordinary differential

equation system

− cu0X + 3αu2
0X + 3αu2

0u0X + 3αu0u0XX + αu0XXX = 0, (4.1)

− cv1X + 3αu0Xv1X + α[au2
0v1X + (3− a)u0u0Xv1]

+ α[bu0XXv1 + (3− b)u0v1XX ] + αv1XXX = 0, (4.2)

− cv2X + 3αu0Xv2X + α[au2
0v2X + (3− a)u0u0Xv2]

+ α[bu0XXv2 + (3− b)u0v2XX ] + αv2XXX = 0, (4.3)

− cu1X + 6αu0Xu1X + 3αu2
0u1X + 6αu0u0Xu1 + 3αu1u0XX + 3αu0u1XX

+ αu1XXX + α(3− a)[(v1Xv2 − v2Xv1)u0]X + αb(v1XXv2 − v2XXv1)X = 0. (4.4)

We first solve out u0X from (4.1), which can be changed to

∂X(u0 + ∂X)
(
u0X + u2

0 −
c

α

)
= 0. (4.5)

It is clear that (4.5) can be solved by

u0X = −u2
0 +

c

α
. (4.6)

The linear inhomogeneous ODE (4.3) can be directly integrated once

−cu1 + 3αu2
0u1 + 3α(u0u1)X + αu1XX + r(X) = 0, (4.7)
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where the inhomogeneous term is

r(X) = α(3− a)(v1Xv2 − v2Xv1)u0 + αb(v1XXv2 − v2XXv1) + C1. (4.8)

From (4.6), it is known that the variable transformations

X → u0 (4.9)

can be used. Under the transformations (4.9), we have

u1(X) = U1(u0), v1(X) = V1(u0), v2(X) = V2(u0). (4.10)

Using the transformation and (4.6), the ODE system (4.2)–(4.4) becomes

(αu2
0 − c)2

d3V1

du3
0

+ α(b + 3)(αu2
0 − c)u0

d2V1

du2
0

+ α2u0

[
(2b + a− 3)u0

dV1

du0
− V1

]
= 0, (4.11)

(αu2
0 − c)2

d3V2

du3
0

+ α(b + 3)(αu2
0 − c)u0

d2V2

du2
0

+ α2u0

[
(2b + a− 3)u0

dV2

du0
− V2

]
= 0, (4.12)

(αu2
0 − c)3

d3U1

du3
0

+ 3αu0(αu2
0 − c)2

d2U1

du2
0

− 3α(αu2
0 − c)2

dU1

du0
= α2R(u0), (4.13)

where

R(u0) =
b

α
(αu2

0 − c)2
(
V2

d2V1

du2
0

− V1
d2V2

du2
0

)
+ (2b + a− 3)u0

× (αu2
0 − c)

(
V2

dV1

du0
− V1

dV2

du0

)
+ C1. (4.14)

Solving (4.11)–(4.13) yields

V1 = C2u0 + u0

∫
C3(αu2

0 − c)
δ
4 + C4(αu2

0 − c)−
δ
4

u2
0(αu2

0 − c)
1+b
4

du0, (4.15)

V2 = C5u0 + u0

∫
C6(αu2

0 − c)
δ
4 + C7(αu2

0 − c)−
δ
4

u2
0(αu2

0 − c)
1+b
4

du0, (4.16)

U1 = C8(αu2
0 − c) + C9u0

√
αu2

0 − c− c

α
(αu2

0 − c)
∫

R(u0)u0

(αu2
0 − c)2

du0

+
c

α
u0

√
αu2

0 − c

∫
R(u0)

(αu2
0 − c)

3
2
du0, (4.17)

where

δ =
√

b2 − 6b− 4a + 13

and Ci (i = 1, 2, · · · , 9) are arbitrary constants. Thus, we have obtained a special type of



278 B. W. Yao and S. Y. Lou

two-fermionic-parameter traveling wave solution to the system (3.1)–(3.4)

u = u0 + ξ1ξ2

{
C8(αu2

0 − c) + C9u0

√
αu2

0 − c− c

α
(αu2

0 − c)
∫

R(u0)u0

(αu2
0 − c)2

du0

+
c

α
u0

√
αu2

0 − c

∫
R(u0)

