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1 Introduction

We consider the Cauchy problem for the following one dimensional quasilinear hyperbolic
system ⎧⎨⎩

∂u

∂t
+A(u)

∂u

∂x
= F (u), x ∈ R, t ≥ 0, (1.1)

t = 0 : u = u0(x), x ∈ R, (1.2)

where u = (u1, · · · , un)T is the unknown vector function of (t, x), A(u) ∈ C3 is an n × n

matrix and F (u) = (F1(u), · · · , Fn(u))T ∈ C3. By hyperbolicity, the coefficient matrix A(u)
has n real eigenvalues λ1(u), · · · , λn(u) and a complete set of left (resp., right) eigenvectors
lk(u) = (lk1(u), · · · , lkn(u)) (resp., rk(u) = (r1k(u), · · · , rnk(u))T) (k = 1, · · · , n) with assump-
tion λk(u), lk(u), rk(u) ∈ C3 (k = 1, · · · , n). Without loss of generality, we assume

F (0) = 0 (1.3)

and

lk(u)rk(u) ≡ δkk for any small |u|, ∀ 1 ≤ k, k ≤ n, (1.4)

where δkk is the Kronecker symbol. The initial data u0(x) is supposed to be suitably smooth
with

θ
def.= ‖u0‖H2 ≤ θ0, (1.5)
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where θ0 > 0 is a small constant to be determined.

In this paper, we focus on the H2 classical solution u = u(t, x) to Cauchy problem (1.1)–
(1.2), whose local well-posedness was well discussed in [9, 12]. Generally speaking, this local
H2 classical solution would blow up in a finite time even for small and decaying initial data
(see [6, 12]). Weak linear degeneracy and dissipative inhomogeneous terms are two well-known
structures that could lead to the global existence of classical solution for small and decaying
smooth initial data.

There are mainly two kinds of results on the dissipative system. Hsiao, Li [4], Li [6], and Li,
Qin [7] used the method of characteristics to prove the global existence of C1 classical solution
to the Cauchy problem for strictly dissipative quasilinear hyperbolic systems with small C1

initial data. On the other hand, Hanouzet and Natalini [3] applied the energy method to the
hyperbolic conservation laws, and got the global H2 classical solution for small H2 initial data
under Shizuta-Kawashima condition and the dissipative entropy condition. Then Zhou [19]
gave a different proof with slightly different hypotheses. The corresponding case of several
space variables and the asymptotic behavior were studied in [15] and [1–2], respectively.

For the homogeneous quasilinear hyperbolic systems with weakly linearly degenerate char-
acteristics, a series of results on global C1 classical solutions for small and decaying initial data
were given in [6, 8, 10, 18, 20].

Besides, Zeng [16–17] discussed the global classical solution to one dimensional gas dynamics
in thermal nonequilibrium. This system is partially dissipative in which all the characteristics,
except a linearly degenerate one, are involved in the dissipation by Shizuta-Kawashima condi-
tion.

By all results mentioned above, it is natural to raise the following conjecture that for a
quasilinear hyperbolic system, if a part of the system is involved in the dissipation, while
the other part possesses weakly linearly degenerate characteristics, moreover, some suitable
conditions are imposed for interactions between these two parts, then the corresponding Cauchy
problem should admit a global classical solution for small and decaying smooth initial data.
The earliest version of this conjecture occurs in [13, 15]. Mascia and Natalini [13] also gave
a series of discussions on the systems of this kind. Then Liu and Qu [11] proved that for
systems one part of whose characteristics is involved in the dissipation in the sense of strict row
diagonal dominance, the other part of whose characteristics is weakly linearly degenerate, and
that moreover, the interactions of these two parts are restricted by some suitable conditions, the
corresponding Cauchy problem admits a unique global classical solution for small and decaying
initial data. In [11], it also provided the pointwise decay estimate of the solution and gave a
finite-time singularity for some examples with worse interactions.

We continue the study on this kind of partially dissipative quasilinear hyperbolic systems,
but to be different from [11], we focus on the case that the partial dissipation is in the sense
of positive definiteness other than diagonal dominance, and the number of weakly linearly
degenerate characteristics is only one.

The main result of this paper is presented in the rest part of this section, and then proved
in Sections 2–3, in which a new set of wave decomposition formulas are deduced and analyzed
in Subsection 2.3, that plays an important role in the proof. Finally, we give some remarks in
Section 4.
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Now, let us give the detailed description of our main result. As mentioned before, for Cauchy
problem (1.1)–(1.2), we study the case that one characteristic is weakly linearly degenerate.
Without loss of generality, let it be the nth characteristic λn(u), namely, we have

λn(u(n)(s)) ≡ λn(0) for any small |s|, (1.6)

where u = u(k)(s) is the kth characteristic trajectory passing through the origin,

du(k)(s)
ds

= rk(u(k)(s)), u(k)(0) = 0, k = 1, · · · , n.

Remark 1.1 The weak linear degeneracy (1.6) is weaker than the linear degeneracy pro-
posed by Lax,

∇λn(u)rn(u) ≡ 0.

For more details of the weak linear degeneracy, one may refer to [6, 8].

