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Abstract By means of the classical symmetry method, a hyperbolic Monge-Ampère equa-

tion is investigated. The symmetry group is studied and its corresponding group invariant

solutions are constructed. Based on the associated vector of the obtained symmetry, the

authors construct the group-invariant optimal system of the hyperbolic Monge-Ampère

equation, from which two interesting classes of solutions to the hyperbolic Monge-Ampère

equation are obtained successfully.
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1 Introduction

It is known that, for an unknown function

z = z(θ, τ)

defined for (θ, τ) ∈ R2, the corresponding Monge-Ampère equation (see [1–3]) reads

A+Bzττ + Czθτ +Dzθθ + E(zττzθθ − z2θτ ) = 0, (1.1)

where the coefficients A, B, C, D and E depend on θ, τ , S, Sθ and Sτ . We say that (1.1) is

τ -hyperbolic for S, if

△2(θ, τ, S, Sθ, Sτ ) , C2 − 4BD + 4AE > 0

and

zθθ +B(θ, τ, S, Sθ, Sτ ) ̸= 0.
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Recently, Kong, Liu and Wang [2] completely reduced the one-dimensional hyperbolic mean

curvature flow for closed plane curves to an initial value problem for a single partial differential

equation for its support function. The reduced equation is a hyperbolic Monge-Ampère equation

of the following form:

Sττ =
S2
θτ − 1

S + Sθθ
. (1.2)

As we know, symmetry group techniques provide one powerful method for obtaining solutions

to partial differential equations (see [4–5]). Many mathematicians and physicists have done

excellent work for the symmetry and reduction theory and techniques (see [6–12]). The meth-

ods of finding group-invariant solutions and generalizing the well-known techniques for finding

similarity solutions, provide a systematic computational method for determining large classes

of special solutions. These group-invariant solutions are characterized by their invariance under

some symmetry group of the system of partial differential equations. The more symmetrical

the solution is, the easier it is to construct. However, there is almost always an infinite number

of the subgroups, and we need an optimal system to classify all possible group-invariant solu-

tions to the system (see [4]). Based on the theory of group invariant solutions, we construct

the group-invariant optimal system of the hyperbolic Monge-Ampère equation, from which the

interesting exact solutions are obtained.

2 Main Results

We consider the one-parameter group of infinitesimal transformations in (θ, τ, S) given by

θ∗ = θ + ϵξ(θ, τ, S) + o(ϵ2),

τ∗ = τ + ϵη(θ, τ, S) + o(ϵ2),

S∗ = S + ϵΨ(θ, τ, S) + o(ϵ2),

(2.1)

where ϵ is a group parameter. It is required that the set of (1.2) should be invariant under

the transformation (2.1), and this yields a system of overdetermined, linear equations for the

infinitesimals ξ, η and Ψ. Solving these equations, one can get

ξ = c1, η = c2θ + c3τ + c4, Ψ = c3S + c5 sin(θ) + c6 cos(θ),

where ci (i = 1, 2, · · · , 6) are arbitrary constants. And the associated vector fields for the

one-parameter Lie group of infinitesimal transformations are v1, v2, · · · , v6 given by

v1 = ∂θ, v2 = ∂τ , v3 = θ∂τ , v4 = sin(θ)∂S , v5 = cos(θ)∂S , v6 = τ∂τ + S∂S . (2.2)

(2.2) shows that the following transformations (given by exp(ϵvi), i = 1, 2, · · · , 6) of variables
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(θ, τ, S) leave the solutions to (1.2) invariant:

exp(ϵv1) : (θ, τ, S) 7→ (θ + ϵ, τ, S),

exp(ϵv2) : (θ, τ, S) 7→ (θ, τ + ϵ, S),

exp(ϵv3) : (θ, τ, S) 7→ (θ, τ + ϵθ, S),

exp(ϵv4) : (θ, τ, S) 7→ (θ, τ, S + ϵ sin(θ)),

exp(ϵv5) : (θ, τ, S) 7→ (θ, τ, S + ϵ cos(θ)),

exp(ϵv6) : (θ, τ, S) 7→ (θ, eϵτ, eϵS).

(2.3)

And the following theorem holds.

Theorem 2.1 If S = p(θ, τ) is a solution to (1.2), then so are

S(1) = p(θ − ϵ, τ),

S(2) = p(θ, τ − ϵ),

S(3) = p(θ, τ − ϵθ),

S(4) = p(θ, τ) + ϵ sin(θ),

S(5) = p(θ, τ) + ϵ cos(θ),

S(6) = eϵp(θ, e−ϵτ).

