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Abstract A large class of stochastic differential games for several players is considered in
this paper. The class includes Nash differential games as well as Stackelberg differential
games. A mix is possible. The existence of feedback strategies under general conditions is
proved. The limitations concern the functionals in which the state and the controls appear
separately. This is also true for the state equations. The controls appear in a quadratic
form for the payoff and linearly in the state equation. The most serious restriction is
the dimension of the state equation, which cannot exceed 2. The reason comes from
PDE (partial differential equations) techniques used in studying the system of Bellman
equations obtained by Dynamic Programming arguments. In the authors’ previous work
in 2002, there is not such a restriction, but there are serious restrictions on the structure
of the Hamiltonians, which are violated in the applications dealt with in this article.
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1 Introduction

The regularity theory of systems of PDE is a remarkable technique to solve stochastic
differential games. These systems arise normally in a similar way as Bellman equation is derived
for stochastic control. There are some restrictions. The first one is that the control policies
of all players are defined by feedbacks on the state. For a single player, one can show that
such policies are optimal against any other. In stochastic control, the value function solution to
Bellman equation is the infimum of the cost objective, so uniqueness of the solution to the PDE
can be obtained under reasonable assumptions. In the case of games, the value function cannot
be defined in an intrinsic way. It is in general a saddle point, and depends on the feedbacks
of all players. So we cannot hope for uniqueness of solutions to the system of PDE. This is an
interpretation of the fact that no uniqueness result can be obtained from PDE techniques.

The regularity theory, which is essential to constructing optimal feedbacks for each player
and to giving a meaning to the controlled state equation, is not available as easily as in the
case of a scalar equation. In our problem, the controls act on the drift and not on the diffusion
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term. So we have quasi-linear differential operators, with nonlinearity concentrated on the gra-
dient. The nonlinear part is called the Hamiltonian. In previous publications, in particular in
the book mentioned above, we have made assumptions on the structure of the various Hamil-
tonians, which lead to useful regularity results. After having noted that we can combine the
equations with linear combination, we fix the set of equations with an order which is important.
Indeed the restriction concerns a smallness condition, which states that the dependence of a
Hamiltonian with respect to functions of order higher than that of its equation is small. In
applications, it is often nondependent. We have many useful examples in which this restriction
is satisfied. However, they all concern Nash equilibrium. In this article, following a previous
publication (see [2]), we consider structures of the Hamiltonian called non-market interaction
for which the smallness condition is not satisfied. We also consider Stackelberg games for which
it is not available either. So the techniques of this paper do not require any smallness condi-
tion. However, they remain so far limited to dimension two only. Higher dimension require
more sophisticated techniques, which are the objective of our current research. To the best
of our knowledge, there is no result in the literature of the existence of optimal feedbacks for
Stackelberg differential games. Another limitation, which we hope to waive in the near future,
is that we assume Neumann boundary conditions. This means that the evolution of the state is
modelled by a diffusion reflected at the boundary of a domain. Dirichlet boundary conditions
(diffusion stopped at the exit of the domain) yield technical difficulties.

2 Formulation of the Problem

2.1 Differential games

We formulate our differential game without the restriction of dimension. We will explain
where this restriction is used. There are N players and the space state is Rn (n = 1, 2). Consider
a probability space (Ω,A,P) on which a standard Wiener process w(t) in Rn is defined. Let O
be a smooth bounded domain of Rn in which the state will remain. Its evolution is defined by
a diffusion reflected at the boundary of the domain. To simplify the notation, we will write the
equation of this reflected diffusion as if it were just an ordinary diffusion in Rn. So we write it
as follows:

dy =
(
g(y(t)) +

N∑
ν=1

Aν(y(t))vν(t)
)
dt +

√
2 dw(t), y(0) = x. (2.1)

The stochastic processes vν(t) are the controls decided by the players. They will be defined
following the stucture of the game. For Nash differential games, they are simply defined by a
feedback on the state. For Stackelberg differential games, they are more involved and will be
discussed later. A feedback is a function vν(x) and one has

vν(t) = vν(y(t)).