For other n− 1 characteristics, we assume the following dissipation condition: there exists
a constant δ0 > 0, such that

−
n−1∑
i,p=1

ξiGip(0)ξp ≥ δ0

n−1∑
i=1

|ξi|2, ∀ ξ = (ξ1, · · · , ξn−1)T ∈ R
n−1 (1.7)

with

G(u) = L(u)∇F (u)R(u), (1.8)

where

L(u) =

⎛⎜⎝l1(u)
...

ln(u)

⎞⎟⎠ and R(u) = (r1(u), · · · , rn(u)) (1.9)

are the matrices composed of left and right eigenvectors, respectively. By (1.4), we obviously
have

L(u)R(u) ≡ I for any small |u|.
Moreover, we need the following condition to restrict interactions between these two parts

of characteristics:

F (u(n)(s)) ≡ 0 for any small |s|. (1.10)

Remark 1.2 Obviously, (1.10) implies (1.3).

Under these assumptions, we have our main result.

Theorem 1.1 Under hypotheses (1.4), (1.6)–(1.7) and (1.10), there exists a constant θ0 > 0
so small that for any given θ with 0 ≤ θ ≤ θ0, Cauchy problem (1.1)–(1.2) admits a unique
global H2 classical solution u = u(t, x) on t ≥ 0 for any initial data u0(x) satisfying (1.5).
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2 Preliminaries

In this section, we give some preliminaries for the proof of Theorem 1.1. First, the normalized
coordinates and the equivalent theorem of Theorem 1.1 in normalized coordinates are introduced
in Subsection 2.1. Then, the formulas of wave decomposition are reduced to a suitable form in
Subsection 2.2. Finally, a new set of wave decomposition formulas is presented and analyzed
in Subsection 2.3 for high-order derivatives of the solution.

2.1 The equivalent form of Theorem 1.1 in normalized coordinates

As in [6, 8, 10], we introduce (generalized) normalized coordinates in u-space. Denote
ũ = ũ(u) with ũ(0) = 0 as the corresponding C4-diffeomorphism, and

J(u) =
∂ũ

∂u
(2.1)

as its Jacobi matrix. By the properties of normalized coordinates given in [6, 8], we have

J−1(u(ũ))|ũ=0 = R(0) (2.2)

and

(Jrk)(u(sẽk)) ‖ ẽk for any small |s|, ∀1 ≤ k ≤ n, (2.3)

where ẽk stands for the kth unit vector in the normalized coordinates ũ.
As in [11], we list the equivalent forms of the formulas given in Section 1 in normalized

coordinates ũ. First, it is easy to see that the original system (1.1) can be rewritten as

∂ũ

∂t
+ Ã(ũ)

∂ũ

∂x
= F̃ (ũ), (2.4)

where

Ã(ũ) = J(u(ũ))A(u(ũ))J−1(u(ũ)), (2.5)

F̃ (ũ) = J(u(ũ))F (u(ũ)), (2.6)

while, the eigenvalues and matrices of eigenvectors of Ã(ũ) are, respectively,

λ̃k(ũ) = λk(u(ũ)), ∀ 1 ≤ k ≤ n, (2.7)

R̃(ũ) = J(u(ũ))R(u(ũ)), (2.8)

L̃(ũ) = L(u(ũ))J−1(u(ũ)). (2.9)

Thus, (1.4) and (1.3) can be equivalently rewritten as

l̃k(ũ)r̃k(ũ) ≡ δkk for any small |ũ| , ∀1 ≤ k, k ≤ n, (2.10)

F̃ (0) = 0. (2.11)

Moreover, noting (2.2), we have

L̃(0) = R̃(0) = I. (2.12)
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For

G̃(ũ) = L̃(ũ)∇ũF̃ (ũ)R̃(ũ), (2.13)

by (2.2), (2.6) and (2.11)–(2.12), we have

G̃(0) = ∇ũF̃ (0) = L(0)∇uF (0)R(0) = G(0). (2.14)

Then (1.7) can be equivalently rewritten as

−
n−1∑
i,p=1

ξiG̃ip(0)ξp ≥ δ0

n−1∑
i=1

|ξi|2, ∀ ξ = (ξ1, · · · , ξn−1)T ∈ R
n−1. (2.15)

By (2.3) and (2.8), without loss of generality, we can assume

r̃k(sẽk) ≡ ẽk for any small |s|, ∀ 1 ≤ k ≤ n. (2.16)

Thus, we have
ũ(u(k)(s)) = sẽk for any small |s|, ∀ 1 ≤ k ≤ n.

So, noting (2.6)–(2.7), (1.6) and (1.10) are equivalent to

λ̃n(ũnẽn) ≡ λ̃n(0) for any small |s|, (2.17)

F̃ (ũnẽn) ≡ 0 for any small |s|. (2.18)

Moreover, the initial condition (1.2) can be rewritten as

t = 0 : ũ = ũ0(x), x ∈ R, (2.19)

where ũ0(x) = ũ(u0(x)) and

θ̃
def.= ‖ũ0‖H2 ≤ θ̃0, (2.20)

and furthermore, for suitably small θ̃0, we have K−1
0 θ0 ≤ θ̃0 ≤ K0θ0 for a constant K0 ≥ 1.

Through the above analysis, we get the following equivalent form of Theorem 1.1.

Theorem 2.1 In normalized coordinates, under hypotheses (2.10), (2.15) and (2.17)–(2.18),
there exists a constant θ̃0 > 0 so small that for any given θ̃ with 0 ≤ θ̃ ≤ θ̃0 and any initial data
ũ0(x) satisfying (2.20), Cauchy problem (2.4) and (2.19) admits a unique global H2 classical
solution ũ = ũ(t, x) on t ≥ 0.