By exploiting the generators vi of the Lie-point transformations in (2.2), one can build up

exact solutions to (1.2) via the symmetry reduction approach. This allows one to lower the

number of independent variables of the system of differential equations under consideration

using the invariants associated with a given subgroup of the symmetry group. In the following,

we present some reductions leading to exact solutions to the equation of possible physical

interest. In general, to each subgroup of the symmetry group, there will be a corresponding

family of group-invariant solutions to the equation. It is very complicated to list all possible

group-invariant solutions. So it is necessary to find an “optimal system” of group-invariant

solutions. By using the method presented in [4], we will find the optimal system of group-

invariant solutions.

Table 1 Lie bracket

Lie v1 v2 v3 v4 v5 v6
v1 0 0 v2 v5 −v4 0
v2 0 0 0 0 0 v2
v3 −v2 0 0 0 0 v3
v4 −v5 0 0 0 0 v4
v5 v4 0 0 0 0 v5
v6 0 −v2 −v3 −v4 −v5 0

From (2.2), applying the commutator operators [vm, vn] = vmvn − vnvm, we get the com-

mutator table listed in Table 1 with the (i, j)-th entry indicating [vm, vn]. It follows that the
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proposition below holds.

Proposition 2.1 The operators vi (i = 1, 2, · · · , 6) form a Lie algebra, which is a six-

dimensional symmetry algebra.

Applying the formula

Ad(exp(εv))v0 = v0 − ε[v, v0] +
1

2
ε2[v, [v, v0]]− · · ·

and Table 1, one can get the adjoint representation listed in Table 2 with the (i, j)-th entry

indicating Ad(exp(εvi))vj .

Table 2 Adjoint representation

Ad v1 v2 v3 v4 v5 v6
v1 v1 v2 v3 − εv2 cos(ε)v4 − sin(ε)v5 sin(ε)v4 + cos(ε)v5 v6
v2 v1 v2 v3 v4 v5 v6 − εv2
v3 v1 + εv2 v2 v3 v4 v5 v6 − εv3
v4 v1 + εv5 v2 v3 v4 v5 v6 − εv4
v5 v1 − εv4 v2 v3 v4 v5 v6 − εv5
v6 v1 eεv2 eεv3 eεv4 eεv5 v6

If we set

v = a1v1 + a2v2 + a3v3 + a4v4 + a5v5 + a6v6,

our task is to simplify as many of the coefficients ai as possible through judicious application

of adjoint maps to v. Suppose first that

a6 ̸= 0.

Scaling v if necessary, we can assume that

a6 = 1.

Referring to Table 2, if we act on v by

Ad
(
exp

(a4 − a1a5
1 + a21

v4

))
and Ad

(
exp

(a5 + a1a4
1 + a21

v5

))
,

respectively, we can make the coefficients of v4 and v5 vanish:

v(1) = Ad
(
exp

(a5 + a1a4
1 + a21

v5

))
◦Ad

(
exp

(a4 − a1a5
1 + a21

v4

))
v

= a1v1 + a2v2 + a3v3 + v6.

Next we act on v(1) by Ad(exp(a3v3)) to cancel the coefficient of v3, leading to v(2) = a1v1 +

(a2 + a1a3)v2 + v6, and finally by Ad(exp((a2 + a1a3)v2)) to cancel the coefficient of v2. So v is
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equivalent to v6+a1v1 under the adjoint representation. In other words, every one-dimensional

subalgebra generated by v with a6 ̸= 0 is equivalent to the subalgebra spanned by v6 + a1v1.

The remaining one-dimensional subalgebra is spanned by vector v with a6 = 0. If a1 ̸=
0, we scale to make a1 = 1, and then act on v by Ad(exp(−a2v3)), Ad(exp(−a5v4)) and

Ad(exp(a4v5)), respectively, so that v is equivalent to

v(1) = v1 + a3v3.

We can further act on v(1) by the Ad(exp(εv6)):

v(2) = Ad(exp(εv6))v
(1) = v1 + a3e

εv3.

Depending on the sign of a3, we can make the coefficient of v3 either +1, −1 or 0. Thus any

one-dimensional subalgebra spanned by v with a6 = 0, a1 ̸= 0 is equivalent to the subalgebra

spanned by either v1 + v3, v1 − v3 or v1. The remaining cases are spanned by vector v with

a1 = a6 = 0. If a3 ̸= 0, we scale to make a3 = 1, and then act on v by Ad(exp(a2v1)). It follows

that v is equivalent to v3 + mv4 + nv5 for certain scalers m, n depending on a4 and a5. The

remaining one-dimensional subalgebra is spanned by vector v with a1 = a3 = a6 = 0. If a5 ̸= 0,

we can scale to make a5 = 1. By acting on v by Ad(exp(− arctan(a4)v1)), v is equivalent to

v5 + lv2 by scaling the coefficient of v5, where l depends on a2 and a4. The remaining cases,

a1 = a3 = a5 = a6 = 0,

are similarly seen to be equivalent either to v4 + a2v2 (a4 ̸= 0) by scaling a4 to 1 or to v2 (a1 =

a3 = a4 = a5 = a6 = 0).