Note that for stochastic differential equations measurability of the feedback functions is
sufficient. The solution y(t) to equation (2.1) can then be defined in a weak sense. The diffusion
term is very simple. We can put a volatility term σ(y) (Lipschitz) in front of the Wiener process,
provided that it does not depend on the controls, the matrix σ(x) is bounded, invertible and its
inverse is also bounded. The coefficient

√
2 is for convenience. In the drift term, the important

property is the linearity with respect to the controls. Since in fact the reflected diffusion lies in
a bounded domain, we can assume with limited restriction that g(x) and Aν(x) are bounded
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in O. The coefficients Aν(x) are matrices. As we have said, we do not write the reflected part.
For full details we refer to [3]. The feedbacks vν(x) are not bounded functions, but they are
bounded on O. The initial condition x ∈ O. We also denote by v = (v1, · · · , vN ) the vector of
all controls, with the corresponding notation v(t) and v(y) for the feedbacks. We also use the
notation v( · ) to emphasize the function. Each player, ν = 1, · · · , N , has a functional

Jν(x, v( · )) = E
[ ∫ ∞

0

e−λt(fν(y(t)) + lν(y(t), v(t)))dt
]
. (2.2)

The part lν(y(t), v(t)) incorporates the direct interaction of the players since all components
of v(t) are involved. The interaction through the state y(t) is indirect. This indirect interaction
is called market interaction. The direct interaction is called non-market interaction. The
structure of the function lν(x, v) is very important and will be made precise later. The function
fν(x) is measurable and bounded on O.

2.2 Structure of controls

In a Nash differential game, as said before, each player chooses a feedback vν(x) and we
look for a saddle point, namely feedbacks v̂ν(x) such that

Jν(x, v̂1( · ), · · · , v̂N ( · )) ≤ Jν(x, v̂1( · ), · · · , v̂i−1( · ), vi( · ), v̂i+1( · ), · · · , v̂N ( · )). (2.3)

For a Nash game, the players are on equal footing. For Stackelberg games, there is a
hierarchy. Player 1 is the leader, and he chooses a feedback v1(x). The second player chooses a
feedback depending on the state and also on the decision of the leader. He is the first follower.
So his feedback is of the form v2(x; v1) and the actual feedback will be v2(x; v1(x)). The third
player chooses a feedback v3(x; v1, v2) and the actual feedback is v3(x; v1(x), v2(x; v1(x))).

The induction is clear although it is heavy. The optimization is done sequentially. Consider
simplifying notation of the case N = 3. Optimal feedback rules are defined as follows. We
begin with the 3rd player. He minimizes

J3(x, v1( · ), v2( · ; v1( · )), v3( · , v1( · ), v2( · , v1( · ))))
over v3( · , v1( · ), v2( · , v1( · ))) and defines in this way v̂3( · , v1( · ), v2( · , v1( · ))). The second
player uses this optimal feedback in his own objective function. So his objective function
becomes

J2(x, v1( · ), v2( · ; v1( · )), v̂3( · , v1( · ), v2( · , v1( · )))),
which he minimizes in v2( · ; v1( · )). In this way, he defines his optimal feedback v̂2( · ; v1( · )).
The objective function of the first player becomes

J1(x, v1( · ), v̂2( · ; v1( · )), v̂3( · , v1( · ), v̂2( · , v1( · )))),
which he minimizes to get the optimal feedback v̂1( · ).

3 Systems of Partial Differential Equations

3.1 Lagrangians and Hamiltonians

Let pν ∈ R
n. The Lagrangians are defined by the formulas

Lν(x, pν , v) = fν(x) + lν(x, v) + pν

(
g(x) +

N∑
μ=1

Aμ(x)vμ

)
. (3.1)
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The Hamiltonians are defined by replacing the argument v by a function V̂ (x, p), where

p = (p1, · · · , pN).

This function will depend on the structure of the game. The Hamiltonians are next defined
by the formulas

Hν(x, p) = Lν(x, pν , V̂ (x, p)). (3.2)

3.2 Bellman system

With the Hamiltonians constructed by (3.2), we define the Bellman system by

−Δuν + λuν = Hν(x, Du), x ∈ O (3.3)

with Neumann boundary conditions. Clearly, u stands for the vector u1, · · · , uN and

Du = Du1, · · · , DuN .

If we consider the feedback vector

v̂(x) = V̂ (x, Du(x)),

then the fundamental property which is desired is

uν(x) = J(x; v̂( · )). (3.4)

This formula connects the value function of player ν with the solution to the νth equation
(3.3). When the solution is sufficiently smooth, like W 2,q(O) for q sufficiently large, then the
proof is relatively easy and follows the so-called verification property. Regularity is used first
to solve the state equation in a convenient way, and then to apply Itô’s formula to the process
uν(y(t)). This is only possible for smooth uν . We will not reproduce the argument which is
standard. However, this stresses the importance of regularity theory for (3.3). Unlike the
situation of scalar equations, in which regularity can be waived by techniques like viscosity
solutions, this does not carry over for systems.