2.2 Formulas of wave decomposition and their reduction

In this subsection, we introduce the formulas of wave decomposition and reduce them to a
desired form. For convenience, we omit the sign “˜” in Subsections 2.2–2.3 and Section 3 for
all the functions in normalized coordinates.

As in [5–6, 8, 10], we introduce the formulas of wave decomposition. Setting

wk = lk(u)
∂u

∂x
, k = 1, · · · , n, (2.21)
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by (2.10), we have

∂u

∂x
=

n∑
r=1

wrrr(u). (2.22)

The corresponding formulas of wave decomposition are

∂uk

∂t
+
∂(λk(u)uk)

∂x
=

n∑
r=1

Bkr(u)wr +
n∑

r=1

Ξkr(u)ukwr + Fk(u), k = 1, · · · , n, (2.23)

∂uk

∂t
+ λk(u)

∂uk

∂x
=

n∑
r=1

Bkr(u)wr + Fk(u), k = 1, · · · , n, (2.24)

∂wk

∂t
+
∂(λk(u)wk)

∂x
=

∑
1≤r,l≤n

r �=l

Γkrl(u)wrwl +
n∑

r=1

Kkr(u)wr, k = 1, · · · , n, (2.25)

∂wk

∂t
+ λk(u)

∂wk

∂x
=

∑
1≤r,l≤n

r �=l

Γkrl(u)wrwl −
n∑

r=1

Ξkr(u)wkwr

+
n∑

r=1

Kkr(u)wr, k = 1, · · · , n, (2.26)

where

Bkr(u) = (λk(u) − λr(u))rkr(u) ∈ C3, k, r = 1, · · · , n, (2.27)

Ξkr(u) = ∇λk(u)rr(u) ∈ C2, k, r = 1, · · · , n, (2.28)

Γkrl(u) = (λr(u) − λl(u))lk(u)∇rl(u)rr(u) ∈ C2, k, r, l = 1, · · · , n, (2.29)

Kkr(u) = Gkr(u) − lk(u)∇rr(u)F (u) ∈ C2, k, r = 1, · · · , n. (2.30)

To reduce these formulas, we need the following lemmas.

Lemma 2.1 Suppose that a function a(u) ∈ Cm+1 (m ∈ N) satisfies

a(ukek) ≡ 0 for any small |uk|
for an index k (1 ≤ k ≤ n). Then there exist functions bk(u) ∈ Cm (k = 1, · · · , n), such that

a(u) =
∑

1≤k≤n

k �=k

bk(u)uk for any small |u|.

Proof It is a direct consequence of Hadamard’s formula.

Lemma 2.2 Suppose that a function a(u) ∈ Cm+2 (m ∈ N) satisfies

a(unen) ≡ 0 for any small |un|. (2.31)

Then there exist functions brl(u) ∈ Cm (r, l = 1, · · · , n), such that

a(u) =
n−1∑
p=1

∂a

∂up
(0)up +

∑
1≤r,l≤n

(r,l) �=(n,n)

brl(u)urul for any small |u|.
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Proof Taking Taylor expansion to a(u) at the point (unen), we get that there exist functions
bpp(u) ∈ Cm (p, p = 1, · · · , n− 1), such that

a(u) = a(unen) +
n−1∑
p=1

∂a

∂up
(unen)up +

n−1∑
p,p=1

bpp(u)upup.

Then the Taylor expansion to ∂upa(unen) at the point 0 gives

∂a

∂up
(unen) =

∂a

∂up
(0) + bpn(u)un, ∀ 1 ≤ p ≤ n− 1

with some functions bpn(u) ∈ Cm (p = 1, · · · , n − 1). Noting (2.31), these two formulas lead
directly to the conclusion of the lemma.

Remark 2.1 Lemma 2.2 is similar to [11, Lemma 3.2]. However, by a different proof, we
only need a weaker hypothesis on the regularity of function a(u).

As in [11], we reduce the coefficients in the formulas (2.23)–(2.26) by means of the above
lemmas. Our aims of the reduction are as follows:

(1) The coefficients of the first order terms are all constants.
(2) No second order term has the index pair (n, n), i.e., the index pair of every second order

term is of the form (p, p), (p, n) or (n, p) for p, p = 1, · · · , n− 1.
In what follows in this subsection and in Subsection 2.3, we always take |u| to be suitably

small.
First, by (2.16) and (2.27), we have

Bkr(urer) = (λk(urer) − λr(urer)) · δkr ≡ 0, ∀ 1 ≤ k, r ≤ n.

Then by Lemma 2.1, there exist functions ψkrl(u) ∈ C2 (k, r, l = 1, · · · , n), such that

Bkr(u)wr =
∑

1≤l≤n
l �=r

ψkrl(u)ulwr, ∀ 1 ≤ k, r ≤ n. (2.32)

By Lemma 2.2 and noting (2.18), there exist functions Φkrl(u) ∈ C1 (k, r, l = 1, · · · , n), such
that

Fk(u) =
n−1∑
p=1

∂Fk

∂up
(0)up +

∑
1≤r,l≤n

(r,l) �=(n,n)

Φkrl(u)urul, ∀ 1 ≤ k ≤ n.