It is also pointed out that by the discrete symmetry (θ, τ, S) 7→ (θ,−τ, S), v1−v3 is mapped

to v1 + v3. So the following theorem holds.

Theorem 2.2 The operators generate an optimal system S
(a) v6 + a1v1, a6 ̸= 0;

(b1) v1, a6 = 0, a1 ̸= 0;

(b2) v1 + v3, a6 = 0, a1 ̸= 0;

(c) v3 +mv4 + nv5, a1 = a6 = 0, a3 ̸= 0;

(d) v5 + lv2, a1 = a3 = a6 = 0, a5 ̸= 0;

(e) v4 + a2v2, a1 = a3 = a5 = a6 = 0, a4 ̸= 0;

(f) v2, a1 = a3 = a4 = a5 = a6 = 0, a2 ̸= 0.

Making use of Theorem 2.2, we will discuss the reduction and solutions to (1.2).

For case (a), from a1Sθ + τSτ − S = 0, one can get

S = F (X)τ,
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where X = θ − a1 ln(τ) and F is an arbitrary function of X. Then (1.2) is reduced to

(a1F
′′ − F ′)(F ′ + a1F ) + 1 = 0.

When a21 = 1, by solving the above equation, one can obtain

F (X) = sec(x) sinh(X) + tan(x) cosh(X),

where x ∈ (−π
2 ,

π
2 ). So we derive a solution to (1.2)

S =
sin(x) + 1

2 cos(x)
eθτ1−a1 +

sin(x)− 1

2 cos(x)
e−θτ1+a1 . (2.4)

We depict the shape of S in (2.4) in Figure 1, which shows that it is in a symmetric shape.

(a)

–

–

–

– – –

(b)

Figure 1 The shape of S with a1 = −1 and x = − arcsin( 9
41
): (a) 3D-plot, (b) 2D-plot

with τ = 2.

Enlightened by the solution (2.4), we can find the form of the solution to (1.2)

S = f(θ)τ2 + g(θ)τ + h(θ). (2.5)

Substituting (2.5) into (1.2) and solving the equations composed by the coefficients of τ , we

can obtain the solution to (1.2)

S =
(2τ + C3θ + C4)e

θτ

C1e2θ − C2
+

(C3θ + C4)
2eθ

8(C1e2θ − C2)

− C1e
2θ − C2

8eθ
+ C5 sin(θ) + C6 cos(θ), (2.6)

where Ci (i = 1, 2, · · · , 6) are arbitrary constants. We depict the shape of S in (2.6) in Figure

2, which shows that it is not in a symmetric shape.
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–

(c)

–

–
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–

(d)

Figure 2 The shape of S with C1 = 0.01, C2 = 1, C3 = 0.00001 and C4 = C5 = C6 = 0:
(a) 3D-plot, (b) 2D-plot with τ = 0.9 and τ = 1.8.

In case (b2), the solution to Sθ + θSτ = 0 has the following form:

S = F (X),

where

X = θ2 − 2τ

and F is an arbitrary function of X. Substituting it into (1.2) leads to

4F ′′(2F ′ + F ) + 1 = 0,

which has the solution∫ F (X) 1

RootOf(2y + 4Z + e−2Z22
1
2π

1
2 erf(2

1
2Zi)i− 2C1e−2Z2)

dy −X − C2 = 0,

where Ci (i = 1, 2) are arbitrary constants. For the other cases in S, you can also use them to

reduce (1.2) and get the solutions. Here we do not study any more.

Acting exp(ϵvi) (i = 1, 2, · · · , 6) in (2.3) on S in (2.6), respectively, one can obtain the

following solution to (1.2) by Theorem 2.1

S = eϵ6
( sin(x) + 1

2 cos(x)
eθ−ϵ1(e−ϵ6τ − ϵ3θ − ϵ2)

1−a1

+
sin(x)− 1

2 cos(x)
e−θ+ϵ1(e−ϵ6τ − ϵ3θ − ϵ2)

1+a1 + ϵ4 sin(θ) + ϵ5 cos(θ)
)
.
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