4 Main Result

4.1 Statement of the result

In this section, we make assumptions on the Hamiltonians Hν(x, p) which will check later
on with the Lagrangians. We assume that

−K|p|2 − K ≤ Hν(x, p) ≤ pν · Fν(x, p) + K,

|Fν(x, p)| ≤ K|B(x, p)| + K,
(4.1)

where K is a generic positive constant and B(x, p) is a vector in some Euclidean space satisfying

|B(x, p)| ≤ K(|p| + 1). (4.2)

Also there exists a vector in R
n, G(x, p), such that∑

ν

Hν(x, p) ≥ α|B(x, p)|2 + G(x, p) ·
∑

ν

pν − K (4.3)



Nash and Stackelberg Differential Games 321

with

|G(x, p)| ≤ K(|B(x, p)| + 1). (4.4)

Note that since only the norm |B(x, p)| plays a role, the space of the vector B(x, p) is
indifferent. From the previous inequalities, we will deduce an important property. We first
have, from the 2nd and 3rd inequalities in (4.1),

Hν(x, p) ≤ ε|pν |2 + Cε(|B(x, p)|2 + 1),

where ε can be taken arbitrarily small and Cε can be large. On the other hand,

Hν(x, p) =
∑

μ

Hμ(x, p) −
∑
μ�=ν

Hμ(x, p)

≥ α|B(x, p)|2 − K(|B(x, p)| + 1)
∣∣∣∑

ν

pν

∣∣∣ − K − ε|p|2 − Cε(|B(x, p)|2 + 1)

≥ −ε|p|2 − Cε(|B(x, p)|2 + 1) − C
∣∣∣ ∑

ν

pν

∣∣∣2.
Collecting results, we can assert that

|Hν(x, p)| ≤ ε|p|2 + Cε(|B(x, p)|2 + 1) + C
∣∣∣ ∑

ν

pν

∣∣∣2. (4.5)

In this inequality, the constant C does not depend on ε.

As we shall see, these assumptions are satisfied for a large class of Hamiltonians derived
from differential games.

We state the following theorem.

Theorem 4.1 We assume (4.1), (4.3)–(4.4) and n = 2. Then there exists a solution to
(3.3) which belongs to W 2,q(O), ∀q > 0.

4.2 Verification of assumptions

We consider Hamiltonians defined by Lagrangians, as in (3.1)–(3.2). We assume∑
ν

lν(x, v) ≥ α|v|2 − K, α > 0, (4.6)

|lν(x, v)| ≤ K|v|2 + K. (4.7)

We also assume that the feedback strategies V̂ (x, p) satisfy

Lν(x, pν , V̂ (x, p)) ≤ pν · Fν(x, p) + K, (4.8)

|̂V (x, p)| ≤ K|p|+ K, (4.9)

|Fν(x, p)| ≤ K|p|+ K. (4.10)

Then the assumptions (4.1) and (4.3)–(4.4) are satisfied with

B(x, p) = V̂ (x, p), G(x, p) =
∑

μ

Aμ(x)V̂μ(x, p) + g(x).
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5 Proof of the Main Result

5.1 Approximation

We start with an approximation scheme for (3.3). We define

Hδ
ν (x, p) =

Hν(x, p)
1 + δ|p|2 .

These approximate Hamiltonians are bounded. So we can solve

−Δuδ
ν + λuδ

ν = Hδ
ν (x, Duδ), x ∈ O (5.1)

with Neumann boundary conditions. The solution is smooth. We begin with standard max-
imum principle arguments. Consider a point of maximum of uδ

ν , written as x∗. This point is
interior because of the Neumann boundary condition. From the second estimate (4.1), by using
Duδ

ν(x∗) = 0, we deduce immediately λuδ
ν(x∗) ≤ K. Hence

λuδ
ν(x) ≤ K, ∀x. (5.2)

Using (4.3), we next have

−Δ
∑

ν

uδ
ν + λ

∑
ν

uδ
ν ≥

G(x, Duδ) · ∑
ν

Duδ
ν

1 + δ|Duδ|2 − K.

If we consider a point of minimum of
∑
ν

uδ
ν, it is also an interior point, and hence

∑
ν

Duδ
ν(x∗)

= 0. Therefore, λ
∑
ν

uδ
ν(x∗) ≥ −K. Hence,

λ
∑

ν

uδ
ν(x) ≥ −K, ∀x. (5.3)

Combining (5.2) and (5.3), we obtain easily the estimate

sup
x

|uδ
ν(x)| ≤ K. (5.4)

5.2 Estimates in Sobolev spaces

Let us use the following notation, by dropping the index δ to simplify notation,

φ(x) =
1

1 + δ|Duδ(x)|2 and w(x) =
∑

ν

uδ
ν(x).