Then, noting the first equality of (2.14), we have

Fk(u) =
n−1∑
p=1

Gkp(0)up +
∑

1≤r,l≤n
(r,l) �=(n,n)

Φkrl(u)urul, ∀ 1 ≤ k ≤ n. (2.33)

Using (2.32)–(2.33), we can reduce (2.24) into

∂uk

∂t
+ λk(u)

∂uk

∂x
=

∑
1≤r,l≤n

r �=l

ψkrl(u)ulwr +
∑

1≤r,l≤n
(r,l) �=(n,n)

Φkrl(u)urul

+
n−1∑
p=1

Gkp(0)up, k = 1, · · · , n.
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For the convenience of discussion, we split this formula into
∂ui

∂t
+ λi(u)

∂ui

∂x
=

∑
1≤r,l≤n

r �=l

ψirl(u)ulwr +
∑

1≤r,l≤n
(r,l) �=(n,n)

Φirl(u)urul

+
n−1∑
p=1

Gip(0)up, i = 1, · · · , n− 1 (2.34)

and

∂un

∂t
+ λn(u)

∂un

∂x
=

∑
1≤r,l≤n

r �=l

ψnrl(u)ulwr +
∑

1≤r,l≤n
(r,l) �=(n,n)

Φnrl(u)urul +
n−1∑
p=1

Gnp(0)up. (2.35)

Moreover, by (2.16)–(2.17) and (2.28), we have

Ξnn(unen) = ∇λn(unen)rn(unen) =
∂

∂un
λn(unen) = 0.

So by Lemma 2.1, there exist functions ηnp(u) ∈ C1 (p = 1, · · · , n− 1), such that

Ξnn(u) =
n−1∑
p=1

ηnp(u)up. (2.36)

Thus, by using (2.32)–(2.33) and (2.36), (2.23) can be reduced into

∂ui

∂t
+
∂(λi(u)ui)

∂x
=

∑
1≤r,l≤n

r �=l

ψirl(u)ulwr +
n∑

r=1

Ξir(u)uiwr +
∑

1≤r,l≤n

(r,l) �=(n,n)

Φirl(u)urul

+
n−1∑
p=1

Gip(0)up, i = 1, · · · , n− 1 (2.37)

and

∂un

∂t
+
∂(λn(u)un)

∂x
=

∑
1≤r,l≤n

r �=l

ψnrl(u)ulwr +
n−1∑
p=1

Ξnp(u)unwp +
n−1∑
p=1

(unηnp(u))upwn

+
∑

1≤r,l≤n
(r,l) �=(n,n)

Φnrl(u)urul +
n−1∑
p=1

Gnp(0)up. (2.38)

Remark 2.2 In (2.38), we treat unηnp(u) in the third order term ηnp(u)unupwn as a
coefficient. Then this third order term can be regarded as a second order one without the index
pair (n, n). We will use the similar tricks many times in what follows.

By (2.13), (2.16), (2.18) and (2.30), we have

Kkn(unen) = Gkn(unen)

= lk(unen)∇F (unen)rn(unen)

= lk(unen)
∂

∂un
F (unen)

= 0, ∀ 1 ≤ k ≤ n
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and

Kkp(0) = Gkp(0), ∀ 1 ≤ p ≤ n− 1, ∀ 1 ≤ k ≤ n.

So by Lemma 2.1 and Hadamard’s formula, there exist functions ξkrl(u) ∈ C1 (k, r, l =
1, · · · , n), such that

Kkn(u) =
n−1∑
p=1

ξknp(u)up, ∀ 1 ≤ k ≤ n,

Kkp(u) = Gkp(0) +
n∑

l=1

ξkpl(u)ul, ∀ 1 ≤ p ≤ n− 1, ∀ 1 ≤ k ≤ n.

Thus, we have

n∑
r=1

Kkr(u)wr =
∑

1≤r,l≤n
(r,l) �=(n,n)

ξkrl(u)ulwr +
n−1∑
p=1

Gkp(0)wp, ∀ 1 ≤ k ≤ n. (2.39)

Using this equality, we can reduce (2.25) into

∂wi

∂t
+
∂(λi(u)wi)

∂x
=

∑
1≤r,l≤n

r �=l

Γirl(u)wrwl +
∑

1≤r,l≤n
(r,l) �=(n,n)

ξirl(u)ulwr

+
n−1∑
p=1

Gip(0)wp, i = 1, · · · , n− 1, (2.40)

∂wn

∂t
+
∂(λn(u)wn)

∂x
=

∑
1≤r,l≤n

r �=l

Γnrl(u)wrwl +
∑

1≤r,l≤n
(r,l) �=(n,n)

ξnrl(u)ulwr

+
n−1∑
p=1

Gnp(0)wp. (2.41)

Moreover, using (2.36) and (2.39), we can reduce (2.26) into

∂wi

∂t
+ λi(u)

∂wi

∂x
=

∑
1≤r,l≤n

r �=l

Γirl(u)wrwl −
n∑

r=1

Ξir(u)wiwr +
∑

1≤r,l≤n
(r,l) �=(n,n)

ξirl(u)ulwr

+
n−1∑
p=1

Gip(0)wp i = 1, · · · , n− 1, (2.42)

∂wn

∂t
+ λn(u)

∂wn

∂x
=

∑
1≤r,l≤n

r �=l

Γnrl(u)wrwl −
n−1∑
p=1

Ξnp(u)wnwp −
n−1∑
p=1

(wnηnp(u))upwn

+
∑

1≤r,l≤n
(r,l) �=(n,n)

ξnrl(u)ulwr +
n−1∑
p=1

Gnp(0)wp. (2.43)
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2.3 Formulas of wave decomposition for higher order derivatives

In this subsection, we derive formulas of wave decomposition for higher-order derivatives of
the solution.