(αu2
0 − c)

3
2
du0

}
, (4.18)

v = ξ1

{
C2u0 + u0

∫
C3(αu2

0 − c)
δ
4 + C4(αu2

0 − c)−
δ
4

u2
0(αu2

0 − c)
1+b
4

du0

}

+ ξ2

{
C5u0 + u0

∫
C6(αu2

0 − c)
δ
4 + C7(αu2

0 − c)−
δ
4

u2
0(αu2

0 − c)
1+b
4

du0

}
, (4.19)

with the known solution u0 to (4.6).

So, in Case A, u possesses the form of (4.18), and

v = ξ1

[
C2 + C3u0 + C4

√
αu2

0 − c
]

+ ξ2

[
C5 + C6u0 + C7

√
αu2

0 − c
]

(4.20)

with R(u0) = C1 being a constant.

In case B, u possesses the form of (4.18), and

v = ξ1

[
C2u0 + C3

√
αu2

0 − c +
C4√

αu2
0 − c

]
+ ξ2

[
C5u0 + C6

√
αu2

0 − c +
C7√

αu2
0 − c

]
(4.21)

with

R(u0) =
3
α

(αu2
0 − c)2

(
V2

d2V1

du2
0

− V1
d2V2

du2
0

)
+ 3u0(αu2

0 − c)
(
V2

dV1

du0
− V1

dV2

du0

)
+ C1.

In Case C, u possesses the form of (4.18), and

v = ξ1

[
C2u0 +

C3(2αu2
0 − c)√

αu2
0 − c

− 3C4αu0arctanh
(√αc

c
u0

)
+

C4
√

cα(3αu2
0 − 2c)

αu2
0 − c

]

+ ξ2

[
C5u0 +

C6(2αu2
0 − c)√

αu2
0 − c

− 3C7αu0arctanh
(√αc

c
u0

)
+

C7
√

cα(3αu2
0 − 2c)

αu2
0 − c

]
(4.22)

with

R(u0) =
6
α

(αu2
0 − c)2

(
V2

d2V1

du2
0

− V1
d2V2

du2
0

)
+ 12u0(αu2

0 − c)
(
V2

dV1

du0
− V1

dV2

du0

)
+ C1.

In addition, in Case A, by making a dependent variable transformation

Φ = D ln f(x, t, θ), (4.23)

we find that (3.11) is transformed into

D
(ft + αfxxx

f

)
= 0. (4.24)

Therefore, we can obtain the following N -soliton solution:

f = 1 +
N∑

n=1

eknx−αk3
nt+ξnθ+x0

, (4.25)
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where kn (n = 1, 2, · · · , N) and x0 are constants, ξn (n = 1, 2, · · · , N) are odd (fermionic)

constants. Using the transformation (4.23), we obtain the solution to (3.11)

Φ =

N∑
n=1

(θkn + ξn)eknx−αk3
nt+ξnθ+x0

1 +
N∑

n=1
eknx−αk3

nt+ξnθ+x0

. (4.26)

5 Summary and Discussion

In summary, we developed a new method, the fermionization approach which is an inverse

procedure of the bosonization approach, to find possible supersymmetric integrable extensions

of known integrable boson systems. Especially, taking the STO equation as a simple example,

three types of Painlevé integrable SSTO systems are found. The exact traveling wave solutions

to the SSTO systems in the usual space with two fermionic parameters can be obtained simply

by integration.

The fermionization approach shows us that arbitrary solutions to bosonic models can be

extended to those of the supersymmetric models simply by taking v1 ∼ v2 ∼ u0 and u1 = σ(u0),

where u0 is a solution to the original bosonic model and σ(u0) is any symmetry of the original

bosonic system.

In this paper, we study only the possible fermionic extensions of the boson systems under

some constraints, for instance, the conditions (2.12) and (3.5). The possible other types of

integrable systems should be studied further.
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