We consider a function Φ0(x) ≥ 0 such that∫
O

|DΦ0|2
Φ0

dx +
∫
O
|Φ0|2dx = C(Φ0) < ∞. (5.5)

We have
−Δw + λw = ϕ

∑
ν

Hν(x, Du).
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We test this equation with Φ0 exp(−σw). Note that exp(−σw) is bounded. We obtain

− σ

∫
exp(−σw)|Dw|2Φ0dx +

∫
exp(−σw) Dw · DΦ0dx + λ

∫
wΦ0exp(−σw) dx

≥
∫

ϕΦ0exp(−σw)[α|B(Du)|2 + G(Du) · Dw − K]dx

≥
∫

ϕΦ0 exp(−σw)[α|B(Du)|2 − K|B(Du)||Dw| − K|Dw| − K]dx.

Hence, we have

α

∫
ϕΦ0 exp(−σw)|B(Du)|2dx + σ

∫
exp(−σw) |Dw|2Φ0dx

≤ K

∫
ϕΦ0 exp(−σw)|B(Du)||Dw|dx + K

∫
ϕΦ0 exp(−σw)|Dw|dx

+
∫

(Kϕ + λw)Φ0 exp(−σw)dx +
∫

exp(−σw) Dw · DΦ0dx

By taking σ sufficiently large and independent of Φ0, we deduce∫
ϕΦ0 exp(−σw)|B(Du)|2dx +

∫
exp(−σw) |Dw|2Φ0dx

≤ K

∫
Φ0dx + K

∣∣∣ ∫ exp(−σw) Dw · DΦ0dx
∣∣∣,

where the constant K depends on the L∞ norm of w, but not on Φ0. It follows, using the fact
that exp(−σw) is bounded below and above∫

ϕΦ0|B(Du)|2dx +
∫

|Dw|2Φ0dx ≤ c0C(Φ0) + c1. (5.6)

We next proceed by testing the νth equation with uνΦ0. We obtain∫
|Duν |2Φ0dx +

∫
uνDuν · DΦ0dx =

∫
ϕHν(x, Du)uνΦ0dx. (5.7)

Summing up, we get∫
|Du|2Φ0dx +

∑
ν

∫
uνDuν · DΦ0dx =

∑
ν

∫
ϕHν(x, Du)uνΦ0dx.

Using (4.5), we obtain

1
2

∫
|Du|2Φ0dx ≤ C

∫ |DΦ0|2
Φ0

dx + ε

∫
|Du|2Φ0dx + Cε

∫
ϕΦ0|B(Du)|2dx

+ Cε

∫
Φ0dx + C

∫
|Dw|2Φ0dx.

Choosing ε < 1
2 , we derive from (5.6) the inequality∫

|Du|2Φ0dx ≤ c0C(Φ0) + c1. (5.8)
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We can apply this estimate first with Φ0 = 1 and obtain∫
|Du|2dx ≤ C. (5.9)

A less trivial and important estimate is obtained as follows. Let τ(ρ) be a C1 function on
R

+, such that

0 ≤ τ(ρ) ≤ 1, τ(ρ) = 0 if ρ ≥ 1
2
,

τ ′2(ρ)
τ(ρ)

≤ C. (5.10)

For instance,

τ(ρ) =
(1

2
− ρ

)+2

satisfies the conditions. Then we take any point x0 ∈ O and set

Φ0(x) = τ(|x − x0|)| log |x − x0||k, 0 < k < 1.

From the condition on τ , we can restrict x so that |x−x0| < 1
2 . So the only singularity is when

x = x0. It is easy to check that condition (5.5) is satisfied. Therefore, we get∫
|Du|2τ(|x − x0|)| log |x − x0||kdx ≤ C. (5.11)

Note that the constant does not depend on x0.

5.3 Small Dirichlet growth and Cacciopoli inequality

We take R ≤ R0 < 1
2 . Define the function

τR(ρ) =

⎧⎪⎨⎪⎩
1, if 0 ≤ ρ ≤ R,

(aρ + b)
(1

2
− ρ

)+2

, if ρ ≥ R.
(5.12)

We adjust the constants a, b, so that

τR(R) = 1, τ ′
R(R) = 0.

We get

a =
2(

1
2 − R

)3 , aR + b =
1(

1
2 − R

)2 .

We have, for R ≤ ρ,

τ ′
R(ρ) = −3a

(1
2
− ρ

)+

(ρ − R) ≤ 0,

and thus 0 ≤ τR(ρ) ≤ 1. Moreover, for R ≤ ρ ≤ 1
2 , one has

(τ ′
R(ρ))2

τR(ρ)
= 18

(ρ − R)2(
1
2 − R

)3(
ρ − R + 1

2

(
1
2 − R

)) ≤ 36(
1
2 − R

)2 .