Let

yk =
∂uk

∂x
, k = 1, · · · , n, (2.44)

zk =
∂wk

∂x
, k = 1, · · · , n. (2.45)

By (2.22), we have

yk =
n∑

r=1

wrrkr(u), ∀ 1 ≤ k ≤ n. (2.46)

Noting (2.16), we have

rin(unen) ≡ 0, ∀ 1 ≤ i ≤ n− 1.

So by Lemma 2.1, there exist functions φinp(u) ∈ C2 (i, p = 1, · · · , n− 1), such that

rin(u) =
n−1∑
p=1

φinp(u)up, ∀ 1 ≤ i ≤ n− 1.

Substituting this into (2.46), we obtain

yi =
n−1∑
p=1

rip(u)wp +
n−1∑
p=1

φinp(u)upwn, ∀ 1 ≤ i ≤ n− 1. (2.47)

In order to get the formulas of wave decomposition for zi, taking the derivative with respect
to x on both sides of (2.42), we have

∂zi

∂t
+
∂(λi(u)zi)

∂x
=

∑
1≤r,l≤n

r �=l

Γirl(u)(zrwl + wrzl) +
∑

1≤r,l≤n
r �=l

( n∑
h=1

yh
∂

∂uh
Γirl(u)

)
wrwl

−
n∑

r=1

Ξir(u)(ziwr + wizr) −
n∑

r=1

( n∑
h=1

yh
∂

∂uh
Ξir(u)

)
wiwr

+
∑

1≤r,l≤n
(r,l) �=(n,n)

ξirl(u)(ylwr + ulzr) +
∑

1≤r,l≤n
(r,l) �=(n,n)

( n∑
h=1

yh
∂

∂uh
ξirl(u)

)
ulwr

+
n−1∑
p=1

Gip(0)zp, i = 1, · · · , n− 1. (2.48)
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Similarly, taking the derivative with respect to x on both sides of (2.43), we get

∂zn

∂t
+
∂(λn(u)zn)

∂x
=

∑
1≤r,l≤n

r �=l

Γnrl(u)(zrwl + wrzl) +
∑

1≤r,l≤n
r �=l

( n∑
h=1

yh
∂

∂uh
Γnrl(u)

)
wrwl

−
n−1∑
p=1

Ξnp(u)(znwp + wnzp) −
n−1∑
p=1

( n∑
h=1

yh
∂

∂uh
Ξnp(u)

)
wnwp

−
n−1∑
p=1

(wnηnp(u))(ypwn + 2upzn) −
n−1∑
p=1

(
wn

n∑
h=1

yh
∂

∂uh
ηnp(u)

)
upwn

+
∑

1≤r,l≤n
(r,l) �=(n,n)

ξnrl(u)(ylwr + ulzr) +
∑

1≤r,l≤n
(r,l) �=(n,n)

( n∑
h=1

yh
∂

∂uh
ξnrl(u)

)
ulwr

+
n−1∑
p=1

Gnp(0)zp. (2.49)

Noting (2.28) and (2.36), we can easily use (2.48)–(2.49) to obtain another two formulas of wave
decomposition for zk as

∂zi

∂t
+ λi(u)

∂zi

∂x
=

∑
1≤r,l≤n

r �=l

Γirl(u)(zrwl + wrzl) +
∑

1≤r,l≤n
r �=l

( n∑
h=1

yh
∂

∂uh
Γirl(u)

)
wrwl

−
n∑

r=1

Ξir(u)(2ziwr + wizr) −
n∑

r=1

( n∑
h=1

yh
∂

∂uh
Ξir(u)

)
wiwr

+
∑

1≤r,l≤n
(r,l) �=(n,n)

ξirl(u)(ylwr + ulzr) +
∑

1≤r,l≤n
(r,l) �=(n,n)

( n∑
h=1

yh
∂

∂uh
ξirl(u)

)
ulwr

+
n−1∑
p=1

Gip(0)zp, i = 1, · · · , n− 1, (2.50)

∂zn

∂t
+ λn(u)

∂zn

∂x
=

∑
1≤r,l≤n

r �=l

Γnrl(u)(zrwl + wrzl) +
∑

1≤r,l≤n
r �=l

( n∑
h=1

yh
∂

∂uh
Γnrl(u)

)
wrwl

−
n−1∑
p=1

Ξnp(u)(2znwp + wnzp) −
n−1∑
p=1

( n∑
h=1

yh
∂

∂uh
Ξnp(u)

)
wnwp

−
n−1∑
p=1

(wnηnp(u))(ypwn + 3upzn) −
n−1∑
p=1

(
wn

n∑
h=1

yh
∂

∂uh
ηnp(u)

)
upwn

+
∑

1≤r,l≤n
(r,l) �=(n,n)

ξnrl(u)(ylwr + ulzr) +
∑

1≤r,l≤n
(r,l) �=(n,n)

( n∑
h=1

yh
∂

∂uh
ξnrl(u)

)
ulwr

+
n−1∑
p=1

Gnp(0)zp. (2.51)
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Remark 2.3 All the coefficients in formulas (2.48)–(2.51) have already matched the re-
quirements of reduction given in Subsection 2.2.

Remark 2.4 By taking the derivative with respect to x on both sides of (2.34)–(2.35) and
noting (2.36), we can similarly obtain the formulas of wave decomposition for yk. However,
since relations (2.46)–(2.47) can be simply used to establish corresponding a priori estimates
instead of these formulas, we omit them here.