If we restrict R ≤ R0 < 1
2 , we get

(τ ′
R(ρ))2

τR(ρ)
≤ 36(

1
2 − R0

)2 .
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We can use the function τR(|x− x0|) in (5.11), and get a constant independent of R and x0. In
particular, we obtain ∫

O∩BR(x0)

|Du|2| log |x − x0||kdx ≤ C, (5.13)

where BR(x0) represents the ball of radius R and centered in x0. We recall that k < 1, and
R ≤ R0 < 1

2 . The constant C depends on R0, but not on R or x0. Since

|x − x0| ≤ R ≤ 1,

we have
| log |x − x0|| ≥ | log R|.

Therefore, ∫
O∩BR(x0)

|Du|2dx ≤ C

| log R|k .

We deduce that ∫
O∩BR(x0)

|Du|2dx ≤ ε, if R ≤ R(ε) (5.14)

with R(ε) = exp
(− (

C
ε

) 1
k
)
. We call this property the small Dirichlet growth. We can, without

loss of generality, assume that the condition R(ε) ≤ R0 is satisfied.
We next state the Cacciopoli inequality. Let τ be in L∞ ∩ H1(O).
We can test the νth equation with (uν − cν)τ2, where cν are constants to be defined later.

Using simply the quadratic growth condition of the Hamiltonian Hν and standard inequalities,
we obtain easily∫

|Du|2τ2dx ≤ C0

∫
|u − c|2|Dτ |2dx + K

∫
|u − c||Du|2τ2dx + K

∫
τ2dx, (5.15)

where C0, K are constants. This is Cacciopoli inequality.

5.4 Use of Poincaré inequality

We will derive from Cacciopoli inequality the following inequality:∫
B R

2
(x0)∩O

|Du|2dx ≤ C0

1 + C0

∫
B2(m+1)R(x0)∩O

|Du|2dx

+ Kosc[u](B2(m+1)R(x0) ∩ O)
∫

B2(m+1)R(x0)∩O
|Du|2dx

+ KmRn. (5.16)

In this relation, x0 is any point of O, R is arbitrary, and m is a fixed integer depending only
on the domain and the dimension n (the result does not require n = 2). Moreover,

osc[u](B2(m+1)R(x0) ∩ O) =

√∑
ν

(
sup

B2(m+1)R(x0)∩O
uν − inf

B2(m+1)R(x0)∩O
uν

)2

.

The constant Km depends on m. The constants K and C0 do not.
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The easy case is when BR(x0) ⊂ O. We apply (5.15) with

τ(x) = �R(|x − x0|)
and

�R(ρ) =

⎧⎨⎩1, if ρ ≤ R

2
,

0, if ρ ≥ R

with �R continuously differentiable, |�′
R(ρ)| ≤ C

R . We obtain∫
B R

2
(x0)

|Du|2dx ≤ C

∫
BR(x0)−B R

2
(x0)

|u − c|2
R2

dx + K

∫
BR(x0)

|u − c||Du|2dx + KRn.

We then take
c =

1
|BR(x0) − BR

2
(x0)|

∫
BR(x0)−B R

2
(x0)

udx.

We can then use Poincaré inequality to obtain∫
B R

2
(x0)

|Du|2dx ≤ C

∫
BR(x0)−B R

2
(x0)

|Du|2dx + K

∫
BR(x0)

|u − c||Du|2dx + KRn.

Noting that ∫
BR(x0)

|u − c||Du|2dx ≤ osc[u](BR(x0))
∫

BR(x0)

|Du|2dx

and filling the hole, we obtain (5.16) with m = 0.

When BR(x0) ∩ Oc 
= ∅, the situation is more delicate and we need bigger balls. Let
x̃0 ∈ BR(x0) ∩ Γ, where Γ = ∂O. We will use the sphere property (which holds for smooth
domains)

|B2mR(x̃0) ∩O| ≥ c0(2mR)n, (5.17)

where c0 is a fixed constant, not dependent on the point x̃0 or the radius of the ball 2mR.

Therefore, if we consider the domain

AR = B2mR(x̃0) − B2R(x̃0),

then
AR ∩O =B2mR(x̃0) ∩ O − B2R(x̃0) ∩ O

and

|AR ∩ O| ≥ |B2mR(x̃0) ∩ O| − |B2R(x̃0) ∩ O| ≥ c0(2mR)n − |B2R(x̃0)| ≥ c0(2mR)n−ωn(2R)n,

where ωn represents the volume of the unit ball. We deduce that for m large enough, c0m
n −

ωn > 0, one has

|AR ∩ O| ≥ a0R
n. (5.18)

We next choose numbers cν , such that

|{x ∈ AR ∩O | uν(x) − cν ≥ 0}| ≥ 1
2
|AR ∩O|,

|{x ∈ AR ∩O | uν(x) − cν ≤ 0}| ≥ 1
2
|AR ∩O|.
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Such numbers exist. Then, from (5.18), we can derive a Poincaré inequality, by using∫
AR∩O

(uν(x) − cν)2dx =
∫

AR∩O
[(uν(x) − cν)+]2dx +

∫
AR∩O

[(uν(x) − cν)−]2dx

≤ c0R
2

∫
AR∩O

|Duν |2dx.

Therefore, for this choice of c, we can assert that∫
AR∩O

|u(x) − c|2
R2

dx ≤ C

∫
AR∩O

|Du|2dx. (5.19)

We then apply (5.15) with
τ(x) = �R(|x − x̃0|)

where

�R(ρ) =
{

1, if ρ ≤ 2R,
0, if ρ ≥ 2mR.

Using Poincaré inequality (5.19), we can write∫
B2R(x̃0)∩O

|Du|2dx ≤ C

∫
AR∩O

|Du|2dx + K

∫
B2mR(x̃0)∩O

|u − c||Du|2dx + KmRn.

Next we use

BR
2
(x0) ⊂ B2R(x̃0), B2mR(x̃0) ⊂ B(2m+2)R(x0), AR ⊂ B(2m+2)R(x0) − BR

2
(x0).

Therefore, one has∫
B R

2
(x0)∩O

|Du|2dx ≤ C0

∫
(B(2m+2)R(x0)−B R

2
(x0))∩O

|Du|2dx

+ K

∫
B(2m+2)R(x0)∩O

|u − c||Du|2dx + KmRn.

In the integral involving |u − c|, we can use

|u − c| ≤ c0osc[u](B2(m+1)R(x0) ∩ O).

It remains to fill the hole to obtain (5.16).

5.5 Morrey norm estimate

Remember that (5.16) applies in fact to uδ which is a smooth function. So we can estimate
the oscillation of u with a Cα-norm, with α arbitrary smaller than 1. We get

osc[u](B2(m+1)R(x0) ∩ O) ≤ KRα‖u‖Cα(O).

We now divide (5.16) by
(

R
2

)−2α. Set

θ =
C0

1 + C0
(4(m + 1))2α.
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We now choose α sufficiently small to have θ < 1. We can then write(R

2

)−2α
∫

B R
2

(x0)∩O
|Du|2dx ≤ θ(2(m + 1)R)−2α

∫
B2(m+1)R(x0)∩O

|Du|2dx

+ KR−α‖u‖Cα(O)

∫
B2(m+1)R(x0)∩O

|Du|2dx

+ KmRn−2α. (5.20)

We can write

R−α

∫
B2(m+1)R(x0)∩O

|Du|2dx

= (2(m + 1))α
(∫

B2(m+1)R(x0)∩O
|Du|2dx

) 1
2
(
(2(m + 1)R)−2α

∫
B2(m+1)R(x0)∩O

|Du|2dx
) 1

2
.

Then, incorporating (2(m+1))α in constant K, we deduce from (5.20), with a slight increase
of θ, keeping it strictly less than 1, and changing R into 2R

R−2α

∫
BR(x0)∩O

|Du|2dx ≤ θ(4(m + 1)R)−2α

∫
B4(m+1)R(x0)∩O

|Du|2dx

+ K‖u‖2
Cα(O)Ψm(x0, R) + Km (5.21)

with

Ψm(x0, R) =
∫

B4(m+1)R(x0)∩O
|Du|2dx.

We apply this inequality with

R =
R0

(4(m + 1))j+1
,

and set

ϕj =
( R0

(4(m + 1))j

)−2α
∫

B R0
(4(m+1))j

(x0)∩O
|Du|2dx.

We obtain
ϕj+1 ≤ θϕj + K‖u‖2

Cα(O)
Ψ(x0, R0) + Km,

where

Ψ(x0, R0) =
∫

BR0(x0)∩O
|Du|2dx.

Therefore,

ϕj ≤ ϕ0

1 − θ
+

KΨ(x0, R0)
1 − θ

‖u‖2
Cα(O)

+
Km

1 − θ
≤ K + KΨ(x0, R0)‖u‖2

Cα(O)
.