3 Proof of the Main Theorem

In this section, we use the reduced formulas of wave decomposition, given in Subsections
2.2–2.3, to get a series of a priori estimates of the solution and complete the proof of Theorem
2.1, which leads to the validity of our main result, Theorem 1.1.

For any given T ≥ 0, set

UD,a,b(T ) = max
1≤i≤n−1

‖ui‖La(0,T ;Lb(R)), a = 1,∞, b = 2,∞, (3.1)

WD,a,b(T ) = max
1≤i≤n−1

‖wi‖La(0,T ;Lb(R)), a = 1,∞, b = 2,∞, (3.2)

YD,a,b(T ) = max
1≤i≤n−1

‖yi‖La(0,T ;Lb(R)), a = 1,∞, b = 2,∞, (3.3)

ZD,a,2(T ) = max
1≤i≤n−1

‖zi‖La(0,T ;L2(R)), a = 1,∞, (3.4)

UL,∞,b(T ) = ‖un‖L∞(0,T ;Lb(R)), b = 2,∞, (3.5)

WL,∞,b(T ) = ‖wn‖L∞(0,T ;Lb(R)), b = 2,∞, (3.6)

YL,∞,b(T ) = ‖yn‖L∞(0,T ;Lb(R)), b = 2,∞, (3.7)

ZL,∞,2(T ) = ‖zn‖L∞(0,T ;L2(R)), (3.8)

U∞,b(T ) = max{UD,∞,b(T ), UL,∞,b(T )}, b = 2,∞, (3.9)

W∞,b(T ) = max{WD,∞,b(T ),WL,∞,b(T )}, b = 2,∞, (3.10)

Y∞,b(T ) = max{YD,∞,b(T ), YL,∞,b(T )}, b = 2,∞, (3.11)

Z∞,2(T ) = max{ZD,∞,2(T ), ZL,∞,2(T )}, (3.12)

I(T ) = U∞,2(T ) + U∞,∞(T ) + UD,1,2(T )

+W∞,2(T ) +W∞,∞(T ) +WD,1,2(T )

+ Y∞,2(T ) + Y∞,∞(T ) + YD,1,2(T )

+ Z∞,2(T ) + ZD,1,2(T ). (3.13)

By (2.20)–(2.21) and (2.44)–(2.45), we have

I(0) ≤ Cθ. (3.14)

Here and hereafter, C stands for a positive constant independent of θ and T , but possibly
depending on θ0.

Now, we use a bootstrap argument to prove that there exists a constant θ0 (0 < θ0 < 1) so
small that for any given θ (0 ≤ θ ≤ θ0) and any given T ≥ 0, we have

I(T ) ≤ Cθ
3
4 , (3.15)
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i.e., for any given T ≥ 0, we try to get (3.15) under the assumption

I(T ) ≤ θ
1
2 . (3.16)

First, by (3.16) and noting (2.44)–(2.45), the Sobolev embedding theorem can be easily used
to get

UD,1,∞(T ) ≤ C(UD,1,2(T ) + YD,1,2(T )) ≤ Cθ
1
2 , (3.17)

WD,1,∞(T ) ≤ C(WD,1,2(T ) + ZD,1,2(T )) ≤ Cθ
1
2 . (3.18)

Then by (2.47), we have

YD,1,∞(T ) ≤ CWD,1,∞(T ) + CW∞,∞(T )UD,1,∞(T ) ≤ Cθ
1
2 . (3.19)

Next, we estimate the dissipative part of the solution. Multiplying ui on both sides of (2.34)
and (2.37), summing up and integrating over x ∈ R, we obtain

d
dt

‖ui(t, · )‖2
L2(R) =

∫
R

ui ·
(
2

∑
1≤r,l≤n

r �=l

ψirl(u)ulwr +
n∑

r=1

Ξir(u)uiwr + 2
∑

1≤r,l≤n
(r,l) �=(n,n)

Φirl(u)urul

+ 2
n−1∑
p=1

Gip(0)up

)
dx, i = 1, · · · , n− 1.

Summing them up for 1 ≤ i ≤ n− 1 and noting (2.15), we have

d
dt

( n−1∑
i=1

‖ui(t, · )‖2
L2(R)

)
+ 2δ0

( n−1∑
i=1

‖ui(t, · )‖2
L2(R)

)
≤ 2

n−1∑
i=1

(
‖ui(t, · )‖L2(R) ·

∥∥∥( ∑
1≤r,l≤n

r �=l

ψirl(u)ulwr +
1
2

n∑
r=1

Ξir(u)uiwr

+
∑

1≤r,l≤n
(r,l) �=(n,n)

Φirl(u)urul

)
(t, · )

∥∥∥
L2(R)

)
.