Since j is any integer, this inequality implies

sup
x0

R≤R0

R−2α

∫
BR(x0)∩O

|Du|2dx ≤ K + K sup
x0

Ψ(x0, R0)‖u‖2
Cα(O)

. (5.22)
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We now use the condition n = 2. Note that it has not been used before. Consider the
Morrey norm

|‖u‖|2α,O = sup
x0∈O,R

R−2α

∫
BR(x0)∩O

|Du|2dx.

Then one has

‖u‖2
Cα(O)

≤ C|‖u‖|2α,O. (5.23)

Also

|‖u‖|2α,O ≤ sup
x0

R≤R0

R−2α

∫
BR(x0)∩O

|Du|2dx + sup
x0

R≥R0

R−2α

∫
BR(x0)∩O

|Du|2dx

≤ sup
x0

R≤R0

R−2α

∫
BR(x0)∩O

|Du|2dx + KR−2α
0 .

Using this inequality in (5.22), we obtain

sup
x0

R≤R0

R−2α

∫
BR(x0)∩O

|Du|2dx

≤ K + K sup
x0

Ψ(x0, R0)
[

sup
x0

R≤R0

R−2α

∫
BR(x0)∩O

|Du|2dx + KR−2α
0

]
. (5.24)

We now use the small Dirichlet growth property, from which we can assert that

sup
x0

Ψ(x0, R0) → 0, as R0 → 0.

We then fix R0 sufficiently small so that K sup
x0

Ψ(x0, R0) = ε < 1. It follows from (5.24)

that

sup
x0

R≤R0

R−2α

∫
BR(x0)∩O

|Du|2dx ≤ K + εKR−2α
0

1 − ε
.

This provides an a priori bound on sup
x0

R≤R0

R−2α
∫

BR(x0)∩O |Du|2dx, from which we deduce an

a priori bound on the Morrey norm and finally we obtain an a priori bound on Cα(O).

5.6 Convergence and end of proof

From the previous sections, we have obtained the estimates

‖uδ‖H1(O) ≤ C, ‖uδ‖Cα(O) ≤ C.

We can then extract a subsequence which converges weakly in H1(O) and in C0(O) strongly
to u. Since Hδ

ν (x, Duδ) is bounded in L1(O), we deduce from the equation∑
ν

∫
Duδ

ν .(Duδ
ν − Du)dx → 0,

from which the strong convergence in H1(O) follows. We can then deduce, for a new subse-
quence

Hδ
ν (x, Duδ) → Hν(x, Du) a.e.
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For any measurable subset Aε in O, we have∫
Aε

|Hδ
ν (x, Duδ)|dx ≤ K

∫
Aε

|Duδ|2dx + K|Aε|,

and the right-hand side tends to 0 as |Aε| → 0, unifomly in δ. Therefore, the left-hand side has
the same property which implies

Hδ
ν (x, Duδ) → Hν(x, Du) ∈ L1(O).

Therefore, we have obtained a solution to (3.3) in the space H1(O) ∩ Cα(O). To go from
H1(O) ∩ Cα(O) to W 2,q(O) is a standard result (see [4] or [1]).

6 Application to Nash and Stackelberg Games

6.1 Nash games

We assume

lν(x, v) =
1
2
vν · Qν(x)vν + vν ·

∑
μ�=ν

Γνμ(x)vμ, (6.1)

where the matrices Qν(x) are positive definite and bounded, with bounded inverse. The ma-
trices Γνμ(x) are bounded. In the Nash game, the feedbacks are defined as Nash equilibrium of
the Lagrangians

Lν(x, pν , v) = lν(x, v) + pν ·
( ∑

μ

Aμ(x)vμ + g(x)
)
.

So we make the assumption: the matrix Z with

Zνν = Qν , Zνμ = Γνμ, if μ 
= ν (6.2)

is invertible. The feedbacks v̂ν(x, p) are defined by the system

Qν(x)v̂ν +
∑
μ�=ν

Γνμ(x)v̂μ + A∗
ν(x)pν = 0. (6.3)

We can write the Hamiltonians in the form

Hν(x, p) = −1
2
v̂ν · Qν(x)v̂ν + pν ·

( ∑
μ

Aμ(x)v̂μ + g(x)
)

+ fν(x). (6.4)

The assumptions (4.8)–(4.10) are satisfied with

Fν(x, p) =
∑

μ

Aμ(x)v̂μ(x, p) + g(x).