Similarly, by (2.40), (2.42) and (2.48), (2.50), we have

d
dt

( n−1∑
i=1

‖wi(t, · )‖2
L2(R)

)
+ 2δ0

( n−1∑
i=1

‖wi(t, · )‖2
L2(R)

)
≤ 2

n−1∑
i=1

(
‖wi(t, · )‖L2(R) ·

∥∥∥( ∑
1≤r,l≤n

r �=l

Γirl(u)wrwl − 1
2

n∑
r=1

Ξir(u)wiwr

+
∑

1≤r,l≤n
(r,l) �=(n,n)

ξirl(u)ulwr

)
(t, · )

∥∥∥
L2(R)

)
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and

d
dt

( n−1∑
i=1

‖zi(t, · )‖2
L2(R)

)
+ 2δ0

( n−1∑
i=1

‖zi(t, · )‖2
L2(R)

)
≤ 2

n−1∑
i=1

(
‖zi(t, · )‖L2(R) ·

∥∥∥( ∑
1≤r,l≤n

r �=l

Γirl(u)(zrwl + wrzl)

+
∑

1≤r,l≤n
r �=l

( n∑
h=1

yh
∂

∂uh
Γirl(u)

)
wrwl −

n∑
r=1

Ξir(u)
(3

2
ziwr + wizr

)

−
n∑

r=1

( n∑
h=1

yh
∂

∂uh
Ξir(u)

)
wiwr +

∑
1≤r,l≤n

(r,l) �=(n,n)

ξirl(u)(ylwr + ulzr)

+
∑

1≤r,l≤n
(r,l) �=(n,n)

( n∑
h=1

yh
∂

∂uh
ξirl(u)

)
ulwr

)
(t, · )

∥∥∥
L2(R)

)
,

respectively. Summing them up gives

d
dt

( n−1∑
i=1

(‖ui(t, · )‖2
L2(R) + ‖wi(t, · )‖2

L2(R) + ‖zi(t, · )‖2
L2(R))

)
+ 2δ0

( n−1∑
i=1

(‖ui(t, · )‖2
L2(R) + ‖wi(t, · )‖2

L2(R) + ‖zi(t, · )‖2
L2(R))

)
≤ C(1 + Y∞,∞(T ))

(
(U∞,∞(T ) +W∞,∞(T ) + Y∞,∞(T ))

·
( n−1∑

i=1

(‖ui(t, · )‖2
L2(R) + ‖wi(t, · )‖2

L2(R) + ‖yi(t, · )‖2
L2(R) + ‖zi(t, · )‖2

L2(R))
)

+ ZL,∞,2(T )
( n−1∑

i=1

(‖zi(t, · )‖L2(R))
)( n−1∑

i=1

(‖ui(t, · )‖L∞(R) + ‖wi(t, · )‖L∞(R))
))
.

By the Sobolev inequality and (2.47), we have

‖ui(t, · )‖L∞(R) + ‖wi(t, · )‖L∞(R)

≤ C(‖ui(t, · )‖L2(R) + ‖wi(t, · )‖L2(R) + ‖yi(t, · )‖L2(R) + ‖zi(t, · )‖L2(R))

and
‖yi(t, · )‖L2(R) ≤ C(‖wi(t, · )‖L2(R) + ‖ui(t, · )‖L2(R)).

Thus,

d
dt

( n−1∑
i=1

(‖ui(t, · )‖2
L2(R) + ‖wi(t, · )‖2

L2(R) + ‖zi(t, · )‖2
L2(R))

)
+ 2δ0

( n−1∑
i=1

(‖ui(t, · )‖2
L2(R) + ‖wi(t, · )‖2

L2(R) + ‖zi(t, · )‖2
L2(R))

)
≤ C(1 + Y∞,∞(T ))

(
(U∞,∞(T ) +W∞,∞(T ) + Y∞,∞(T ) + ZL,∞,2(T ))
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·
( n−1∑

i=1

(‖ui(t, · )‖2
L2(R) + ‖wi(t, · )‖2

L2(R) + ‖zi(t, · )‖2
L2(R))

))
.

Noting (3.16), we have

d
dt

( n−1∑
i=1

(‖ui(t, · )‖2
L2(R) + ‖wi(t, · )‖2

L2(R) + ‖zi(t, · )‖2
L2(R))

)
+ δ0

( n−1∑
i=1

(‖ui(t, · )‖2
L2(R) + ‖wi(t, · )‖2

L2(R) + ‖zi(t, · )‖2
L2(R))

)
≤ 0.

Now we get the exponential decay of the dissipative part of the solution,

( n−1∑
i=1

(‖ui(t, · )‖2
L2(R) + ‖wi(t, · )‖2

L2(R) + ‖zi(t, · )‖2
L2(R))

) 1
2

≤ e−
δ0t

2

( n−1∑
i=1

(‖ui(0, · )‖2
L2(R) + ‖wi(0, · )‖2

L2(R) + ‖zi(0, · )‖2
L2(R))

) 1
2
, ∀t ∈ [0, T ],

which obviously leads to

UD,∞,2(T ) +WD,∞,2(T ) + ZD,∞,2(T ) + UD,1,2(T ) +WD,1,2(T ) + ZD,1,2(T )

≤ C(UD,∞,2(0) +WD,∞,2(0) + ZD,∞,2(0)) ≤ Cθ. (3.20)

By (2.47), we have

YD,∞,2(T ) + YD,1,2(T ) ≤ Cθ. (3.21)

Then by the Sobolev embedding theorem, it follows from (3.20)–(3.21) that

UD,∞,∞(T ) + UD,1,∞(T ) ≤ Cθ, (3.22)

WD,∞,∞(T ) +WD,1,∞(T ) ≤ Cθ. (3.23)

Using (2.47) again, we get

YD,∞,∞(T ) + YD,1,∞(T ) ≤ Cθ. (3.24)

At last, we estimate the nondissipative and weakly linearly degenerate part of the solution.
Multiplying un on both sides of (2.35) and (2.38), summing up and integrating over x ∈ R, we
have

d
dt

‖un(t, · )‖2
L2(R)