Example 6.1 Cyclic non-market interaction
We take

Qν = I and Γνμ =

{
θ, if μ = ν + 1,

0, if μ 
= ν + 1.
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It is convenient to consider the index N + ν with the meaning N + ν = ν. It is an easy
exercise to check that the matrix (6.2) is invertible if |θ| 
= 1 and one has the explicit formulas

v̂ν(x, p) = − 1
1 − (−θ)N

N−1∑
j=0

(−θ)jA∗
ν+j(x)pν+j . (6.5)

We next have ∑
ν

lν(x, v) =
1
2
|v|2 + θ

∑
ν

vν · vν+1 ≥
(1

2
− |θ|

)
|v|2.

Therefore, the coercivity assumption (4.6) is satified if |θ| < 1
2 . We can state the following

proposition.

Proposition 6.1 The Nash differential game of Example 6.1, i.e., cyclic non-market inter-
action, has a saddle point if |θ| < 1

2 and n = 2.

Example 6.2 Symmetric interaction
We consider the situation studied in the book [1], namely we take

Qν = I, Γνμ =
{

θ, if μ 
= ν,
0, if μ = ν.

(6.6)

Then the matrix (6.2) is invertible provided that θ 
= 1, θ 
= − 1
N−1 . We have the formulas

v̂ν(x, p) =
θ
∑
μ

A∗
μ(x)pμ

(1 − θ)(1 + (N − 1)θ)
− A∗

ν(x)pν

1 − θ
. (6.7)

We next check the coercivity assumption∑
ν

lν(x, v) =
1
2
|v|2 + θ

∑
ν

vν · vν

with vν =
∑

μ�=ν

vμ. Therefore

∑
ν

lν(x, v) =
(1

2
− θ

)
|v|2 + θ

∣∣∣ ∑
ν

vν

∣∣∣2 = |v|2
[1
2
− θ + θ

∣∣∣ ∑
ν

ξν

∣∣∣2] (6.8)

with ξν = vν

|v| . Note that
∑
ν
|ξν |2 = 1. We then use the properties (easy to check)

min
|ξ|=1

∣∣∣∑
ν

ξν

∣∣∣2 = 0, (6.9)

max
|ξ|=1

∣∣∣∑
ν

ξν

∣∣∣2 = N. (6.10)

We deduce that
if θ ≥ 0,

1
2
− θ + θ

∣∣∣∑
ν

ξν

∣∣∣2 ≥ 1
2
− θ.

To get coercivity when θ ≥ 0, we need to have θ < 1
2 . For θ < 0, it follows from (6.10) that

if θ < 0,
1
2
− θ + θ

∣∣∣ ∑
ν

ξν

∣∣∣2 ≥ 1
2

+ θ(N − 1),
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and to get coercivity we need to have θ > − 1
2(N−1) . Therefore we can state the next proposition.

Proposition 6.2 The Nash differential game of Example 6.2, i.e., symmetric interaction,
has a saddle point if − 1

2(N−1) < θ < 1
2 and n = 2.

Remark 6.1 In the book above, it is shown that we can have a saddle point for more values
of θ and n in general. So Proposition 6.2 is not optimal. However, it is the best one within the
framework of the techniques of this article, in which we require the coercivity condition, that
is a strong condition.

6.2 Stackelberg games

We assume (symmetric interaction)

lν(x, v) =
1
2
|v|2 + θvν · vν . (6.11)

So the coercivity condition is the same as for Nash games. Therefore − 1
2(N−1) < θ < 1

2 . To
define the strategies, we have to solve Stackelberg hierarchical minimization for the Lagrangians.
The calculations turn out to be very messy. We have performed them for N = 3. We have to
define functions v̂3(x; v1, v2; p), v̂2(x; v1; p), v̂1(x, p). We get successively

v̂3 = −θ(v1 + v2) − A∗
3p3, (6.12)

v̂2 = −θ(1 − θ)
1 − 2θ2

v1 +
θA∗

3p3 − (A∗
2 − θA∗

3)p2

1 − 2θ2
, (6.13)

v̂1 =
1 − 2θ2

1 + 2θ4 + 4θ3 − 6θ2

{
−

(
A∗

1 −
θ(1 − θ)
1 − 2θ2

A∗
2 −

θ(1 − θ − θ2)
1 − 2θ2

A∗
3

)
p1

+
θ(1 − θ)
1 − 2θ2

(A∗
2 − θA∗

3)p2 +
θ(1 − θ − θ2)

1 − 2θ2
A∗

3p3

}
. (6.14)

We can check that for θ in the interval (− 1
4 , 1

2 ) the assumptions (4.8)–(4.10) are satisfied.
We can state the proposition as follows.

Proposition 6.3 The Stackelberg differential game with (6.11), i.e., symmetric interaction
and N = 3, n = 2, has a solution if θ ∈ (− 1

4 , 1
2 ).
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