=
∫

R

un ·
(
2

∑
1≤r,l≤n

ψnrl(u)ulwr +
n−1∑
p=1

Ξnp(u)unwp +
n−1∑
p=1

(unηnp(u))upwn

+ 2
∑

1≤r,l≤n
(r,l) �=(n,n)

Φnrl(u)urul + 2
n−1∑
p=1

Gnp(0)up

)
dx



348 P. Qu and C. M. Liu

≤ 2‖un(t, · )‖L2(R) ·
(∥∥∥( ∑

1≤r,l≤n

ψnrl(u)ulwr +
1
2

n−1∑
p=1

Ξnp(u)unwp +
1
2

n−1∑
p=1

(unηnp(u))upwn

+
∑

1≤r,l≤n
(r,l) �=(n,n)

Φnrl(u)urul

)
(t, · )

∥∥∥
L2(R)

+
∥∥∥ n−1∑

p=1

Gnp(0)up(t, · )
∥∥∥

L2(R)

)
.

Integrating with respect to t from 0 to T , we obtain

U2
L,∞,2(T ) ≤ U2

L,∞,2(0) + CUL,∞,2(T )((U∞,∞(T ) +W∞,∞(T ))

· (UD,1,2(T ) +WD,1,2(T )) + UD,1,2(T ))

≤ Cθ
3
2 .

Similar calculations for (2.41), (2.43), (2.49) and (2.51) lead to

W 2
L,∞,2(T ) ≤W 2

L,∞,2(0) + CWL,∞,2(T )((U∞,∞(T ) +W∞,∞(T ))

· (UD,1,2(T ) +WD,1,2(T )) +WD,1,2(T ))

≤ Cθ
3
2 ,

Z2
L,∞,2(T ) ≤ Z2

L,∞,2(0) + CZL,∞,2(T )((U∞,∞(T ) +W∞,∞(T ) + Y∞,∞(T ))

· (UD,1,2(T ) +WD,1,2(T ) + YD,1,2(T ) + ZD,1,2(T ))

+ ZL,∞,2(T )(UD,1,∞(T ) +WD,1,∞(T )) + ZD,1,2(T ))

≤ Cθ
3
2 .

Consequently, we have

UL,∞,2(T ) ≤ Cθ
3
4 , (3.25)

WL,∞,2(T ) ≤ Cθ
3
4 , (3.26)

ZL,∞,2(T ) ≤ Cθ
3
4 . (3.27)

Then by (2.46), we have

YL,∞,2(T ) ≤ C(WD,∞,2(T ) +WL,∞,2(T )) ≤ Cθ
3
4 . (3.28)

Thus, we can use the Sobolev embedding theorem again to get

UL,∞,∞(T ) ≤ Cθ
3
4 , (3.29)

WL,∞,∞(T ) ≤ Cθ
3
4 . (3.30)

Finally, by (2.46) and (3.23), we have

YL,∞,∞(T ) ≤ Cθ
3
4 . (3.31)

Inequalities (3.20)–(3.31) give our desired estimate (3.15) which finishes the bootstrap ar-
gument and completes the proof of Theorem 2.1 and so Theorem 1.1.
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4 Remarks

In this section, we give some remarks on several aspects of our main result, Theorem 1.1.
First, because of condition (1.10), as mentioned in [11], Shizuta-Kawashima condition pro-

posed in [14], which plays an important role in [1–3, 13–18] et al., is violated. Moreover, from
the finite-time singularity of the classical solution to the following problem given in [11],⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u1t = u2
1u

2
2,

u2t + u2x = −u2 +
1
2
um

1 , m ∈ N,

t = 0 : u1 =

{
εe

1
|x|2−1 , |x| ≤ 1,

0, |x| ≥ 1,
u2 = 0,

we know that (1.10) is indispensable for our result.
We can also treat (1.10) as a part of null condition that (1.6) and (1.10) guarantee that

the nth characteristic satisfies the generalized null condition given in [6], i.e., in normalized
coordinates, each nth traveling wave solution

ũ = ϕ̃(x− λ̃n(0)t)r̃n(0), ϕ̃ ∈ C1

to the linearized system
∂ũ

∂t
+ Ã(0)

∂ũ

∂x
= 0

is also a solution to the corresponding quasilinear system (2.4).
Secondly, besides a condition similar to (1.10), there is another hypothesis in [11] to restrict

the interactions between two parts of characteristics. In this paper, that hypothesis reads as

ln(u(i)(s))F (u(i)(s)) ≡ 0 for any small |s|, ∀ 1 ≤ i ≤ n− 1, (4.1)

which can lead to one more reduction in Subsections 2.2–2.3 that no first order action from
dissipative waves to nondissipative one exists, i.e.,

G̃np(0) = 0, ∀ 1 ≤ p ≤ n− 1.

In this paper, we do not need such a hypothesis to get our result on the global well-posedness
of the classical solution.

At last, we compare Theorem 1.1 with other results on dissipative systems. Comparing
with [1–3, 13, 15, 19], we do not require the hypotheses on the structure of conservation laws
or strictly convex entropy, as well as Shizuta-Kawashima condition. Comparing with [4, 6–7],
we have only one characteristic that is not involved in the strict dissipation, and the dissipation
is in the sense of positive definiteness other than diagonal dominance. Comparing with [11],
we use the dissipation in the sense of positiveness other than diagonal dominance, and we need
fewer assumptions on the interactions between two parts of characteristics, but the number of
nondissipative wave is only one.

Acknowledgement The authors would like to thank Professor T. T. Li for his patient
guidance, precious suggestions and fruitful discussions.
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